SS 2014

Efficient Algorithms and Data Structures II

Harald Räcke

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2014SS/ea/

Summer Term 2014

Organizational Matters

Organizational Matters

- Modul: IN2004
- Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"
- ECTS: 8 Credit points
- Lectures:
 - ▶ 4 SWS
 - Mon 12:15–14:45 (Room 00.13.009A)
 - Fri 10:15–11:45 (Room 00.13.009A)
- ▶ Webpage: http://www14.in.tum.de/lehre/2014SS/ea/

Organizational Matters

Modul: IN2004

Name: "Efficient Algorithms and Data Structures II"
 "Effiziente Algorithmen und Datenstrukturen II"

ECTS: 8 Credit points

Lectures

4 SWS
Mon 12:15–14:45 (Room 00.13.009A)
Fri 10:15–11:45 (Room 00.13.009Δ)

▶ Webpage: http://www14.in.tum.de/lehre/2014SS/ea/

Organizational Matters

Modul: IN2004

Name: "Efficient Algorithms and Data Structures II"
 "Effiziente Algorithmen und Datenstrukturen II"

ECTS: 8 Credit points

Lectures

4 SWS Mon 12:15–14:45 (Room 00.13.009A) Fri 10:15–11:45 (Room 00.13.009A)

▶ Webpage: http://www14.in.tum.de/lehre/2014SS/ea/

Organizational Matters

Modul: IN2004

Name: "Efficient Algorithms and Data Structures II"
 "Effiziente Algorithmen und Datenstrukturen II"

ECTS: 8 Credit points

Lectures:

4 SWS

Mon 12:15-14:45 (Room 00.13.009A)

Fri 10:15-11:45 (Room 00.13.009A)

▶ Webpage: http://www14.in.tum.de/lehre/2014SS/ea/

Organizational Matters

Modul: IN2004

Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II"

ECTS: 8 Credit points

Lectures:

4 SWS
 Mon 12:15-14:45 (Room 00.13.009A)
 Fri 10:15-11:45 (Room 00.13.009A)

Webpage: http://www14.in.tum.de/lehre/2014SS/ea/

The Lecturer

► Harald Räcke

► Email: raecke@in.tum.de

Room: 03.09.044

Office hours: (per appointment)

Tutorials

- Tutor:
 - Chintan Shah
 - chintan.shah@tum.de
 - Room: 03.09.059
 - per appointment
- Room: 03.11.018
- ▶ Time: Tue 14:15-15:45

- In order to pass the module you need to pass an exam.
- ► Exam:
 - 3 hours
 - Date will be approunced shortly
 - Date Will be announced shortly
 - There are no resources allowed
 - nioce of naner (A4)
 - piece of paper (--):
 - Answers should be
 - _____
 - accepted

In order to pass the module you need to pass an exam.

Exam:

- 3 hours
- Date will be announced shortly.
- There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

In order to pass the module you need to pass an exam.

Fxam:

- 3 hours
- Date will be announced shortly.
- There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

- In order to pass the module you need to pass an exam.
- Exam:
 - 3 hours
 - Date will be announced shortly.
 - There are no resources allowed, apart from a hand-written piece of paper (A4).
 - Answers should be given in English, but German is also accepted.

- In order to pass the module you need to pass an exam.
- Exam:
 - 3 hours
 - Date will be announced shortly.
 - There are no resources allowed, apart from a hand-written piece of paper (A4).
 - Answers should be given in English, but German is also accepted.

In order to pass the module you need to pass an exam.

Exam:

- 3 hours
- Date will be announced shortly.
- There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- The first one will be out on Monday, 14 April

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- The first one will be out on Monday, 14 April

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- The first one will be out on Monday, 14 April

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- ▶ The first one will be out on Monday, 14 April

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- The first one will be out on Monday, 14 April

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- The first one will be out on Monday, 14 April

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- ▶ The first one will be out on Monday, 14 April.

1 Contents

Part 1: Linear Programming

Part 2: Approximation Algorithms

2 Literatur

V. Chvatal:

Linear Programming, Freeman, 1983

R. Seidel: Skript Optimierung, 1996

D. Bertsimas and J.N. Tsitsiklis:

Introduction to Linear Optimization,
Athena Scientific, 1997

Vijay V. Vazirani:

Approximation Algorithms,
Springer 2001

David P. Williamson and David B. Shmoys: The Design of Approximation Algorithms, Cambridge University Press 2011

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi: *Complexity and Approximation*, Springer, 1999

Linear Programming

$ar{U}$ Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

$ar{U}$ Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

$ar{U}$ Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
- only brew beer: 32 barrels of beer
- 7.5 barrels ale, 29.5 barrels been
- ▶ 12 barrels ale, 28 barrels beer

- ____
- \Rightarrow 736 \in
- \Rightarrow 776 \in
- ⇒ 800 €

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale

⇒ 442 €

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale

⇒ 442€

only brew beer: 32 barrels of beer

⇒ 736€

▶ 7.5 barrels ale, 29.5 barrels beer

 \Rightarrow 776 \in

▶ 12 barrels ale, 28 barrels beer

4個トイモトイモ)

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale ⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

▶ 7.5 barrels ale, 29.5 barrels beer

▶ 12 barrels ale, 28 barrels beer ⇒ 800 €

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

▶ 12 barrels ale, 28 barrels beer

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

▶ 12 barrels ale, 28 barrels beer

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

▶ 12 barrels ale, 28 barrels beer ⇒ 800 €

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442 €

only brew beer: 32 barrels of beer ⇒ 736 €

7.5 barrels ale, 29.5 barrels beer ⇒ 776 €

12 barrels ale, 28 barrels beer ⇒ 800 €

- Introduce variables *a* and *b* that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

- Introduce variables *a* and *b* that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

- Introduce variables *a* and *b* that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

- Introduce variables *a* and *b* that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

- input: numbers a_{ij} , c_j , b_i
- ightharpoonup output: numbers x_i
- ightharpoonup n = #decision variables, m =
- maximize linear objective function subject to linear inequalities

LP in standard form:

• input: numbers a_{ij} , c_j , b_i

• output: numbers x_j

ightharpoonup n = #decision variables, m =

maximize linear objective function subject to linear inequalities

LP in standard form:

• input: numbers a_{ij} , c_j , b_i

• output: numbers x_j

n = # decision variables, m = # constraints

 maximize linear objective function subject to linear inequalities

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_i
- n = # decision variables, m = # constraints
- maximize linear objective function subject to linear inequalities

```
\max \sum_{\substack{j=1\\n\\j=1}}^n c_j x_j s.t. \sum_{j=1}^n a_{ij} x_j = b_i \ 1 \le i \le m x_j \ge 0 \ 1 \le j \le n
```


- input: numbers a_{ij} , c_j , b_i
- output: numbers x_i
- ightharpoonup n = #decision variables, m = #constraints
- maximize linear objective function subject to linear inequalities

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij}x_{j} = b_{i} \quad 1 \le i \le m$$

$$x_{j} \ge 0 \quad 1 \le j \le n$$

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_i
- ightharpoonup n = #decision variables, m = #constraints
- maximize linear objective function subject to linear inequalities

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij}x_{j} = b_{i} \quad 1 \le i \le m$$

$$x_{j} \ge 0 \quad 1 \le j \le n$$

$$\begin{array}{rcl}
\max & c^t x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Standard Form

Add a slack variable to every constraint

Original LP

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Standard Form

Add a slack variable to every constraint.

max
$$13a + 23b$$

s.t. $5a + 15b + s_c = 480$
 $4a + 4b + s_h = 160$
 $35a + 20b + s_m = 1190$
 a , b , s_c , s_h , $s_m \ge 0$

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^t x \\
\text{s.t.} & Ax &= b \\
& x &\ge 0
\end{array}$$

standard maximization for

$$\max c^t x$$
s.t. $Ax \le b$

$$x \ge 0$$

$\begin{array}{rcl} \min & c^t x \\ \text{s.t.} & Ax &= b \\ & x &\ge 0 \end{array}$

standard minimization fo

min
$$c^t x$$

s.t. $Ax \ge b$
 $x \ge 0$

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^t x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard

$$\begin{array}{rcl}
\max & c^t x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^t x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard

min
$$c^t x$$

s.t. $Ax \ge b$
 $x \ge 0$

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^t x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^t x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^t x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{cccc}
\min & c^t x \\
\text{s.t.} & Ax \ge b \\
& x \ge 0
\end{array}$$

There are different standard forms:

standard form

$$\begin{array}{rcl}
\text{max} & c^t x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{cccc}
\max & c^t x \\
\text{s.t.} & Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$\begin{array}{rcl}
\min & c^t x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard minimization form

$$\begin{array}{cccc}
\min & c^t x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

It is easy to transform variants of LPs into (any) standard form:

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12s$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c = 12 \implies a - 3b + 5c - 5 = 12$$

min to max

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a-3b+5c \le 12 \implies a-3b+5c+s=12$$

 $s \ge 0$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a-3b+5c \le 12 \implies a-3b+5c+s=12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max

 $\min a - 3b + 5c \implies \max -a + 3b - 5c$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a-3b+5c \le 12 \implies a-3b+5c+s=12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

min to max

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a-3b+5c \le 12 \implies a-3b+5c+s=12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a-3b+5c \le 12 \implies a-3b+5c+s=12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

$$a-3b+5c=12 \implies \frac{a-3b+5c=12}{a+3b-5c=-12}$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Ouestions:

- Is LP in MP?
- Is I P in co-NP?
- le I P in 177

Input size

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- Is LP in co-NP?
- Input size
 - n number of variables, m constraints, L number of bits to encode the input

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is I P in NP?
- ► Is LP in co-NP?
- ▶ Is I P in P?

Input size

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP?
- ▶ Is I P in P?

Input size

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP?
- Is I P in P?

Input size

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP?
- Is I P in P?

Input size:

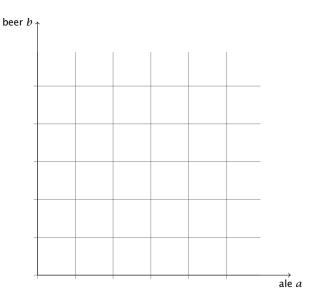
Definition 1 (Linear Programming Problem (LP))

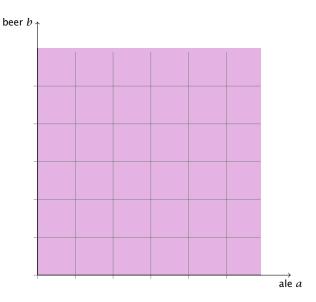
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

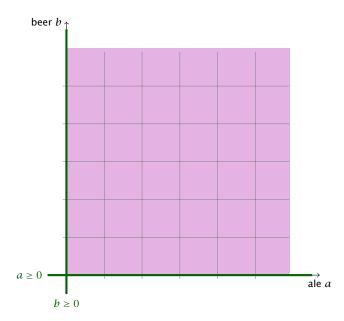
Questions:

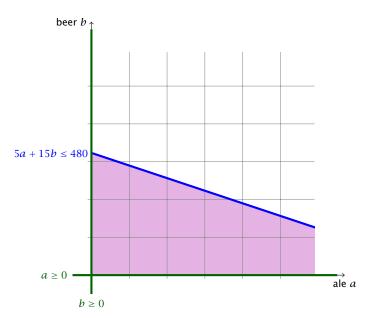
- ▶ Is LP in NP?
- ► Is LP in co-NP?
- ▶ Is I P in P?

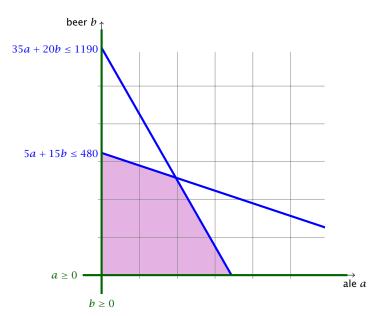
Input size:

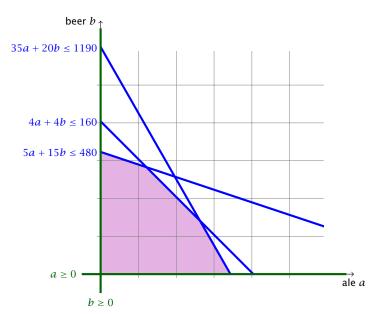


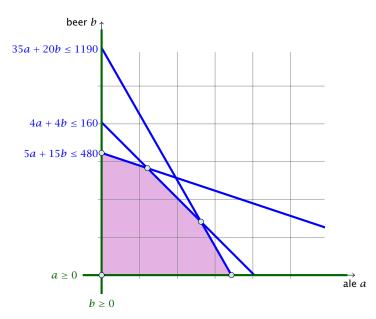


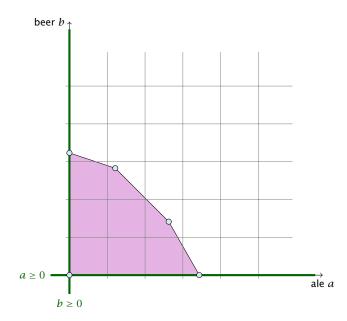


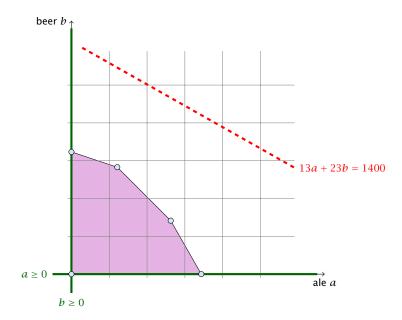


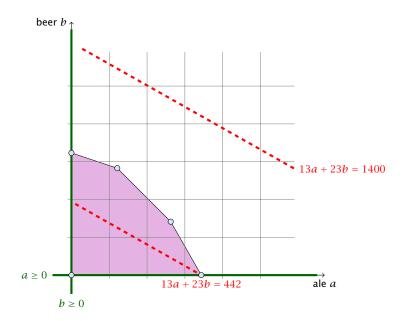


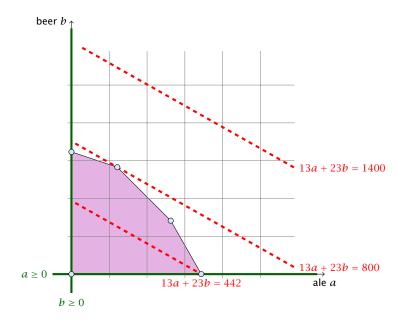


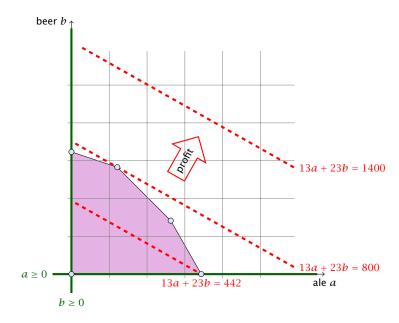


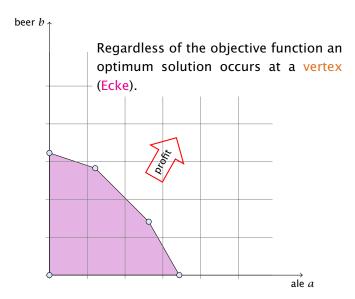












Convex Sets

A set $S \subseteq \mathbb{R}$ is convex if for all $x, y \in S$ also $\lambda x + (1 - \lambda)y \in S$ for all $0 \le \lambda \le 1$.

A point in $x \in S$ that can't be written as a convex combination of two other points in the set is called a vertex.

Convex Sets

A set $S \subseteq \mathbb{R}$ is convex if for all $x, y \in S$ also $\lambda x + (1 - \lambda)y \in S$ for all $0 \le \lambda \le 1$.

A point in $x \in S$ that can't be written as a convex combination of two other points in the set is called a vertex.

$$P = \{x \mid Ax = b, x \ge 0\}.$$

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ P is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise
- An LP is bounded (beschränkt) if it is feasible and

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- P is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- P is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - ▶ $c^t x < \infty$ for all $x \in P$ (for maximization problems) ▶ $c^t x > -\infty$ for all $x \in P$ (for minimization problems)

Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^t x < \infty$ for all $x \in P$ (for maximization problems)

 $c'x > -\infty$ for all $x \in P$ (for minimization problems)

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- P is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^t x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^t x > -\infty$ for all $x \in P$ (for minimization problems)

Definition 2

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., P = conv(X) where

$$conv(X) = \left\{ \sum_{i=1}^{\ell} \lambda_i x_i \mid \ell \in \mathbb{N}, x_1, \dots, x_{\ell} \in X, \lambda_i \ge 0, \sum_i \lambda_i = 1 \right\}$$

and |X| = c.

Definition 3

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1,b_1),\ldots,H(a_m,b_m)\}$, where

$$H(a_i, b_i) = \{ x \in \mathbb{R}^n \mid a_i x \le b_i \} .$$

Theorem 4

P is a bounded polyhedron iff P is a polytop.

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid ax = b\}$$

is a supporting hyperplane of P if $\max\{ax \mid x \in P\} = b$.

Definition 6

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 7

Let $P \subseteq \mathbb{R}^n$

- \triangleright v is a vertex of P if $\{v\}$ is a face of P.
- e is an edge of P if e is a face and dim(e) = 1.
- ▶ F is a facet of P if F is a face and dim(e) = dim(P) 1

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid ax = b\}$$

is a supporting hyperplane of P if $\max\{ax \mid x \in P\} = b$.

Definition 6

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 7

Let $P \subseteq \mathbb{R}^n$

- \triangleright *v* is a vertex of *P* if $\{v\}$ is a face of *P*.
- ightharpoonup e is an edge of P if e is a face and dim(e) = 1.
- ightharpoonup F is a face and $\dim(e) = \dim(P) 1$

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid ax = b\}$$

is a supporting hyperplane of P if $\max\{ax \mid x \in P\} = b$.

Definition 6

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 7

Let $P \subseteq \mathbb{R}^n$.

- v is a vertex of P if $\{v\}$ is a face of P.
- e is an edge of P if e is a face and dim(e) = 1.
- F is a facet of P if F is a face and $\dim(e) = \dim(P) 1$.

Observation

The feasible region of an LP is a Polyhedron.

Theorem 8

If there exists an optimal solution to an LP then there exists an optimum solution that is a vertex.

Theorem 8

If there exists an optimal solution to an LP then there exists an optimum solution that is a vertex.

- suppose x is optimal solution that is not a vertex
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^t d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Theorem 8

If there exists an optimal solution to an LP then there exists an optimum solution that is a vertex.

- ightharpoonup suppose x is optimal solution that is not a vertex
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^t d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Theorem 8

If there exists an optimal solution to an LP then there exists an optimum solution that is a vertex.

- ightharpoonup suppose x is optimal solution that is not a vertex
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^t d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Theorem 8

If there exists an optimal solution to an LP then there exists an optimum solution that is a vertex.

- ightharpoonup suppose x is optimal solution that is not a vertex
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^t d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$. $\lambda > 0$

Theorem 8

If there exists an optimal solution to an LP then there exists an optimum solution that is a vertex.

- ightharpoonup suppose x is optimal solution that is not a vertex
- ▶ there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^t d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

increase λ to λ' until first component of $x + \lambda d$ hits 0

 $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$

 $x+\lambda'd$ has one more zero-component $(d_k=0)$ for $x_k=0$ as

 $x \pm a \in P$)

 $c^{l}x' = c^{l}(x + \lambda^{l}d) = c^{l}x + \lambda^{l}c^{l}d \ge c^{l}x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^t d > 0]$

 $+\lambda d$ is feasible for all $\lambda > 0$ since $A(x + \lambda d) = b$ and $+\lambda f(x + x + 0) = b$

 $x + \lambda a \ge x \ge 0$

as $\lambda \to \infty$, $c^{\dagger}(x + \lambda d) \to \infty$ as $c^{\dagger}d > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

Case 2. $[d_j \ge 0$ for all j and $c^t d > 0$

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^t x' = c^t (x + \lambda' d) = c^t x + \lambda' c^t d \ge c^t x$

Case 2. $[d_j \ge 0$ for all j and $c^t d > 0]$

 $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $\lambda(x + \lambda d) = b$ and $x \ge \lambda/(x + x + d)$

- $x + \Lambda a \ge x \ge 0$
- as $\lambda \to \infty$, $c^{\ell}(x + \lambda d) \to \infty$ as $c^{\ell}d > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ▶ $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^t x' = c^t (x + \lambda' d) = c^t x + \lambda' c^t d \ge c^t x$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^t x' = c^t (x + \lambda' d) = c^t x + \lambda' c^t d \ge c^t x$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^t x' = c^t (x + \lambda' d) = c^t x + \lambda' c^t d \ge c^t x$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^t x' = c^t (x + \lambda' d) = c^t x + \lambda' c^t d \ge c^t x$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component $(d_k = 0 \text{ for } x_k = 0 \text{ as } x \pm d \in P)$
- $c^t x' = c^t (x + \lambda' d) = c^t x + \lambda' c^t d \ge c^t x$

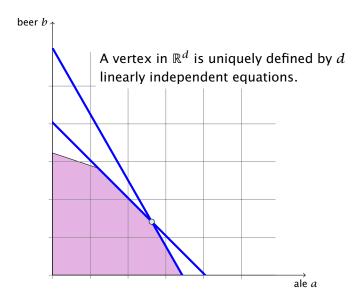
- ► $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- ightharpoonup as $\lambda \to \infty$, $c^t(x + \lambda d) \to \infty$ as $c^t d > 0$

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component $(d_k = 0 \text{ for } x_k = 0 \text{ as } x \pm d \in P)$
- $c^t x' = c^t (x + \lambda' d) = c^t x + \lambda' c^t d \ge c^t x$

- ► $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- ▶ as $\lambda \to \infty$, $c^t(x + \lambda d) \to \infty$ as $c^t d > 0$

Algebraic View



Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 9

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 9

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

Proof (⇐)

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

Proof (⇐)

- assume x is not a vertex
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{j \mid d_j \neq 0\}$
- $ightharpoonup A_{B'}$ has linearly dependent columns as Ad = 0
- ▶ $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- assume x is not a vertex
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{j \mid d_j \neq 0\}$
- $ightharpoonup A_{B'}$ has linearly dependent columns as Ad=0
- ▶ $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- assume x is not a vertex
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{ j \mid d_i \neq 0 \}$
- $ightharpoonup A_{B'}$ has linearly dependent columns as Ad=0
- ▶ $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

Proof (⇐)

- assume x is not a vertex
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{ j \mid d_i \neq 0 \}$
- $ightharpoonup A_{B'}$ has linearly dependent columns as Ad = 0
- ▶ $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- assume x is not a vertex
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- assume x is not a vertex
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- ▶ $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- assume x is not a vertex
- ▶ there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{ j \mid d_i \neq 0 \}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- ▶ $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- \triangleright hence, x is not a vertex

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not a vertex

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not a vertex

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- ▶ for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not a vertex

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- \triangleright hence, x is not a vertex

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is a vertex **iff** A_B has linearly independent columns.

- ightharpoonup assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- extend d to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not a vertex

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=1}^m \lambda_i \cdot b_i$ then
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints $A_2, ..., A_m$ we have

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints $A_2, ..., A_m$ we have

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

- assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

- ▶ assume that rank(A) < m</p>
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

- ▶ assume that rank(A) < m</p>
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$\mathbf{A_1x} = \sum_{i=2}^{m} \lambda_i \cdot A_i x = \sum_{i=2}^{m} \lambda_i \cdot b_i \neq b_1$$

- ▶ assume that rank(A) < m</p>
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

- ▶ assume that rank(A) < m</p>
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

- ▶ assume that rank(A) < m</p>
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows $A_2, ..., A_m$; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1x = \sum_{i=2}^m \lambda_i \cdot A_ix = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Theorem 10

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is a vertex iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $x_B = A_B^{-1}b \ge 0$
- $x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

Theorem 10

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is a vertex iff there exists $B \subseteq \{1, ..., n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $x_B = A_B^{-1}b \ge 0$
- $x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since $\operatorname{rank}(A) = m$.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_I) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

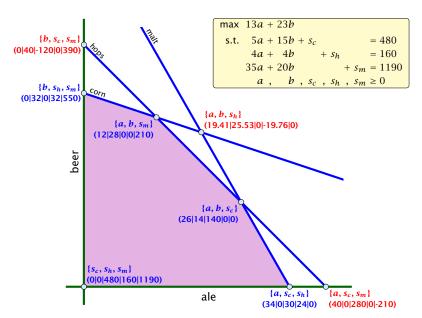
A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $\operatorname{rank}(A_J) = |J|$ where $J = \{j \mid x_j \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $\operatorname{rank}(A_B) = m$ and |B| = m.

Algebraic View



Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions

- ► Is LP in NP? ves!
- ► Is LP in co-NP?
- ▶ Is I P in P?

Proof

Given a basis B we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP? yes!
- ► Is LP in co-NP?
- ▶ Is LP in P?

Proof:

▶ Given a basis B we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m}\cdot\operatorname{poly}(n,m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

max
$$13a + 23b$$

s.t. $5a + 15b + s_c = 480$
 $4a + 4b + s_h = 160$
 $35a + 20b + s_m = 1190$
 a , b , s_c , s_h , $s_m \ge 0$

basis = $\{s_c, s_h, s_m\}$ A = B = 0 Z = 0 $s_c = 480$ $s_h = 160$ $s_m = 1190$

max
$$13a + 23b$$

s.t. $5a + 15b + s_c = 480$
 $4a + 4b + s_h = 160$
 $35a + 20b + s_m = 1190$
 a , b , s_c , s_h , $s_m \ge 0$

basis =
$$\{s_c, s_h, s_m\}$$

 $A = B = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$


```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

choose variable to bring into the basis

- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

$$a = b = 0$$

$$Z = 0$$

$$s_c = 480$$

$$s_h = 160$$

$$s_m = 1190$$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

▶ Choose variable with coefficient ≥ 0 as entering variable.

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- ▶ Choose variable with coefficient ≥ 0 as entering variable.
- If we keep a=0 and increase b from 0 to $\theta>0$ s.t. all constraints ($Ax=b, x\geq 0$) are still fulfilled the objective value Z will strictly increase.

```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

- ▶ Choose variable with coefficient ≥ 0 as entering variable.
- If we keep a=0 and increase b from 0 to $\theta>0$ s.t. all constraints ($Ax=b, x\geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.

$$\max Z$$

$$13a + 23b \qquad -Z = 0$$

$$5a + 15b + s_c \qquad = 480$$

$$4a + 4b \qquad + s_h \qquad = 160$$

$$35a + 20b \qquad + s_m \qquad = 1190$$

$$a , b , s_c , s_h , s_m \geq 0$$

```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

- ▶ Choose variable with coefficient ≥ 0 as entering variable.
- If we keep a=0 and increase b from 0 to $\theta>0$ s.t. all constraints ($Ax=b, x \ge 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- ► Choosing $\theta = \min\{480/15, 160/4, 1190/20\}$ ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.

```
basis = \{s_c, s_h, s_m\}

a = b = 0

Z = 0

s_c = 480

s_h = 160

s_m = 1190
```

- ▶ Choose variable with coefficient ≥ 0 as entering variable.
- If we keep a=0 and increase b from 0 to $\theta>0$ s.t. all constraints ($Ax=b, x\geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- ▶ Choosing $\theta = \min\{480/15, 160/4, 1190/20\}$ ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- The basic variable in the row that gives $min\{480/15, 160/4, 1190/20\}$ becomes the leaving variable.

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

Substitute $b = \frac{1}{15}(480 - 5a - s_c)$.

$$\begin{array}{llll} \max Z & & & \\ \frac{16}{3}a & -\frac{23}{15}s_c & -Z = -736 \\ & \frac{1}{3}a + b + \frac{1}{15}s_c & = 32 \\ & \frac{8}{3}a & -\frac{4}{15}s_c + s_h & = 32 \\ & \frac{85}{3}a & -\frac{4}{3}s_c & +s_m & = 550 \\ & a \ , b \ , s_c \ , s_h \ , s_m & \geq 0 \end{array}$$

basis =
$$\{b, s_h, s_m\}$$

 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

Substitute $b = \frac{1}{15}(480 - 5a - s_c)$.

basis =
$$\{b, s_h, s_m\}$$

 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

Substitute $b = \frac{1}{15}(480 - 5a - s_c)$.

$$\max Z$$

$$\frac{16}{3}a - \frac{23}{15}s_c - Z = -736$$

$$\frac{1}{3}a + b + \frac{1}{15}s_c = 32$$

$$\frac{8}{3}a - \frac{4}{15}s_c + s_h = 32$$

$$\frac{85}{3}a - \frac{4}{3}s_c + s_m = 550$$

$$a, b, s_c, s_h, s_m \ge 0$$

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

basis = $\{b, s_h, s_m\}$ $a = s_c = 0$ Z = 736 b = 32 $s_h = 32$ $s_m = 550$

$$\max Z$$

$$\frac{16}{3}a - \frac{23}{15}s_{c} - Z = -736$$

$$\frac{1}{3}a + b + \frac{1}{15}s_{c} = 32$$

$$\frac{8}{3}a - \frac{4}{15}s_{c} + s_{h} = 32$$

$$\frac{85}{3}a - \frac{4}{3}s_{c} + s_{m} = 550$$

$$a, b, s_{c}, s_{h}, s_{m} \ge 0$$

$$\max Z$$

$$= -736$$

$$basis = \{b, s_{h}, s_{m}\}$$

$$a = s_{c} = 0$$

$$Z = 736$$

$$b = 32$$

$$s_{h} = 32$$

$$s_{m} = 550$$

Choose variable a to bring into basis.

$$\max Z$$

$$\frac{16}{3}a - \frac{23}{15}s_{c} - Z = -736$$

$$\frac{1}{3}a + b + \frac{1}{15}s_{c} = 32$$

$$\frac{8}{3}a - \frac{4}{15}s_{c} + s_{h} = 32$$

$$\frac{85}{3}a - \frac{4}{3}s_{c} + s_{m} = 550$$

$$a, b, s_{c}, s_{h}, s_{m} \ge 0$$

$$\max Z$$

$$= 32$$

$$= 32$$

$$= 32$$

$$b = 32$$

$$s_{h} = 32$$

$$s_{m} = 550$$

Choose variable a to bring into basis. Computing $\min\{3 \cdot 32, \frac{3 \cdot 32}{8}, \frac{3 \cdot 550}{85}\}$ means pivot on line 2.

$$\max Z$$

$$\frac{16}{3}a - \frac{23}{15}s_{c} - Z = -736$$

$$\frac{1}{3}a + b + \frac{1}{15}s_{c} = 32$$

$$\frac{8}{3}a - \frac{4}{15}s_{c} + s_{h} = 32$$

$$\frac{85}{3}a - \frac{4}{3}s_{c} + s_{m} = 550$$

$$a, b, s_{c}, s_{h}, s_{m} \ge 0$$

$$basis = \{b, s_{h}, s_{m}\}$$

$$a = s_{c} = 0$$

$$Z = 736$$

$$b = 32$$

$$s_{h} = 32$$

$$s_{m} = 550$$

Choose variable a to bring into basis. Computing $\min\{3 \cdot 32, 3\cdot 32/8, 3\cdot 550/85\}$ means pivot on line 2.

Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

Choose variable a to bring into basis.

Computing min{3 · 32,3·32/8,3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

Pivoting stops when all coefficients in the objective function are non-positive.

Pivoting stops when all coefficients in the objective function are non-positive.

Pivoting stops when all coefficients in the objective function are non-positive.

- any feasible solution satisfies all equations in the tableaux
- ▶ in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- ▶ the current solution has value 800

Pivoting stops when all coefficients in the objective function are non-positive.

- any feasible solution satisfies all equations in the tableaux
- ▶ in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- ▶ the current solution has value 800

Pivoting stops when all coefficients in the objective function are non-positive.

- any feasible solution satisfies all equations in the tableaux
- ▶ in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- ▶ the current solution has value 800

Pivoting stops when all coefficients in the objective function are non-positive.

- any feasible solution satisfies all equations in the tableaux
- ▶ in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- the current solution has value 800

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis *B* is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

$$x_B , x_N \ge 0$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

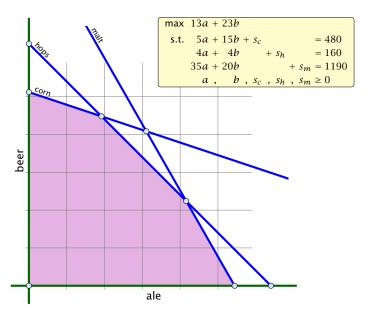
The simplex tableaux for basis B is

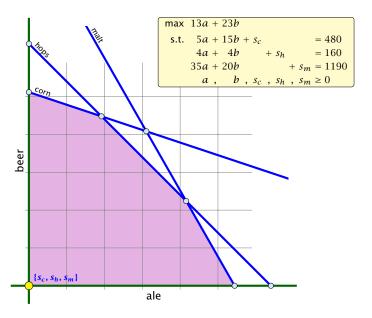
$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

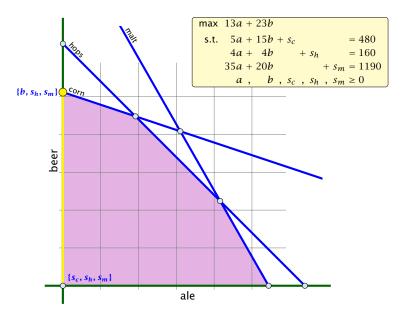
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

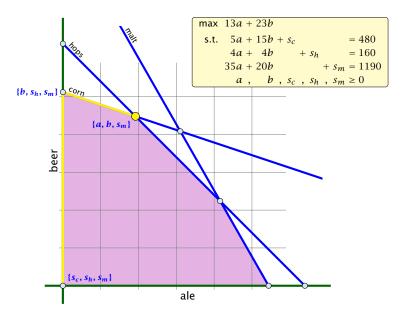
The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

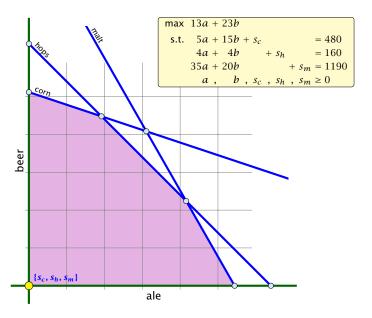
If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

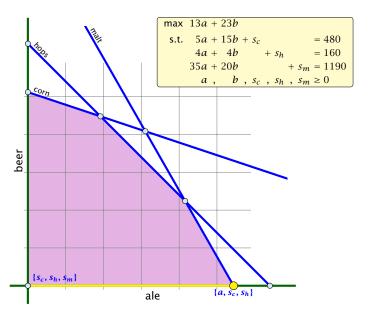


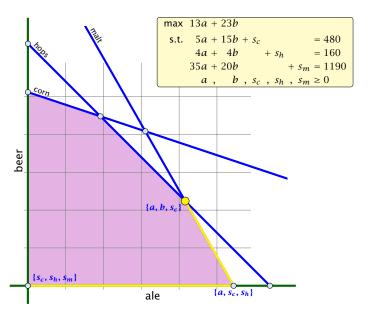


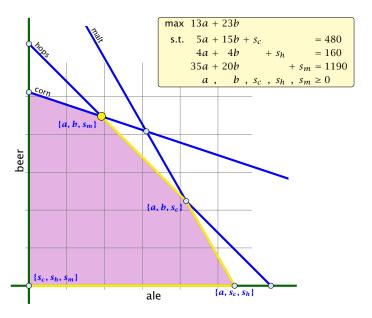












- Given basis B with BFS x^* .
- ▶ Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
- Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_3 = 1$ (normalization)
- $dx = 0, \ell \in B, \ell \neq j$
- $A(x^{2} + \theta d) = b$ must hold. Hence Ad = 0
- Altogether: $A_B d_B + A_{+1} = Ad = 0$, which gives
- $d_R = -A_n^{-1}A_{\pm i}.$

- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_j^* from 0 to $\theta > 0$.
 - ▶ Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_{i} = 1$ (normalization)
- $d_{\ell} = 0, \ell \in B, \ell \neq j$
- $A(x^2 + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_n d_n + A_{nj} = Ad = 0$, which gives
- $dn = -A_n^{-1}A_{+1}.$

- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_f = 1$ (normalization)
- $dg = 0, \ell \in B, \ell \neq j$
- $A(x^{*}+\theta d)=b$ must hold. Hence Ad=0.
- Altogether: $A_B d_B + A_{\pm j} = Ad = 0$, which gives
- $d_B = -A_B^{-1}A_{+1}.$

- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_j^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- ightharpoonup Go from x^* to $x^* + \theta \cdot d$.

- $d_j = 1$ (normalization)
 - $d_{\theta}=0,\,\ell\in B,\,\ell\neq j$
 - $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
 - Altogether: $A_B d_B + A_{kj} = Ad = 0$, which gives
 - $d_B = -A_B^{-1}A_{*i}$.

- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_j^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_i = 1$ (normalization)
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1} A_{*j}$.

- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_j^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_i = 1$ (normalization)
- $d_{\ell} = 0, \ \ell \notin B, \ \ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1} A_{*j}$.

- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_j^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_i = 1$ (normalization)
- $d_{\ell} = 0, \ \ell \notin B, \ \ell \neq j$
- ► $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1} A_{*j}$.

- Given basis B with BFS x^* .
- ► Choose index $j \notin B$ in order to increase x_j^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

- $d_i = 1$ (normalization)
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1} A_{*j}$.

Definition 11 (j-th basis direction)

Let B be a basis, and let $j \notin B$. The vector d with $d_j = 1$ and $d_\ell = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the j-th basis direction for B.

Going from x^* to $x^*+ heta\cdot d$ the objective function changes by

$$\theta \cdot c^t d = \theta (c_j - c_B^t A_B^{-1} A_{*j})$$

Definition 11 (j-th basis direction)

Let B be a basis, and let $j \notin B$. The vector d with $d_j = 1$ and $d_\ell = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the j-th basis direction for B.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^t d = \theta (c_j - c_B^t A_B^{-1} A_{*j})$$

Definition 12 (Reduced Cost)

For a basis B the value

$$\tilde{c}_j = c_j - c_B^t A_B^{-1} A_{*j}$$

is called the reduced cost for variable x_j .

Note that this is defined for every j. If $j \in B$ then the above term is 0.

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis *B* is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Questions:

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^t-c_B^tA_B^{-1}A_N)\leq 0 \ ?$$

- Then we can terminate because we know that the solution is optimal.
- ▶ If yes how do we make sure that we reach such a basis?

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^t - c_B^t A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

▶ If yes how do we make sure that we reach such a basis?

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^t - c_B^t A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

If yes how do we make sure that we reach such a basis?

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^t - c_B^t A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

If yes how do we make sure that we reach such a basis?

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

The objective function may not increase!

Because a variable x_ℓ with $\ell \in \mathit{B}$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 13 (Degeneracy)

A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 13 (Degeneracy)

A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 13 (Degeneracy)

A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

The objective function may not increase!

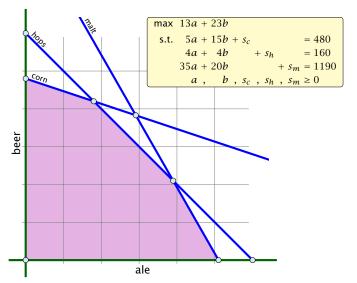
Because a variable x_{ℓ} with $\ell \in B$ is already 0.

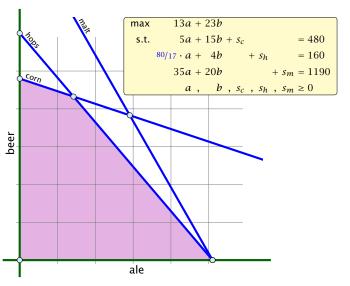
The set of inequalities is degenerate (also the basis is degenerate).

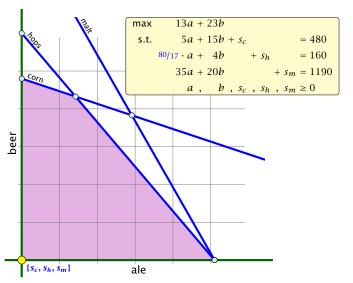
Definition 13 (Degeneracy)

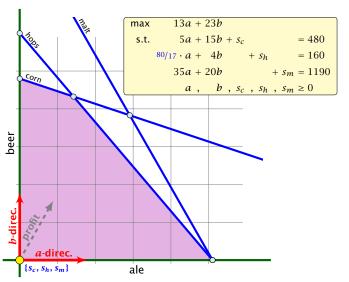
A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

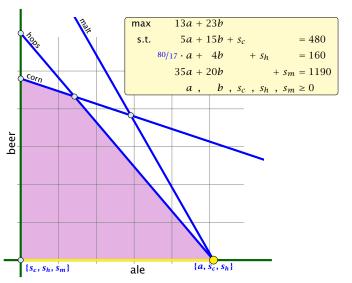
Non Degenerate Example

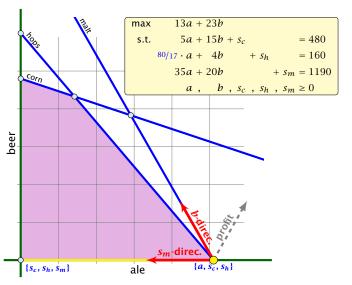


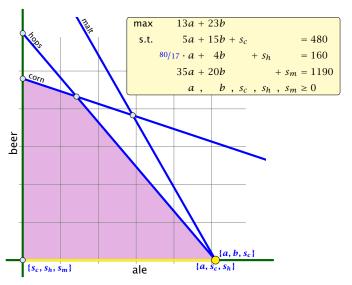


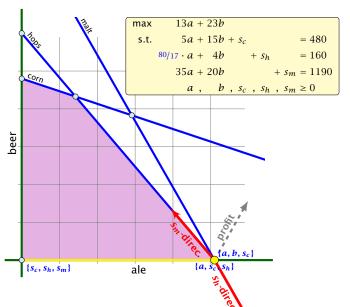


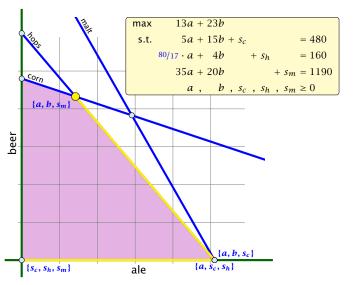


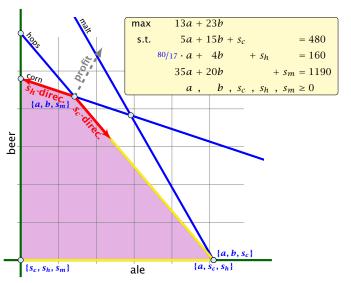












Summary: How to choose pivot-elements

- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_e
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- If several variables have minimum $b_\ell/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_e .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_e .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_e .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_e .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- If several variables have minimum $b_\ell/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_e .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ▶ Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- If several variables have minimum $b_\ell/A_{\ell e}$ you reach a degenerate basis.
- \blacktriangleright Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

- ► $Ax \le b, x \ge 0$, and $b \ge 0$.
- The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

- $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

- $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

- $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

- ▶ $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

- Multiply all rows with $\theta_i < 0$ by --
- $\text{maximize} \sum_{l} v_{l} \text{ s.t. } Ax + lv = b, x \ge 0, v \ge 0 \text{ using } x \ge 0, x$
- Simplex. x = 0, v = b is initial feasible.
- If $\sum_i v_i > 0$ then the original problem is
 - Otw. you have $x \ge 0$ with Ax = b.
 - From this you can get basic feasible solution.
- Now you can start the Simplex for the original problem

- **1.** Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- **6.** Now you can start the Simplex for the original problem

- **1.** Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- 3. If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem

- **1.** Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- **5.** From this you can get basic feasible solution
- 6. Now you can start the Simplex for the original problem.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- **6.** Now you can start the Simplex for the original problem

- **1.** Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

Optimality

Lemma 14

Let B be a basis and x^* a BFS corresponding to basis B. $\tilde{c} \le 0$ implies that x^* is an optimum solution to the LP.

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \geq 0$) such that $\sum_i y_i a_{ij} \geq c_j$ then $\sum_i y_i b_i$ will be an upper bound.

Definition 15

Let $z = \max\{c^t x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$$

is called the dual problem.

Lemma 16

The dual of the dual problem is the primal problem.

Proof

Lemma 16

The dual of the dual problem is the primal problem.

Proof:

$$w = -\max\{-b^t y \mid -A^t y \le -c, y \ge 0\}$$

$$z = -\min\{-c^b x \mid -Ax \ge -b, x \ge 0\}$$

$$z = \max\{c^t x \mid Ax \le b, x \ge 0\}$$

Lemma 16

The dual of the dual problem is the primal problem.

Proof:

- $w = -\max\{-b^t y \mid -A^t y \le -c, y \ge 0\}$

Lemma 16

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$
- $w = -\max\{-b^t y \mid -A^t y \le -c, y \ge 0\}$

- $z = -\min\{-c^t x \mid -Ax \ge -b, x \ge 0\}$
- $\triangleright z = \max\{c^t x \mid Ax \le b, x \ge 0\}$

Lemma 16

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$
- $w = -\max\{-b^t y \mid -A^t y \le -c, y \ge 0\}$

- $z = -\min\{-c^t x \mid -Ax \ge -b, x \ge 0\}$
- $\triangleright z = \max\{c^t x \mid Ax \le b, x \ge 0\}$

Let
$$z = \max\{c^t x \mid Ax \le b, x \ge 0\}$$
 and $w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$ be a primal dual pair.

$$x$$
 is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

$$y$$
 is dual feasible, iff $y \in \{y \mid A^t y \ge c, y \ge 0\}$.

Theorem 17 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^t \hat{x} \le z \le w \le b^t \hat{y} .$$

Let $z = \max\{c^t x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^t y \ge c, y \ge 0\}$.

Theorem 17 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^t \hat{x} \leq z \leq w \leq b^t \hat{y} \ .$$

$$A^t\hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y} .$$

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y} .$$

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{\mathbf{x}} \leq \mathbf{b} \Rightarrow y^t A \hat{\mathbf{x}} \leq \hat{y}^t b \ (\hat{\mathbf{y}} \geq 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y} .$$

Since, there exists primal feasible \hat{x} with $c^t \hat{x} = z$, and dual feasible \hat{y} with $b^t y = w$ we get $z \le w$.

$$A^t \hat{y} \ge c \Rightarrow \hat{x}^t A^t \hat{y} \ge \hat{x}^t c \ (\hat{x} \ge 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y} .$$

Since, there exists primal feasible \hat{x} with $c^t \hat{x} = z$, and dual feasible \hat{y} with $b^t y = w$ we get $z \le w$.

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \leq b \Rightarrow y^t A\hat{x} \leq \hat{y}^t b \; (\hat{y} \geq 0)$$

This gives

$$c^t \hat{x} \le \hat{y}^t A \hat{x} \le b^t \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

Weak Duality

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \leq \hat{y}^t A \hat{x} \leq b^t \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^t \hat{x} = z$, and dual feasible \hat{y} with $b^t y = w$ we get $z \le w$.

If *P* is unbounded then *D* is infeasible.

Weak Duality

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \leq \hat{y}^t A \hat{x} \leq b^t \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

If *P* is unbounded then *D* is infeasible

Weak Duality

$$A^t \hat{y} \geq c \Rightarrow \hat{x}^t A^t \hat{y} \geq \hat{x}^t c \ (\hat{x} \geq 0)$$

$$A\hat{x} \le b \Rightarrow y^t A\hat{x} \le \hat{y}^t b \ (\hat{y} \ge 0)$$

This gives

$$c^t \hat{x} \leq \hat{y}^t A \hat{x} \leq b^t \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^t\hat{x}=z$, and dual feasible \hat{y} with $b^ty=w$ we get $z\leq w$.

If *P* is unbounded then *D* is infeasible.

The following linear programs form a primal dual pair:

$$z = \max\{c^t x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^t y \mid A^t y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Primal:

$$\max\{c^t x \mid Ax = b, x \ge 0\}$$

Primal:

$$\max\{c^t x \mid Ax = b, x \ge 0\}$$
$$= \max\{c^t x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix}x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{[b^t - b^t]y \mid [A^t - A^t]y \ge c, y \ge 0\}$$

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix}x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{ \begin{bmatrix} b^t - b^t \end{bmatrix} y \mid \begin{bmatrix} A^t - A^t \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^t - b^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^t - A^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix}x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{ \begin{bmatrix} b^t - b^t \end{bmatrix} y \mid \begin{bmatrix} A^t - A^t \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^t - b^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^t - A^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^t \cdot (y^+ - y^-) \mid A^t \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

Primal:

$$\max\{c^{t}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{t}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{t}x \mid \begin{bmatrix} A \\ -A \end{bmatrix}x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

$$\min\{ \begin{bmatrix} b^t - b^t \end{bmatrix} y \mid \begin{bmatrix} A^t - A^t \end{bmatrix} y \ge c, y \ge 0 \}$$

$$= \min\left\{ \begin{bmatrix} b^t - b^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^t - A^t \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^t \cdot (y^+ - y^-) \mid A^t \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0 \right\}$$

$$= \min\left\{ b^t y' \mid A^t y' \ge c \right\}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{\dagger}y^{*} = (Ax^{*})^{\dagger}y^{*} = (Aux_{B}^{2})^{\dagger}y^{*}$$

$$= (A_B x_B^2)^* (A_B^{-1})^* c_B = (x_B^2)^* A_B^* (A_B^{-1})^* c_B = c_A^4 c_B^4$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

$$y^* = (A_B^{-1})^t c_B$$
 is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$\begin{aligned} y^{*}y'' &= (Ax^{*})^{*}y'' = (A_{B}x_{B}^{*})^{*}y'' \\ &= (Axx_{B}^{*})^{*}(Ax_{B}^{*})^{*}c_{B} - (x_{B}^{*})^{*}A_{B}^{*}(Ax_{B}^{*})^{*}c_{B} \end{aligned}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_R^t A_R^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_R^t A_R^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_B^t A_B^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

$$y^* = (A_B^{-1})^t c_B$$
 is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^t - c_R^t A_R^{-1} A \le 0$$

This is equivalent to $A^t(A_B^{-1})^t c_B \ge c$

 $y^* = (A_B^{-1})^t c_B$ is solution to the dual $\min\{b^t y | A^t y \ge c\}$.

$$b^{t}y^{*} = (Ax^{*})^{t}y^{*} = (A_{B}x_{B}^{*})^{t}y^{*}$$
$$= (A_{B}x_{B}^{*})^{t}(A_{B}^{-1})^{t}c_{B} = (x_{B}^{*})^{t}A_{B}^{t}(A_{B}^{-1})^{t}c_{B}$$
$$= c^{t}x^{*}$$

Strong Duality

Theorem 18 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

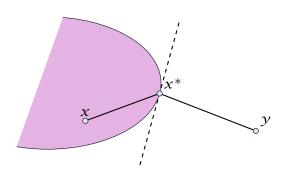
$$z^* = w^*$$

Lemma 19 (Weierstrass)

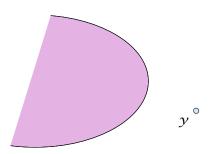
Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x):x\in X\}$ exists.

Lemma 20 (Projection Lemma)

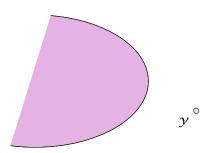
Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^t (x - x^*) \le 0$.



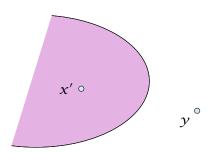
- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



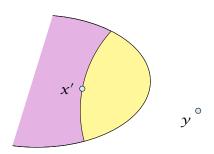
- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $\triangleright X \neq \emptyset$. Hence, there exists $x' \in X$
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



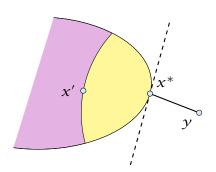
- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



- ▶ Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

$$\|y - x^*\|^2$$

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^t (x - x^*)$$

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^t (x - x^*)$$

Hence, $(y - x^*)^t (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^t (x - x^*)$$

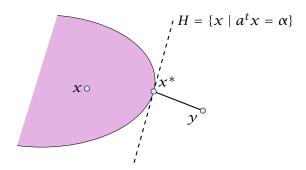
Hence,
$$(y - x^*)^t (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$$
.

Letting $\epsilon \to 0$ gives the result.

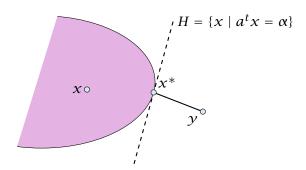
Theorem 21 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^t x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^t y < \alpha; a^t x \ge \alpha \text{ for all } x \in X)$

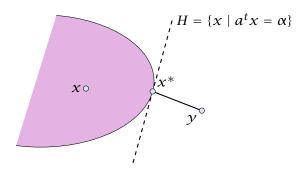
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^t x^*$
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^t x \ge \alpha$.
- Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$



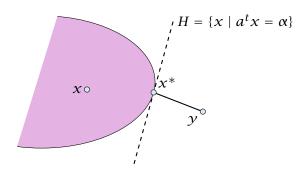
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- ► Choose $a = (x^* y)$ and $\alpha = a^t x^*$
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^t x \ge \alpha$.
- ► Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$



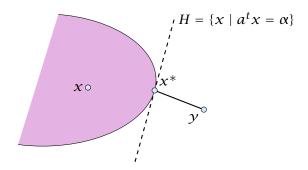
- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^t x^*$.
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^t x \ge \alpha$.
- Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$



- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^t x^*$.
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^t x \ge \alpha$.
- Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$



- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^t (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^t x^*$.
- For $x \in X$: $a^t(x x^*) \ge 0$, and, hence, $a^tx \ge \alpha$.
- Also, $a^t y = a^t (x^* a) = \alpha ||a||^2 < \alpha$



Lemma 22 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^t b = y^t A x \ge 0$$

Hence, at most one of the statements can hold.

Lemma 22 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^t b = y^t A x \ge 0$$

Hence, at most one of the statements can hold

Lemma 22 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^t b = y^t A x \ge 0$$

Hence, at most one of the statements can hold.

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^ty \ge 0$, $b^ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^ty \ge 0$, $b^ty < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^t y \ge 0$, $b^t y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^tb < \alpha$ and $y^ts \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^t b < 0$$

Lemma 23 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n \text{ with } \begin{bmatrix} A I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$$

2.
$$\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^t \\ I \end{bmatrix} y \ge 0, b^t y < 0$$

Lemma 23 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^t y \ge 0$, $b^t y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n \text{ with } \begin{bmatrix} A I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$$

2.
$$\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^t \\ I \end{bmatrix} y \ge 0, b^t y < 0$$

$$P: z = \max\{c^t x \mid Ax \le b, x \ge 0\}$$

D:
$$w = \min\{b^t y \mid A^t y \ge c, y \ge 0\}$$

Theorem 24 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z = w$$
.

 $z \le w$: follows from weak duality

 $z \le w$: follows from weak duality

 $z \geq w$:

 $z \le w$: follows from weak duality

 $z \ge w$:

We show $z < \alpha$ implies $w < \alpha$.

 $z \le w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^t x \leq -\alpha$$

$$x \geq 0$$

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^t x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^t y - cv \ge 0$

$$b^t y - \alpha v < 0$$

$$y, v \ge 0$$

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^t x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^t y - cv \ge 0$

$$b^t y - \alpha v < 0$$

$$y, v \ge 0$$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t.
$$A^t y - v \ge 0$$

$$b^t y - \alpha v < 0$$

$$y, v \ge 0$$

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t.
$$A^t y - v \ge 0$$

$$b^t y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^t y \ge 0$

$$b^t y < 0$$

$$y \ge 0$$

is feasible.

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t.
$$A^t y - v \ge 0$$

$$b^t y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^{m}$$
s.t. $A^{t}y \geq 0$

$$b^{t}y < 0$$

$$y \geq 0$$

is feasible. By Farkas lemma this gives that LP ${\cal P}$ is infeasible. Contradiction to the assumption of the lemma.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^t y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^ty<lpha.$ This means that w<lpha.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^t y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^t y < \alpha$. This means that $w < \alpha$.

Fundamental Questions

Definition 25 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof

Fundamental Questions

Definition 25 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $< \alpha$.

Fundamental Questions

Definition 25 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $< \alpha$.

Fundamental Questions

Definition 25 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^t x \ge \alpha$?

Questions:

- ▶ Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $< \alpha$.

Complementary Slackness

Lemma 26

Assume a linear program $P = \max\{c^t x \mid Ax \leq b; x \geq 0\}$ has solution x^* and its dual $D = \min\{b^t y \mid A^t y \geq c; y \geq 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- 3. If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in P is not tight than $y_i^* = 0$.

Complementary Slackness

Lemma 26

Assume a linear program $P = \max\{c^t x \mid Ax \leq b; x \geq 0\}$ has solution x^* and its dual $D = \min\{b^t y \mid A^t y \geq c; y \geq 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in P is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^t x^* \le y^{*t} A x^* \le b^t y^*$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^t x^* \le y^{*t} A x^* \le b^t y^*$$

Because of strong duality we then get

$$c^t x^* = y^{*t} A x^* = b^t y^*$$

This gives e.g.

$$\sum_{i} (y^t A - c^t)_j x_j^* = 0$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^t x^* \le y^{*t} A x^* \le b^t y^*$$

Because of strong duality we then get

$$c^t x^* = y^{*t} A x^* = b^t y^*$$

This gives e.g.

$$\sum_{i} (y^t A - c^t)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^t A \ge c^t$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^t A - c^t)_j > 0$ (the j-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous

Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min
$$480C + 160H + 1190M$$

s.t. $5C + 4H + 35M \ge 13$
 $15C + 4H + 20M \ge 23$
 $C,H,M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^tx\mid Ax\leq b+\varepsilon;x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{ll}
\min & (b^t + \epsilon^t)y \\
\text{s.t.} & A^t y \ge c \\
y \ge 0
\end{array}$$

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

```
\begin{array}{ll}
\min & (b^t + \epsilon^t)y \\
\text{s.t.} & A^t y \ge c \\
y \ge 0
\end{array}
```


Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

```
\begin{array}{ll}
\min & (b^t + \epsilon^t)y \\
\text{s.t.} & A^t y \ge c \\
y \ge 0
\end{array}
```


Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{cccc}
\min & (b^t + \epsilon^t)y \\
\text{s.t.} & A^t y & \geq c \\
& y & \geq 0
\end{array}$$

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \varepsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

- If the brewer has slack of some resource (e.g. corn) then hee
- is not willing to pay anything for it (corresponding dual and the income)
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it will be no served to be used to b
 - Therefore its slack must be zero

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

```
If the brewer has slack of some resource (e.g. com) then hee
```


If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

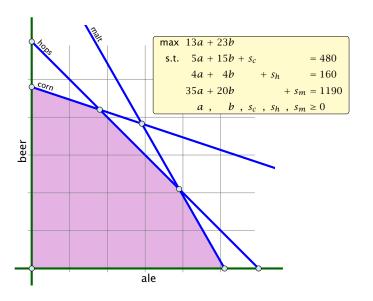
Therefore we can interpret the dual variables as marginal prices.

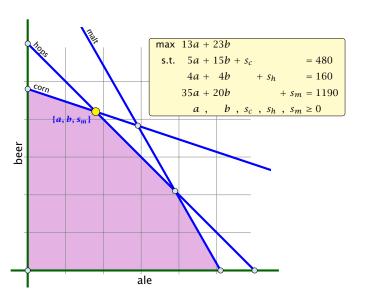
- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ▶ If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource Therefore its slack must be zero.

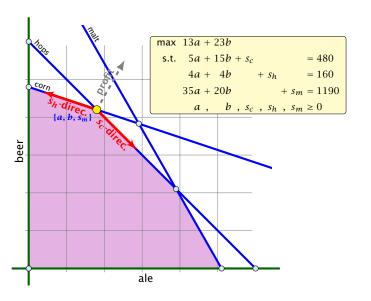
If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \epsilon_i y_i^*$.

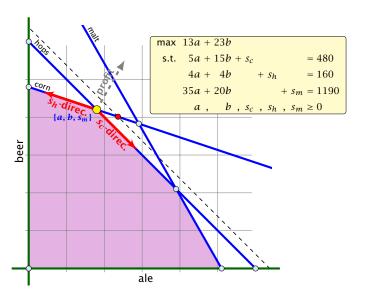
Therefore we can interpret the dual variables as marginal prices.

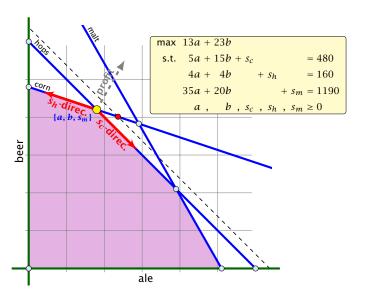
- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

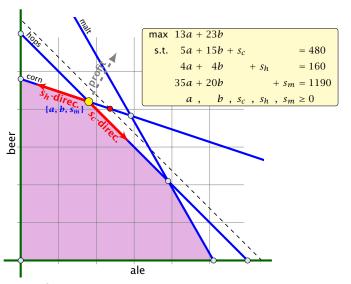




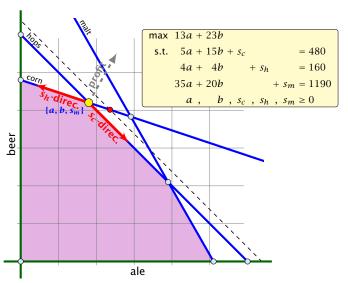








The change in profit when increasing hops by one unit is $= c_B^t A_B^{-1} e_h$.



The change in profit when increasing hops by one unit is $= \underbrace{c_B^t A_B^{-1}}_{B} e_h$.

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Definition 27

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy}$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv}$$

(flow conservation constraints)

Definition 27

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy}$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} .$$

(flow conservation constraints)

Definition 28

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value

Definition 28

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

$$\begin{array}{llll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \left(x, y \neq s, t \right) \colon & 1 \ell_{xy} - 1 p_x + 1 p_y \; \geq \; 0 \\ & f_{sy} \left(y \neq s, t \right) \colon & 1 \ell_{sy} \; + 1 p_y \; \geq \; 1 \\ & f_{xs} \left(x \neq s, t \right) \colon & 1 \ell_{xs} - 1 p_x \; \; \geq \; -1 \\ & f_{ty} \left(y \neq s, t \right) \colon & 1 \ell_{ty} \; + 1 p_y \; \geq \; 0 \\ & f_{xt} \left(x \neq s, t \right) \colon & 1 \ell_{xt} - 1 p_x \; \; \geq \; 0 \\ & f_{st} \colon & 1 \ell_{st} \; \; \geq \; 1 \\ & f_{ts} \colon & 1 \ell_{ts} \; \; \geq \; -1 \\ & \ell_{xy} \; \; \geq \; 0 \end{array}$$


```
\begin{array}{llll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \ (x,y \neq s,t) : & 1 \ell_{xy} - 1 p_x + 1 p_y \geq 0 \\ & f_{sy} \ (y \neq s,t) : & 1 \ell_{sy} - 1 + 1 p_y \geq 0 \\ & f_{xs} \ (x \neq s,t) : & 1 \ell_{xs} - 1 p_x + 1 \geq 0 \\ & f_{ty} \ (y \neq s,t) : & 1 \ell_{ty} - 0 + 1 p_y \geq 0 \\ & f_{xt} \ (x \neq s,t) : & 1 \ell_{xt} - 1 p_x + 0 \geq 0 \\ & f_{st} : & 1 \ell_{st} - 1 + 0 \geq 0 \\ & f_{ts} : & 1 \ell_{ts} - 0 + 1 \geq 0 \\ & \ell_{xy} \geq 0 \end{array}
```


min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. $f_{xy}(x, y \neq s, t) : 1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$f_{sy}(y \neq s, t) : 1\ell_{sy} - p_s + 1p_y \ge 0$$

$$f_{xs}(x \neq s, t) : 1\ell_{xs} - 1p_x + p_s \ge 0$$

$$f_{ty}(y \neq s, t) : 1\ell_{ty} - p_t + 1p_y \ge 0$$

$$f_{xt}(x \neq s, t) : 1\ell_{xt} - 1p_x + p_t \ge 0$$

$$f_{st} : 1\ell_{st} - p_s + p_t \ge 0$$

$$f_{ts} : 1\ell_{ts} - p_t + p_s \ge 0$$

$$\ell_{xy} \ge 0$$

with $p_t = 0$ and $p_s = 1$.

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$

LP-Formulation of Maxflow

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$

LP-Formulation of Maxflow

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

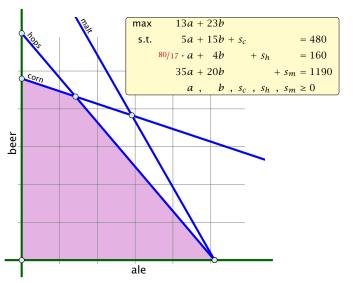
This shows that the Maxflow/Mincut theorem follows from linear programming duality.

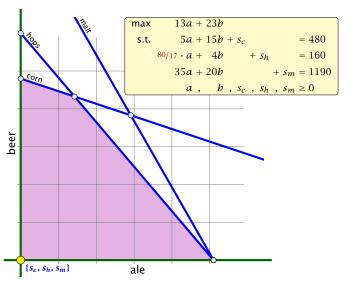
One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

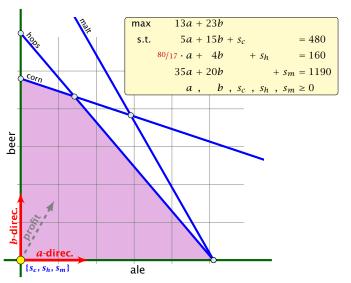
This means $p_X = 1$ or $p_X = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

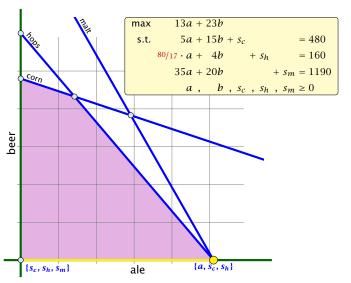
This shows that the Maxflow/Mincut theorem follows from linear programming duality.

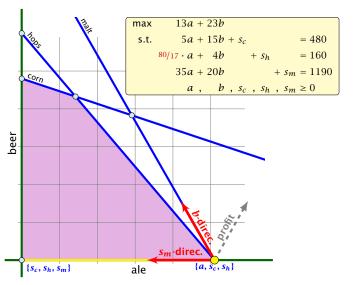
If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

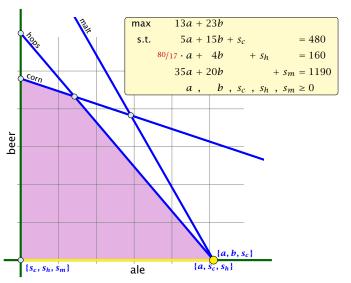


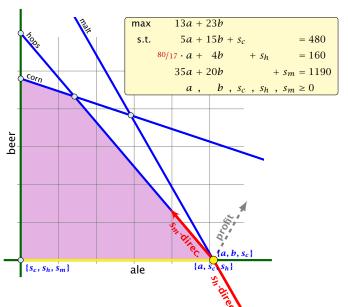


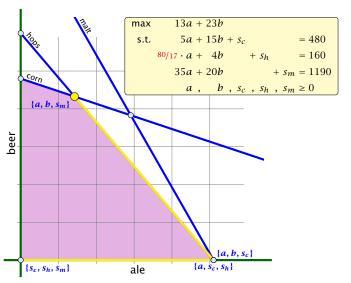


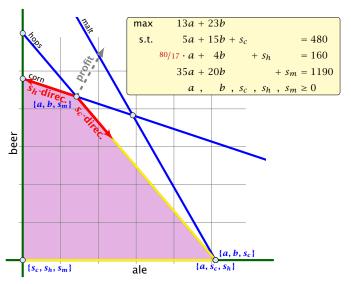












If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

```
Given feasible LP := \max\{c^tx, Ax = b; x \ge 0\}. Change it into LP' := \max\{c^tx, Ax = b', x \ge 0\} such that
```

- LP' is feasible
- If a set B of basis variables corresponds to an
- basis (i.e. $A_n^{-1}b \neq 0$) then B corresponds to an infeasible basis in LP (note that columns in As are linearly
- independent).
- LP' has no degenerate basic solutions

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^t x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^t x, Ax = b', x \ge 0\}$ such that

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^t x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^t x, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not \geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^t x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^t x, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^t x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^t x, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Perturbation

Let B be index set of some basis with basic solution

$$x_B^* = A_B^{-1}b \ge 0, x_N^* = 0$$
 (i.e. *B* is feasible)

Fix

$$b':=b+A_B\left(egin{array}{c} arepsilon \ arepsilon \ arepsilon \end{array}
ight)$$
 for $arepsilon>0$.

This is the perturbation that we are using.

Perturbation

Let B be index set of some basis with basic solution

$$x_B^* = A_B^{-1}b \ge 0, x_N^* = 0$$
 (i.e. *B* is feasible)

Fix

$$b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$
 for $\varepsilon > 0$.

This is the perturbation that we are using.

The new LP is feasible because the set *B* of basis variables provides a feasible basis:

$$A_B^{-1} \left(b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix} \right) = x_B^* + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix} \ge 0$$

The new LP is feasible because the set *B* of basis variables provides a feasible basis:

$$A_B^{-1}\left(b+A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right)=x_B^*+\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\geq 0.$$

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row i.

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i<0$ for some row i.

Then for small enough $\epsilon>0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i}$$

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i<0$ for some row i.

Then for small enough $\epsilon>0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i} = (A_{\tilde{B}}^{-1}b)_{i} + \left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i} < 0$$

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row i.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i}=(A_{\tilde{B}}^{-1}b)_{i}+\left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i}<0$$

Hence, \tilde{B} is not feasible.

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{ ilde{B}}^{-1}A_B$ has rank m. Therefore no polynom is 0

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{ ilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Since, there are no degeneracies Simplex will terminate when run on LP'.

Since, there are no degeneracies Simplex will terminate when run on LP'.

If it terminates because the reduced cost vector fulfills

$$\tilde{c}=(c^t-c_B^tA_B^{-1}A)\leq 0$$

then we have found an optimal basis.

Since, there are no degeneracies Simplex will terminate when run on LP'.

If it terminates because the reduced cost vector fulfills

$$\tilde{c}=(c^t-c_B^tA_B^{-1}A)\leq 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

Since, there are no degeneracies Simplex will terminate when run on LP'.

If it terminates because the reduced cost vector fulfills

$$\tilde{c}=(c^t-c_B^tA_B^{-1}A)\leq 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the j-th basis direction d, fulfills $d \ge 0$ we know that LP' is unbounded. The basis direction does not depend on b. Hence, we also know that LP is unbounded.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea

Simulate behaviour of LP' without explicitly doing a perturbation.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A_B \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A_B \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

Matrix View

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$\boldsymbol{\theta}_{\boldsymbol{\ell}} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}}.$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B=\{1,3,7,14\}$ and leaving variable is 3 then $\ell=2$.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

$$\theta_\ell = \frac{\hat{b}_\ell}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_\ell}{(A_B^{-1}A_{*e})_\ell} \ .$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B=\{1,3,7,14\}$ and leaving variable is 3 then $\ell=2$.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$$

 ℓ is the index of a leaving variable within B. This means if e.g $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B=\{1,3,7,14\}$ and leaving variable is 3 then $\ell=2$.

Definition 29

 $u \leq_{\mathsf{lex}} v$ if and only if the first component in which u and v differ fulfills $u_i \leq v_i$.

LP' chooses an index that minimizes

 θ_ℓ

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1} \left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}}$$

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_B^{-1}\left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}\right)\right)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} = \frac{\left(A_B^{-1}(b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}\right)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}}$$

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1} \left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}} = \frac{\left(A_{B}^{-1} (b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}}$$

$$= \frac{\ell \cdot \text{th row of } A_{B}^{-1} (b \mid I)}{(A_{B}^{-1} A_{*e})_{\ell}} \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}$$

This means you can choose the variable/row ℓ for which the vector

$$\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*e})_\ell}$$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur

This means you can choose the variable/row ℓ for which the vector

$$\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*e})_\ell}$$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur

This means you can choose the variable/row ℓ for which the vector

$$\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*e})_\ell}$$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

Each iteration of Simplex can be implemented in polynomial time.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

Observation

Simplex visits every feasible basis at most once.

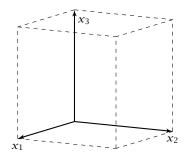
Observation

Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

Example

$$\max c^{t}x$$
s.t. $0 \le x_{1} \le 1$
 $0 \le x_{2} \le 1$
 \vdots
 $0 \le x_{n} \le 1$

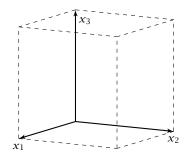


2n constraint on n variables define an n-dimensional hypercube as feasible region.

The feasible region has 2^n vertices.

Example

$$\max c^{t}x$$
s.t. $0 \le x_{1} \le 1$
 $0 \le x_{2} \le 1$
 \vdots
 $0 \le x_{n} \le 1$



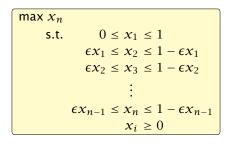
However, Simplex may still run quickly as it usually does not visit all feasible bases.

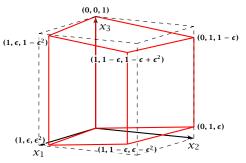
In the following we give an example of a feasible region for which there is a bad Pivoting Rule.

Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable the leaving variable is unique.





- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

- ▶ We have 2*n* constraints, and 3*n* variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- ► The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- ► The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- ► Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

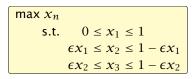
- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

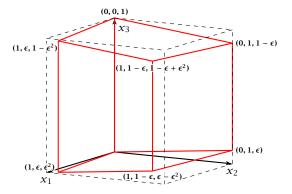
- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0,...,0,1) is the unique optimal basis.
- Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

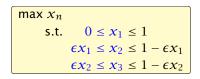
- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0,...,0,1) is the unique optimal basis.
- Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

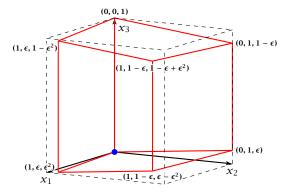
- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0,...,0,1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

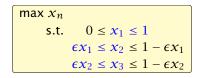
- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- ▶ The basis (0,...,0,1) is the unique optimal basis.
- ▶ Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

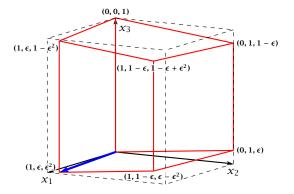


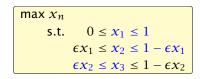


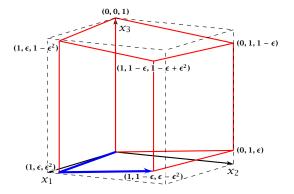


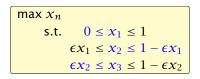


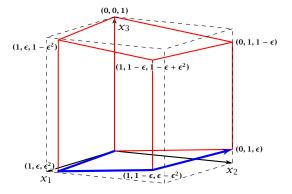


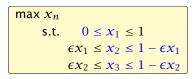


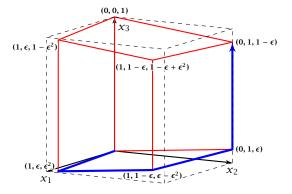


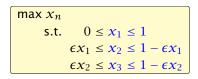


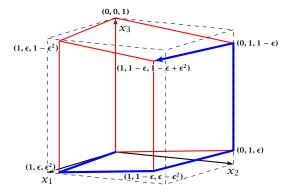


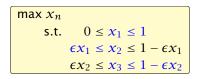


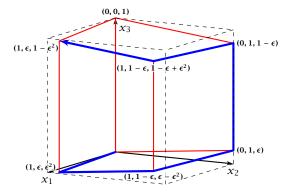


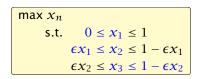


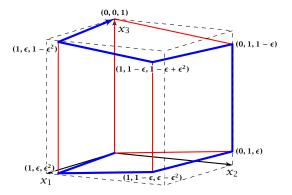












The sequence S_n that visits every node of the hypercube is defined recursively

$$(0,...,0,0,0)$$
 S_{n-1}
 $(0,...,0,1,0)$
 S_n
 S_n

The non-recursive case is $S_1 = 0 \rightarrow 1$

Lemma 30

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

 $n-1 \rightarrow n$

Lemma 30

The objective value x_n is increasing along path S_n .

```
n = 1: obvious, since S_1 = 0 \rightarrow 1, and 1 > 0
```

Lemma 30

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

 $n-1 \rightarrow n$

Lemma 30

The objective value x_n is increasing along path S_n .

$$n = 1$$
: obvious, since $S_1 = 0 \rightarrow 1$, and $1 > 0$.

$$n-1 \rightarrow n$$

- ▶ For the first part the value of $x_n = \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Lemma 30

The objective value x_n is increasing along path S_n .

$$n = 1$$
: obvious, since $S_1 = 0 \rightarrow 1$, and $1 > 0$.

$$n-1 \rightarrow n$$

- ▶ For the first part the value of $x_n = \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Lemma 30

The objective value x_n is increasing along path S_n .

$$n = 1$$
: obvious, since $S_1 = 0 \rightarrow 1$, and $1 > 0$.

$$n-1 \rightarrow n$$

- ▶ For the first part the value of $x_n = \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Lemma 30

The objective value x_n is increasing along path S_n .

$$n = 1$$
: obvious, since $S_1 = 0 \rightarrow 1$, and $1 > 0$.

$$n-1 \rightarrow n$$

- ▶ For the first part the value of $x_n = \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
- ▶ For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Lemma 30

The objective value x_n is increasing along path S_n .

$$n = 1$$
: obvious, since $S_1 = 0 \rightarrow 1$, and $1 > 0$.

$$n-1 \rightarrow n$$

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
- ▶ For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Observation

The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time $\mathcal{O}(mn)$.

In practise it usually takes a linear number of iterations.

Theorem

For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time $(\Omega(2^{\Omega(n)}))$ (e.g. Klee Minty 1972).

Theorem

For some standard randomized pivoting rules there exist subexponential lower bounds ($\Omega(2^{\Omega(n^{\alpha})})$ for $\alpha>0$) (Friedmann, Hansen, Zwick 2011).

Conjecture (Hirsch 1957)

The edge-vertex graph of an m-facet polytope in d-dimensional Euclidean space has diameter no more than m-d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form $\mathcal{O}(\operatorname{poly}(m,d))$ is open.

8 Seidels LP-algorithm

- Suppose we want to solve $\min\{c^t x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If d is much smaller than m one can do a lot better.
- In the following we develop an algorithm with running time $\mathcal{O}(d! \cdot m)$, i.e., linear in m.

8 Seidels LP-algorithm

- Suppose we want to solve $\min\{c^t x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better
- In the following we develop an algorithm with running time $\mathcal{O}(d! \cdot m)$, i.e., linear in m.

8 Seidels LP-algorithm

- Suppose we want to solve $\min\{c^t x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- In the following we develop an algorithm with running time $\mathcal{O}(d! \cdot m)$, i.e., linear in m.

8 Seidels LP-algorithm

- Suppose we want to solve $\min\{c^t x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- In the following we develop an algorithm with running time $O(d! \cdot m)$, i.e., linear in m.

8 Seidels LP-algorithm

Setting:

We assume an LP of the form

$$\begin{array}{cccc}
\min & c^t x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

We assume that the LP is bounded.

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^t x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

Compute a lower bound on $c^t x$ for any basic feasible solution.

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A,b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with $ar{A}$.

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A} .

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A} .

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A} .

Theorem 31 (Cramers Rule)

Let M be a matrix with $det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_j = \frac{\det(M_j)}{\det(M)} ,$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

Define

$$X_j = \begin{pmatrix} | & | & | & | \\ e_1 & \cdots & e_{j-1} & x & e_{j+1} & \cdots & e_n \\ | & & | & | & | \end{pmatrix}$$

Note that expanding along the *j*-th column gives that $det(X_j) = x_j$.

Further, we have

▶ Hence

$$x_j = \det(X_j) = \frac{\det(M_j)}{\det(M)}$$

Define

$$X_j = \begin{pmatrix} | & | & | & | \\ e_1 & \cdots & e_{j-1} & x & e_{j+1} & \cdots & e_n \\ | & & | & | & | \end{pmatrix}$$

Note that expanding along the j-th column gives that $det(X_i) = x_i$.

Further, we have

▶ Hence

$$x_j = \det(X_j) = \frac{\det(M_j)}{\det(M)}$$

Define

$$X_{j} = \begin{pmatrix} | & | & | & | \\ e_{1} \cdot \cdot \cdot \cdot e_{j-1} \times e_{j+1} \cdot \cdot \cdot \cdot e_{n} \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the j-th column gives that $det(X_j) = x_j$.

Further, we have

▶ Hence

$$x_j = \det(X_j) = \frac{\det(M_j)}{\det(M)}$$

Define

$$X_{j} = \begin{pmatrix} | & | & | & | \\ e_{1} \cdot \cdot \cdot \cdot e_{j-1} \times e_{j+1} \cdot \cdot \cdot \cdot e_{n} \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the j-th column gives that $det(X_j) = x_j$.

Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | \\ Me_{1} & \cdots & Me_{j-1} & Mx & Me_{j+1} & \cdots & Me_{n} \\ | & | & | & | & | \end{pmatrix} = M_{j}$$

Hence,

$$x_j = \det(X_j) = \frac{\det(M_j)}{\det(M)}$$

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} .

Observe that

|det(*C*)|

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} .

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \prod_{1 \le i \le m} \operatorname{sgn}(\pi) C_{i\pi(i)} \right|$$

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} .

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \prod_{1 \le i \le m} \operatorname{sgn}(\pi) C_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} .

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \prod_{1 \le i \le m} \operatorname{sgn}(\pi) C_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

$$\leq m! \cdot Z^m.$$

Alternatively, Hadamards inequality gives

|det(*C*)|

Alternatively, Hadamards inequality gives

$$|\det(C)| \leq \prod_{i=1}^{m} ||C_{*i}||$$

Alternatively, Hadamards inequality gives

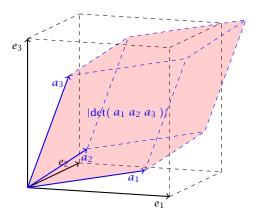
$$|\det(C)| \le \prod_{i=1}^{m} ||C_{*i}|| \le \prod_{i=1}^{m} (\sqrt{m}Z)$$

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^m ||C_{*i}|| \le \prod_{i=1}^m (\sqrt{m}Z)$$

$$\le m^{m/2}Z^m.$$

Hadamards Inequality



Hadamards inequality says that the volume of the red parallelepiped (Spat) is smaller than the volume in the black cube (if $\|e_1\| = \|a_1\|$, $\|e_2\| = \|a_2\|$, $\|e_3\| = \|a_3\|$).

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^t x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

Compute a lower bound on $c^t x$ for any basic feasible solution. Add the constraint $c^t x \ge -mZ(m! \cdot Z^m) - 1$. Note that this constraint is superfluous unless the LP is unbounded.

Ensuring Conditions

Compute an optimum basis for the new LP.

- ▶ If the cost is $c^t x = -(mZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- Otw. we have an optimum basis.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^t x \ge -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^t x$ over all feasible points.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^t x \ge -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^t x$ over all feasible points.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^t x \ge -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^tx over all feasible points.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^t x \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^tx over all feasible points.

Algorithm 1 SeidelLP(\mathcal{H}, d) 1: if $d = 1$ then solve 1-dimensional problem and return;	

Algorithm 1 SeidelLP(\mathcal{H}, d) 1: **if** d = 1 **then** solve 1-dimensional problem and return;

- 2: if $\mathcal{H} = \emptyset$ then return x on implicit constraint hyperplane

Algorithm 1 SeidelLP(\mathcal{H}, d) 1: **if** d = 1 **then** solve 1-dimensional problem and return;

- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

Algorithm 1 SeidelLP(\mathcal{H}, d) 1: **if** d = 1 **then** solve 1-dimensional problem and return;

4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$

- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$

Algorithm 1 SeidelLP(\mathcal{H}, d)

5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$

Algorithm 1 SeidelLP(\mathcal{H}, d)

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$

6: if \hat{x}^* = infeasible then return infeasible

- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$

Algorithm 1 SeidelLP(\mathcal{H}, d)

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$

6: if \hat{x}^* = infeasible then return infeasible

- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$

7: **if** \hat{x}^* fulfills h then return \hat{x}^*

- 1: if d = 1 then solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: if \hat{x}^* = infeasible then return infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $A_h x = b_h$

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$ 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: if \hat{x}^* = infeasible then return infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $A_h x = b_h$
- 9: solve $A_h x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: if \hat{x}^* = infeasible then return infeasible
- 7: **if** \hat{x}^* fulfills h then return \hat{x}^*
- 9: solve $A_h x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.; 11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$
- 8: // optimal solution fulfills h with equality, i.e., $A_h x = b_h$

1: if d = 1 then solve 1-dimensional problem and return;

2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane 3: choose random constraint $h \in \mathcal{H}$

4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$

5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$ 6: if \hat{x}^* = infeasible then return infeasible

7: **if** \hat{x}^* fulfills h then return \hat{x}^*

8: // optimal solution fulfills h with equality, i.e., $A_h x = b_h$

9: solve $A_h x = b_h$ for some variable x_ℓ ; 10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;

11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$

12: **if** \hat{x}^* = infeasible **then**

return infeasible

14: **else**

add the value of x_{ℓ} to \hat{x}^* and return the solution

- If d = 1 we can solve the 1-dimensional problem in time O(m).
- If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- ▶ The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

- If d = 1 we can solve the 1-dimensional problem in time O(m).
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

- If d = 1 we can solve the 1-dimensional problem in time O(m).
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- ▶ The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

- If d = 1 we can solve the 1-dimensional problem in time $\mathcal{O}(m)$.
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- ▶ The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

- If d = 1 we can solve the 1-dimensional problem in time $\mathcal{O}(m)$.
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

This gives the recurrence

$$T(m,d) = \begin{cases} \mathcal{O}(m) & \text{if } d=1\\ \mathcal{O}(d) & \text{if } d>1 \text{ and } m=0\\ \mathcal{O}(d) + T(m-1,d) + \\ \frac{d}{m}(\mathcal{O}(dm) + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} Cm & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

Let C be the largest constant in the \mathcal{O} -notations.

Let ${\cal C}$ be the largest constant in the ${\cal O}$ -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

Let ${\cal C}$ be the largest constant in the ${\cal O}$ -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

d = 1:

Let ${\cal C}$ be the largest constant in the ${\cal O}$ -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

d = 1:

T(m,1)

Let ${\cal C}$ be the largest constant in the ${\cal O}$ -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

d = 1:

 $T(m,1) \leq Cm$

Let ${\cal C}$ be the largest constant in the ${\cal O}$ -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

d = 1:

 $T(m,1) \leq Cm \leq Cf(1) \max\{1,m\}$

Let ${\cal C}$ be the largest constant in the ${\cal O}$ -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le Cm \le Cf(1) \max\{1, m\} \text{ for } f(1) \ge 1$

Let ${\cal C}$ be the largest constant in the ${\cal O}$ -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

$$d = 1$$
:

$$T(m,1) \le Cm \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1; m = 0$$
:

$$T(0,d) \le \mathcal{O}(d)$$

We show
$$T(m, d) \le Cf(d) \max\{1, m\}$$
.

$$d = 1$$
:

$$T(m, 1) \le Cm \le Cf(1) \max\{1, m\} \text{ for } f(1) \ge 1$$

$$d > 1; m = 0$$
:

$$T(0,d) \leq \mathcal{O}(d) \leq Cd$$

Let ${\cal C}$ be the largest constant in the ${\cal O}$ -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

$$d = 1$$
:

$$T(m,1) \le Cm \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1; m = 0$$
:

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\}$$

We show
$$T(m, d) \le Cf(d) \max\{1, m\}$$
.

$$d = 1$$
:

$$T(m,1) \le Cm \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1; m = 0$$
:

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$$

We show
$$T(m, d) \le Cf(d) \max\{1, m\}$$
.

$$d = 1$$
:

$$T(m,1) \le Cm \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1; m = 0$$
:

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$$

$$d > 1; m = 1$$
:

$$T(1,d) = \mathcal{O}(d) + T(0,d) + d(\mathcal{O}(d) + T(0,d-1))$$

We show
$$T(m, d) \le Cf(d) \max\{1, m\}$$
.

$$d = 1$$
:

$$T(m,1) \le Cm \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1; m = 0$$
:

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$$

$$d > 1; m = 1$$
:

$$T(1,d) = \mathcal{O}(d) + T(0,d) + d(\mathcal{O}(d) + T(0,d-1))$$

 $\leq Cd + Cd + Cd^2 + dCf(d-1)$

Let C be the largest constant in the \mathcal{O} -notations.

We show
$$T(m, d) \le Cf(d) \max\{1, m\}$$
.

$$d = 1$$
:

$$T(m,1) \le Cm \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1; m = 0$$
:

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$$

$$d > 1; m = 1$$
:

$$T(1,d) = \mathcal{O}(d) + T(0,d) + d\left(\mathcal{O}(d) + T(0,d-1)\right)$$

$$\leq Cd + Cd + Cd^2 + dCf(d-1)$$

$$\leq Cf(d) \max\{1, m\}$$

Let C be the largest constant in the \mathcal{O} -notations.

We show
$$T(m, d) \le Cf(d) \max\{1, m\}$$
.

$$T(m,1) \le Cm \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1; m = 0:$$

d=1:

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$$

$$d > 1; m = 1:$$

$$T(1,d) = \mathcal{O}(d) + T(0,d) + d(\mathcal{O}(d) + T(0,d-1))$$

$$\leq Cd + Cd + Cd^2 + dCf(d-1)$$

$$\leq Cf(d) \max\{1, m\} \text{ for } f(d) \geq 3d^2 + df(d-1)$$

```
d > 1; m > 1:
(by induction hypothesis statm. true for d' < d, m' \ge 0; and for d' = d, m' < m)
```


d > 1; m > 1:

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \left(\mathcal{O}(dm) + T(m-1,d-1) \right)$$

d > 1; m > 1:

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m} Cf(d-1)(m-1)$$

d > 1; m > 1:

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

d > 1; m > 1:

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

d > 1; m > 1:

$$\begin{split} T(m,d) &= \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big) \\ &\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m} Cf(d-1)(m-1) \\ &\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1) \\ &\leq Cf(d)m \end{split}$$

if
$$f(d) \ge df(d-1) + 2d^2$$
.

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

f(d)

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$f(d) = 3d^2 + df(d-1)$$

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$f(d) = 3d^2 + df(d-1)$$

= $3d^2 + d[3(d-1)^2 + (d-1)f(d-2)]$

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 1^{2}$$

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$\begin{split} f(d) &= 3d^2 + df(d-1) \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)f(d-2)\right] \\ &= 3d^2 + d\left[3(d-1)^2 + (d-1)\left[3(d-2)^2 + (d-2)f(d-3)\right]\right] \\ &= 3d^2 + 3d(d-1)^2 + 3d(d-1)(d-2)^2 + \dots \\ &\quad + 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 1^2 \\ &= 3d! \left(\frac{d^2}{d!} + \frac{(d-1)^2}{(d-1)!} + \frac{(d-2)^2}{(d-2)!} + \dots\right) \end{split}$$

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 1^{2}$$

$$= 3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

$$= \mathcal{O}(d!)$$

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 1^{2}$$

$$= 3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

$$= \mathcal{O}(d!)$$

since $\sum_{i\geq 1}\frac{i^2}{i!}$ is a constant.

Complexity

LP Feasibility Problem (LP feasibility)

- ▶ Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}$ with Ax = b, $x \ge 0$?
- Note that allowing A, b to contain rational numbers does not make a difference, as we can multiply every number by a suitable large constant so that everything becomes integral but the feasible region does not change.

Is this problem in NP or even in P?

Complexity

LP Feasibility Problem (LP feasibility)

- ▶ Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}$ with Ax = b, $x \ge 0$?
- ▶ Note that allowing *A*, *b* to contain rational numbers does not make a difference, as we can multiply every number by a suitable large constant so that everything becomes integral but the feasible region does not change.

Is this problem in NP or even in P?

Complexity

LP Feasibility Problem (LP feasibility)

- ▶ Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}$ with Ax = b, $x \ge 0$?
- ▶ Note that allowing *A*, *b* to contain rational numbers does not make a difference, as we can multiply every number by a suitable large constant so that everything becomes integral but the feasible region does not change.

Is this problem in NP or even in P?

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

$$L(M) := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $\Theta(L([A|b]))$.

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

$$L(M) := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- ▶ In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $\Theta(L([A|b]))$.

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

$$L(M) := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $\Theta(L([A|b]))$.

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

$$L(M) := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $\Theta(L([A|b]))$.

- In the following we sometimes refer to L := L([A|b]) as the input size (even though the real input size is something in $\Theta(L([A|b]))$).
- In order to show that LP-decision is in NP we show that if there is a solution x then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in L([A|b])).

Suppose that Ax = b; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set B of basic variables such that

$$x_B = A_B^{-1}b$$

and all other entries in x are 0.

Suppose that Ax = b; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set *B* of basic variables such that

$$x_B = A_B^{-1}b$$

and all other entries in x are 0.

Size of a Basic Feasible Solution

Lemma 32

Let $M \in \mathbb{Z}^{m \times m}$ be an invertable matrix and let $b \in \mathbb{Z}^m$. Further define $L' = L([M \mid b]) + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \le 2^{L'}$ and $|D| \le 2^{L'}$.

Proof:

Cramers rules says that we can compute x_i as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

Size of a Basic Feasible Solution

Lemma 32

Let $M \in \mathbb{Z}^{m \times m}$ be an invertable matrix and let $b \in \mathbb{Z}^m$. Further define $L' = L([M \mid b]) + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \le 2^{L'}$ and $|D| \le 2^{L'}$.

Proof:

Cramers rules says that we can compute x_j as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

Let
$$X = A_B$$
. Then

 $|\det(X)|$

Let
$$X = A_B$$
. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \prod_{1 \le i \le n} \operatorname{sgn}(\pi) X_{i\pi(i)} \right|$$

Let
$$X = A_B$$
. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \prod_{1 \le i \le n} \operatorname{sgn}(\pi) X_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

Let $X = A_B$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \prod_{1 \le i \le n} \operatorname{sgn}(\pi) X_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\leq n! \cdot 2^{L([A|b])}$$

Let $X = A_B$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \prod_{1 \le i \le n} \operatorname{sgn}(\pi) X_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$< n! \cdot 2^{L([A|b])} < n^n 2^L$$

Let $X = A_B$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \prod_{1 \le i \le n} \operatorname{sgn}(\pi) X_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\leq n! \cdot 2^{L([A|b])} \leq n^n 2^L \leq 2^{L'}.$$

Let $X = A_B$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \prod_{1 \le i \le n} \operatorname{sgn}(\pi) X_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\leq n! \cdot 2^{L([A|b])} \leq n^n 2^L \leq 2^{L'}.$$

Analogously for $det(M_j)$.

Hence, the x that we have to guess is of length polynomial in the input-length \mathcal{L} .

For a given vector $oldsymbol{x}$ of polynomial length we can check for feasibility in polynomial time.

Hence, the x that we have to guess is of length polynomial in the input-length L.

For a given vector x of polynomial length we can check for feasibility in polynomial time.

Hence, the \boldsymbol{x} that we have to guess is of length polynomial in the input-length \boldsymbol{L} .

For a given vector $oldsymbol{x}$ of polynomial length we can check for feasibility in polynomial time.

Hence, the \boldsymbol{x} that we have to guess is of length polynomial in the input-length \boldsymbol{L} .

For a given vector x of polynomial length we can check for feasibility in polynomial time.

Hence, the \boldsymbol{x} that we have to guess is of length polynomial in the input-length \boldsymbol{L} .

For a given vector x of polynomial length we can check for feasibility in polynomial time.

Given an LP $\max\{c^t x \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^t x - \delta = M$; $\delta \ge 0$ or $(c^t x \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'},\ldots,n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \geq \frac{1}{2^{L'}}$.

Given an LP $\max\{c^tx\mid Ax=b;x\geq 0\}$ do a binary search for the optimum solution

(Add constraint $c^t x - \delta = M$; $\delta \ge 0$ or $(c^t x \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2L'}$.

Given an LP $\max\{c^tx\mid Ax=b;x\geq 0\}$ do a binary search for the optimum solution

(Add constraint $c^tx - \delta = M$; $\delta \ge 0$ or $(c^tx \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2^{L'}}$.

Given an LP $\max\{c^tx\mid Ax=b;x\geq 0\}$ do a binary search for the optimum solution

(Add constraint $c^t x - \delta = M$; $\delta \ge 0$ or $(c^t x \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'},\ldots,n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \geq \frac{1}{2^{L'}}$.

Given an LP $\max\{c^tx\mid Ax=b;x\geq 0\}$ do a binary search for the optimum solution

(Add constraint $c^t x - \delta = M$; $\delta \ge 0$ or $(c^t x \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'},\ldots,n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \geq \frac{1}{2^{L'}}$.

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^t x \ge M_{\text{max}} + 1$ and check for feasibility.

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^t x \ge M_{\text{max}} + 1$ and check for feasibility

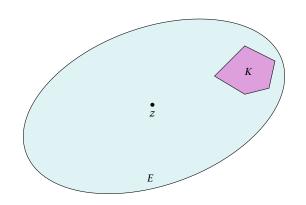
How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

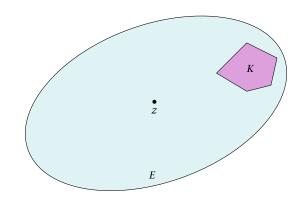
We can add a constraint $c^t x \ge M_{\text{max}} + 1$ and check for feasibility.

Let K be a convex set.

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.



- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.



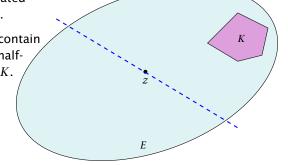
- ▶ Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.

Volve. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

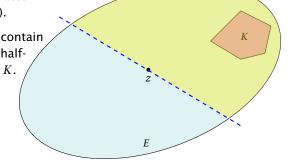
Shift hyperplane to contain node z. H denotes halfspace that contains K.



- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

Shift hyperplane to contain node z. H denotes halfspace that contains K.

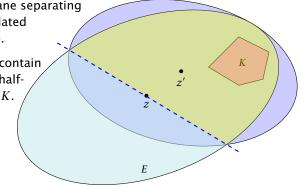


- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.

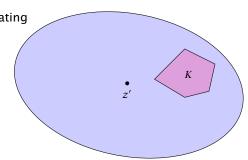
Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

Shift hyperplane to contain node z. H denotes halfspace that contains K.

Compute (smallest) ellipsoid E' that contains $K \cap H$.



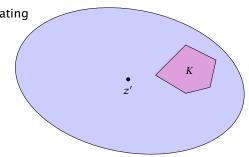
- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $K \cap H$.



- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $K \cap H$.
- REPEAT



Issues/Questions:

- How do you choose the first Ellipsoid? What is its volume?
- What if the polytop K is unbounded?
- How do you measure progress? By how much does the volume decrease in each iteration?
- When can you stop? What is the minimum volume of a non-empty polytop?

A mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where L is an invertible matrix is called an affine transformation.

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^t (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

B(0,1) is called the unit ball.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{ f(x) \mid x \in B(0,1) \}$$
$$= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \}$$

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{ f(x) \mid x \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid (y-t)^t L^{-1}^t L^{-1}(y-t) \le 1 \}$$

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{ f(x) \mid x \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid (y-t)^t L^{-1}^t L^{-1}(y-t) \le 1 \}$$

$$= \{ y \in \mathbb{R}^n \mid (y-t)^t Q^{-1}(y-t) \le 1 \}$$

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

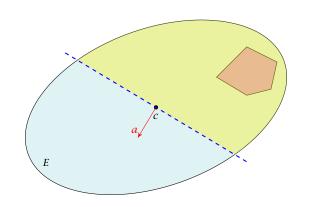
$$f(B(0,1)) = \{ f(x) \mid x \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \}$$

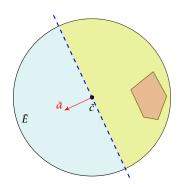
$$= \{ y \in \mathbb{R}^n \mid (y-t)^t L^{-1}^t L^{-1}(y-t) \le 1 \}$$

$$= \{ y \in \mathbb{R}^n \mid (y-t)^t Q^{-1}(y-t) \le 1 \}$$

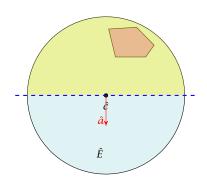
where $Q = LL^t$ is an invertible matrix.



▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.

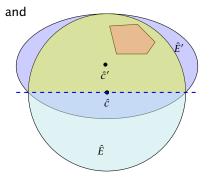


- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

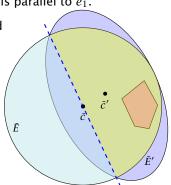


- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.



- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.
- Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.

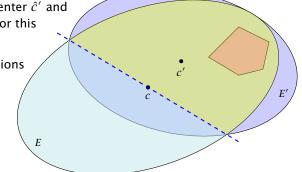


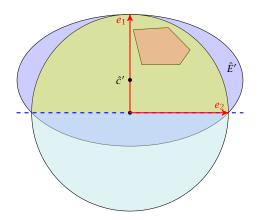
▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.

• Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

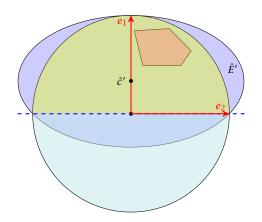
Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.

Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.





- ▶ The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ► The vectors $e_1, e_2,...$ have to fulfill the ellipsoid constraint with equality. Hence $(e_i \hat{c}')^t \hat{O}'^{-1}(e_i \hat{c}') = 1$.



- ▶ The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ► The vectors $e_1, e_2,...$ have to fulfill the ellipsoid constraint with equality. Hence $(e_i \hat{c}')^t \hat{Q}'^{-1} (e_i \hat{c}') = 1$.

- ► The obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid \hat{E}' note that \hat{E}' is axis-parallel.
- ▶ Let *a* denote the radius along the *x*₁-axis and let *b* denote the (common) radius for the other axes.
- The matrix

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

- ► The obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid \hat{E}' note that \hat{E}' is axis-parallel.
- Let a denote the radius along the x_1 -axis and let b denote the (common) radius for the other axes.
- ► The matrix

$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array}\right)$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions

- ► The obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid \hat{E}' note that \hat{E}' is axis-parallel.
- Let a denote the radius along the x_1 -axis and let b denote the (common) radius for the other axes.
- The matrix

$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array}\right)$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

As $\hat{Q}' = \hat{L}' \hat{L}'^t$ the matrix \hat{Q}'^{-1} is of the form

$$\hat{Q}'^{-1} = \begin{pmatrix} \frac{1}{a^2} & 0 & \dots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^2} \end{pmatrix}$$

• $(e_1 - \hat{c}')^t \hat{Q}'^{-1} (e_1 - \hat{c}') = 1$ gives

$$\begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{t} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \cdots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $(1 - t)^2 = a^2$.

► For $i \neq 1$ the equation $(e_i - \hat{c}')^t \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ gives

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{t} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{b^2} = 1$, and hence

$$\frac{1}{b^2} = 1 - \frac{t^2}{a^2}$$

► For $i \neq 1$ the equation $(e_i - \hat{c}')^t \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ gives

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{t} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{b^2} = 1$, and hence

$$\frac{1}{b^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2}$$

► For $i \neq 1$ the equation $(e_i - \hat{c}')^t \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ gives

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{t} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{b^2} = 1$, and hence

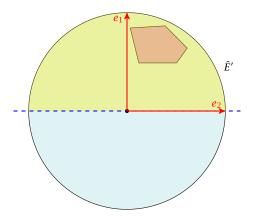
$$\frac{1}{b^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2} = \frac{1-2t}{(1-t)^2}$$

Summary

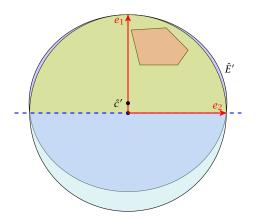
So far we have

$$a = 1 - t$$
 and $b = \frac{1 - t}{\sqrt{1 - 2t}}$

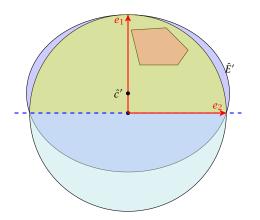
We still have many choices for t:



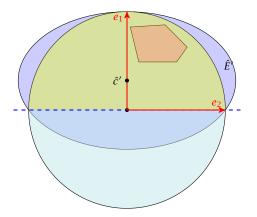
We still have many choices for t:



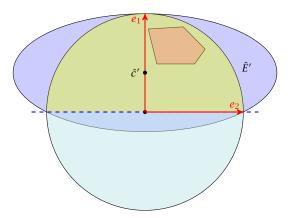
We still have many choices for t:



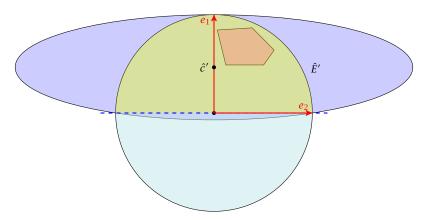
We still have many choices for t:



We still have many choices for t:



We still have many choices for t:



We want to choose t such that the volume of \hat{E}' is minimal.

Lemma 36

Let L be an affine transformation and $K\subseteq\mathbb{R}^n.$ Then

$$vol(L(K)) = |det(L)| \cdot vol(K)$$

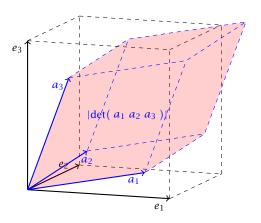
We want to choose t such that the volume of \hat{E}' is minimal.

Lemma 36

Let L be an affine transformation and $K \subseteq \mathbb{R}^n$. Then

$$vol(L(K)) = |det(L)| \cdot vol(K)$$
.

n-dimensional volume



• We want to choose t such that the volume of \hat{E}' is minimal.

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')| \ ,$$
 where $\hat{Q}' = \hat{L}' \hat{L'}^t.$

We have

$$\hat{L}'^{-1} = \begin{pmatrix} \frac{1}{a} & 0 & \dots & 0 \\ 0 & \frac{1}{b} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b} \end{pmatrix} \text{ and } \hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

▶ Note that *a* and *b* in the above equations depend on *t*, by the previous equations.

▶ We want to choose t such that the volume of \hat{E}' is minimal.

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')| ,$$

where $\hat{Q}' = \hat{L}'\hat{L}'^t$.

We have

$$\hat{L}'^{-1} = \begin{pmatrix} \frac{1}{a} & 0 & \dots & 0 \\ 0 & \frac{1}{b} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b} \end{pmatrix} \text{ and } \hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

Note that a and b in the above equations depend on t, by the previous equations.

▶ We want to choose t such that the volume of \hat{E}' is minimal.

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')| \ ,$$
 where $\hat{O}' = \hat{L}' \hat{L'}^t.$

We have

$$\hat{L}'^{-1} = \begin{pmatrix} \frac{1}{a} & 0 & \dots & 0 \\ 0 & \frac{1}{b} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b} \end{pmatrix} \text{ and } \hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

► Note that *a* and *b* in the above equations depend on *t*, by the previous equations.

 $vol(\hat{E}')$

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$$

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$$
$$= \operatorname{vol}(B(0,1)) \cdot ab^{n-1}$$

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \end{aligned}$$

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \end{aligned}$$

 $\frac{\operatorname{d} \operatorname{vol}(\hat{E}')}{\operatorname{d} t}$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{1}{N^2}$$

$$N = \text{denominator}$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{1}{N^2} \cdot \left(\frac{(-1) \cdot n(1-t)^{n-1}}{\text{derivative of numerator}} \right)$$

$$\begin{split} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &- (n-1) (\sqrt{1-2t})^{n-2} \\ & \boxed{\text{outer derivative}} \end{split}$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \right)$$
inner derivative

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} \, t} &= \frac{\mathrm{d}}{\mathrm{d} \, t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right. \\ &\left. - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot \frac{(1-t)^n}{\text{numerator}} \right] \end{split}$$

$$\begin{aligned} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right. \\ &\left. - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{aligned}$$

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} \, t} &= \frac{\mathrm{d}}{\mathrm{d} \, t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right. \\ &\left. - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
-(n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\
= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
-(n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\
= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} t} &= \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right) \\
= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right) \\
= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\
\cdot \left((n-1)(1-t) - n(1-2t) \right)$$

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} \, t} &= \frac{\mathrm{d}}{\mathrm{d} \, t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\ &\quad \cdot \left((n-1)(1-t) - n(1-2t) \right) \\ &= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right) \end{split}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

а

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a=1-t=\frac{n}{n+1}$$
 and $b=$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}}$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

$$b^2$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

$$b^2 = \frac{(1-t)^2}{1-2t}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

Let
$$\gamma_n=rac{{
m vol}(\hat E')}{{
m vol}(B(0,1))}=ab^{n-1}$$
 be the ratio by which the volume changes:

$$\gamma_n^2$$

Let $\gamma_n=rac{{
m vol}(\hat E')}{{
m vol}(B(0,1))}=ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2-1}\right)^{n-1}$$

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$
$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

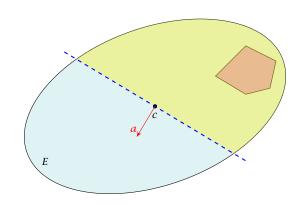
$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

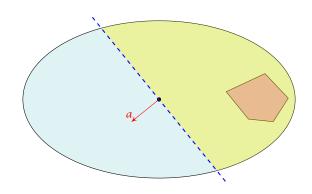
$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

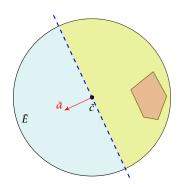
This gives $y_n \leq e^{-\frac{1}{2(n+1)}}$.



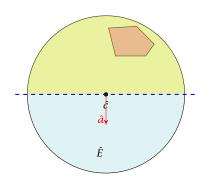
▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.



▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.

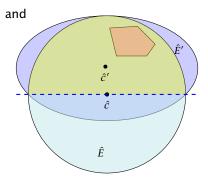


- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

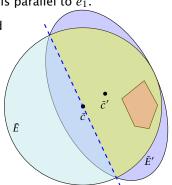


- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

► Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.



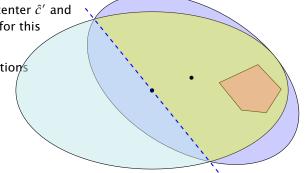
- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.
- Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.



- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.

Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.

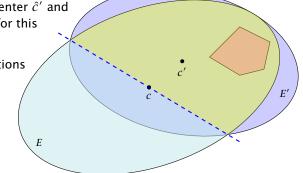


▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.

• Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.

Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.



$$e^{-\frac{1}{2(n+1)}}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})}$$

$$e^{-\frac{1}{2(n+1)}} \geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$

$$\begin{split} e^{-\frac{1}{2(n+1)}} &\geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))} \\ &= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} \end{split}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$
$$= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))}$$

$$\begin{split} e^{-\frac{1}{2(n+1)}} &\geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))} \\ &= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)} \end{split}$$

$$\begin{split} e^{-\frac{1}{2(n+1)}} &\geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))} \\ &= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)} \end{split}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

The Ellipsoid Algorithm

How to Compute The New Parameters?

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^t(x-c) \le 0 \}$$

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^t(x - c) \le 0 \}$$
$$= \{ f^{-1}(f(y)) \mid a^t(f(y) - c) \le 0 \}$$

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^t(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^t(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^t(f(y) - c) \le 0 \}$$

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^t(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^t(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^t(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^t(Ly + c - c) \le 0 \}$$

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{t}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{t}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{t}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{t}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{t}L)y \le 0 \}$$

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^t(x - c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{t}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{t}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{t}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{t}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{t}L)y \le 0 \}$$

This means $\bar{a} = L^t a$.

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^t a}{\|L^t a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^t a}{\|L^t a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

$$\bar{c}'$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^t a}{\|L^t a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

$$\bar{c}' = R \cdot \hat{c}'$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^t a}{\|L^t a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^t a}{\|L^t a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^t a}{\|L^t a\|}$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^t a}{\|L^t a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^t a}{\|L^t a\|}$$

c'

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^t a}{\|L^t a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^t a}{\|L^t a\|}$$

$$c' = f(\bar{c}')$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^t a}{\|L^t a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^t a}{\|L^t a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^t a}{\|L^t a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^t a}{\|L^t a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$
$$= -\frac{1}{n+1} L \frac{L^t a}{\|L^t a\|} + c$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^t a}{\|L^t a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^t a}{\|L^t a\|} = R \cdot e_1$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^t a}{\|L^t a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$

$$= -\frac{1}{n+1} L \frac{L^t a}{\|L^t a\|} + c$$

$$= c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^t Qa}}$$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}' , \bar{E}' and E' refer to the ellispoids centered in the origin.

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right)$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right)$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right)$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right)$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right)$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right)$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right)$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right)$$

because for a = n/n+1 and $b = n/\sqrt{n^2-1}$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$n^{2}(n+1) - 2n^{2} \qquad n^{2}$$

 $=\frac{n^2(n+1)-2n^2}{(n-1)(n+1)^2}=\frac{n^2(n-1)}{(n-1)(n+1)^2}=a^2$

$$\bar{E}' = R(\hat{E}')$$

$$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^t \hat{Q}'^{-1} x \le 1 \} \end{split}$$

$$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^t \hat{Q}'^{-1} x \le 1 \} \\ &= \{ y \mid (R^{-1} y)^t \hat{Q}'^{-1} R^{-1} y \le 1 \} \end{split}$$

$$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^t \hat{Q}'^{-1} x \le 1 \} \\ &= \{ y \mid (R^{-1} y)^t \hat{Q}'^{-1} R^{-1} y \le 1 \} \\ &= \{ y \mid y^t (R^t)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1 \} \end{split}$$

$$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^t \hat{Q}'^{-1} x \le 1 \} \\ &= \{ y \mid (R^{-1}y)^t \hat{Q}'^{-1} R^{-1} y \le 1 \} \\ &= \{ y \mid y^t (R^t)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1 \} \\ &= \{ y \mid y^t (\underbrace{R\hat{Q}' R^t})^{-1} y \le 1 \} \\ &= \{ y \mid y^t (\underbrace{R\hat{Q}' R^t})^{-1} y \le 1 \} \end{split}$$

Hence,

 \bar{Q}'

$$\bar{Q}' = R\hat{Q}'R^t$$

$$\begin{split} \bar{Q}' &= R\hat{Q}'R^t \\ &= R \cdot \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^t \right) \cdot R^t \end{split}$$

$$\begin{split} \bar{Q}' &= R \hat{Q}' R^t \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^t \Big) \cdot R^t \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^t - \frac{2}{n+1} (Re_1) (Re_1)^t \Big) \end{split}$$

$$\begin{split} \bar{Q}' &= R \hat{Q}' R^t \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^t \Big) \cdot R^t \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^t - \frac{2}{n+1} (Re_1) (Re_1)^t \Big) \\ &= \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^t a a^t L}{\|L^t a\|^2} \Big) \end{split}$$

E'

$$E' = L(\bar{E}')$$

$$E' = L(\bar{E}')$$
= $\{L(x) \mid x^t \bar{Q}'^{-1} x \le 1\}$

$$\begin{split} E' &= L(\bar{E}') \\ &= \{ L(x) \mid x^t \bar{Q}'^{-1} x \le 1 \} \\ &= \{ y \mid (L^{-1} y)^t \bar{Q}'^{-1} L^{-1} y \le 1 \} \end{split}$$

$$E' = L(\bar{E}')$$

$$= \{L(x) \mid x^t \bar{Q}'^{-1} x \le 1\}$$

$$= \{y \mid (L^{-1}y)^t \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^t (L^t)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$E' = L(\bar{E}')$$

$$= \{L(x) \mid x^t \bar{Q}'^{-1} x \le 1\}$$

$$= \{y \mid (L^{-1}y)^t \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^t (L^t)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^t (\underline{L}\bar{Q}' L^t)^{-1} y \le 1\}$$

Hence,

Q

$$Q' = L\bar{Q}'L^t$$

$$\begin{aligned} Q' &= L\bar{Q}'L^t \\ &= L \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^t a a^t L}{a^t Q a} \Big) \cdot L^t \end{aligned}$$

$$\begin{aligned} Q' &= L\bar{Q}'L^t \\ &= L \cdot \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} \frac{L^t a a^t L}{a^t Q a} \right) \cdot L^t \\ &= \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Q a a^t Q}{a^t Q a} \right) \end{aligned}$$

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

- 1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$
- 2: **output:** point $x \in K$ or "K is empty"
- 3: *Q* ← ???
- 4: repeat
- 5: **if** $c \in K$ **then return** c
- 6: **else**
- 7: choose a violated hyperplane *a*
- 8: $c \leftarrow c \frac{1}{n+1} \frac{Qa}{\sqrt{a^t Qa}}$
 - $Q \leftarrow \frac{n^2}{n^2 1} \left(Q \frac{2}{n+1} \frac{Qaa^t Q}{a^t Oa} \right)$
- 10: endif
- 11: until ????
- 12: return "K is empty"

Repeat: Size of basic solutions

Lemma 37

Let $P=\{x\in\mathbb{R}^n\mid Ax\leq b\}$ be a bounded polytop. Let $\langle a_{\max}\rangle$ be the maximum encoding length of an entry in A,b. Then every entry x_j in a basic solution fulfills $|x_j|=\frac{D_j}{D}$ with $D_j,D\leq 2^{2n\langle a_{\max}\rangle+2n\log_2 n}$.

In the following we use $\delta := 2^{2n\langle a_{ ext{max}}
angle + 2n \log_2 n}.$

Note that here we have $P = \{x \mid Ax \leq b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

Repeat: Size of basic solutions

Lemma 37

Let $P=\{x\in\mathbb{R}^n\mid Ax\leq b\}$ be a bounded polytop. Let $\langle a_{\max}\rangle$ be the maximum encoding length of an entry in A,b. Then every entry x_j in a basic solution fulfills $|x_j|=\frac{D_j}{D}$ with $D_j,D\leq 2^{2n\langle a_{\max}\rangle+2n\log_2 n}$.

In the following we use $\delta := 2^{2n\langle a_{\max}\rangle + 2n\log_2 n}$.

Note that here we have $P = \{x \mid Ax \le b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

Repeat: Size of basic solutions

Proof:

Let $\bar{A}=\begin{bmatrix}A&-A\\-A&A\end{bmatrix}$, $\bar{b}=\begin{pmatrix}b\\-b\end{pmatrix}$, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the j-th column of \bar{A}_B by \bar{b}) can become at most

$$\det(\bar{A}_B), \det(\bar{M}_j) \le \|\vec{\ell}_{\max}\|^{2n}$$

$$\le (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \le 2^{2n\langle a_{\max} \rangle + 2n\log_2 n} ,$$

where $\vec{\ell}_{\max}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

This holds because columns from I_m selected when going from \bar{A} to \bar{A}_B do not increase the determinant. Only the at most 2n columns from matrices A and -A that \bar{A} consists of contribute.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^nB(0,1) \le (n\delta)^nB(0,1)$.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n B(0, 1) \le (n\delta)^n B(0, 1)$.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \leq x_i \leq \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n B(0,1) \le (n\delta)^n B(0,1)$.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n B(0,1) \le (n\delta)^n B(0,1)$.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \leq x_i \leq \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n B(0,1) \le (n\delta)^n B(0,1)$.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n B(0, 1) \le (n\delta)^n B(0, 1)$.

When can we terminate?

Let $P:=\{x\mid Ax\leq b\}$ with $A\in\mathbb{Z}$ and $b\in\mathbb{Z}$ be a bounded polytop. Let $\langle a_{\max}\rangle$ be the encoding length of the largest entry in A or b.

Consider the following polytope

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

When can we terminate?

Let $P:=\{x\mid Ax\leq b\}$ with $A\in\mathbb{Z}$ and $b\in\mathbb{Z}$ be a bounded polytop. Let $\langle a_{\max}\rangle$ be the encoding length of the largest entry in A or b.

Consider the following polytope

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

When can we terminate?

Let $P:=\{x\mid Ax\leq b\}$ with $A\in\mathbb{Z}$ and $b\in\mathbb{Z}$ be a bounded polytop. Let $\langle a_{\max}\rangle$ be the encoding length of the largest entry in A or b.

Consider the following polytope

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

Lemma 38

 P_{λ} is feasible if and only if P is feasible.

←: obvious!

Lemma 38

 P_{λ} is feasible if and only if P is feasible.

⇔: obvious!

Consider the polytops

$$\bar{P} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix}; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} I_m \right] x = \begin{pmatrix} b \\ -b \end{pmatrix} + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 $ar{P}_{\lambda}$ is bounded since P_{λ} and P are bounded

⇒:

Consider the polytops

$$\bar{P} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix}; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix} + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \geq 0 \right\}.$$

P is feasible if and only if $ar{P}$ is feasible, and P_λ feasible if and only if $ar{P}_\lambda$ feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded

⇒:

Consider the polytops

$$\bar{P} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix}; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix} + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \geq 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 $ar{P}_\lambda$ is bounded since P_λ and P are bounded.

⇒

Consider the polytops

$$\bar{P} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix}; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix} + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

Let
$$\bar{A}=\begin{bmatrix}A & -A \\ -A & A\end{bmatrix}$$
, and $\bar{b}=\begin{pmatrix}b \\ -b\end{pmatrix}$.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}\bar{b} + \frac{1}{\lambda}\bar{A}_B^{-1} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \leq (\bar{A}_B^{-1}\bar{b})_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})$$

Let
$$\bar{A} = \begin{bmatrix} A & -A \\ -A & A \end{bmatrix}$$
, and $\bar{b} = \begin{pmatrix} b \\ -b \end{pmatrix}$.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}\bar{b} + \frac{1}{\lambda}\bar{A}_B^{-1} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \leq (\bar{A}_B^{-1}\bar{b})_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

Let
$$\bar{A} = \begin{bmatrix} A & -A \\ -A & A \end{bmatrix}$$
, and $\bar{b} = \begin{pmatrix} b \\ -b \end{pmatrix}$.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$\chi_B = \bar{A}_B^{-1}\bar{b} + \frac{1}{\lambda}\bar{A}_B^{-1} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \le (\bar{A}_B^{-1}\bar{b})_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

By Cramers rule we get

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}\bar{b})_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where $ar{M}_j$ is obtained by replacing the j-th column of $ar{A}_B$ by $ec{1}$.

However, we showed that the determinants of $ar{A}_B$ and $ar{M}_j$ can become at most δ

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

By Cramers rule we get

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}\bar{b})_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where $ar{M}_j$ is obtained by replacing the j-th column of $ar{A}_B$ by $ec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most δ .

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

By Cramers rule we get

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}\bar{b})_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$$
 ,

where $ar{M}_j$ is obtained by replacing the j-th column of $ar{A}_B$ by $ec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most δ .

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means Ax < h.

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x+\vec{\ell}))_i$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x+\vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x+\vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \leq b_i + A_i\vec{\ell}$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + A_i\vec{\ell}$$

 $\le b_i + ||A_i|| \cdot ||\vec{\ell}||$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + A_i \vec{\ell}$$

$$\le b_i + ||A_i|| \cdot ||\vec{\ell}|| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$\begin{split} (A(x+\vec{\ell}))_i &= (Ax)_i + (A\vec{\ell})_i \le b_i + A_i \vec{\ell} \\ &\le b_i + \|A_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r \\ &\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \end{split}$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$\begin{split} (A(x+\vec{\ell}))_i &= (Ax)_i + (A\vec{\ell})_i \le b_i + A_i \vec{\ell} \\ &\le b_i + \|A_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r \\ &\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda} \end{split}$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$\begin{split} (A(x+\vec{\ell}))_i &= (Ax)_i + (A\vec{\ell})_i \le b_i + A_i \vec{\ell} \\ &\le b_i + \|A_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r \\ &\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda} \end{split}$$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

$$e^{-\frac{i}{2(n+1)}} \cdot \text{vol}(B(0,R)) < \text{vol}(B(0,r))$$

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

i

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$e^{-\frac{i}{2(n+1)}}\cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$
$$= 2(n+1)\ln\left(n^n\delta^n \cdot \delta^{3n}\right)$$

$$e^{-\frac{i}{2(n+1)}}\cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$
$$= 2(n+1)\ln\left(n^n\delta^n \cdot \delta^{3n}\right)$$
$$= 8n(n+1)\ln(\delta) + 2(n+1)n\ln(n)$$

$$e^{-\frac{i}{2(n+1)}}\cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$= 2(n+1)\ln\left(n^n\delta^n \cdot \delta^{3n}\right)$$

$$= 8n(n+1)\ln(\delta) + 2(n+1)n\ln(n)$$

$$= \mathcal{O}(\operatorname{poly}(n,\langle a_{\max}\rangle))$$

Algorithm 1 ellipsoid-algorithm

1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r

2: with
$$K \subseteq B(c,R)$$
, and $B(x,r) \subseteq K$ for some x

3: **output**: point
$$x \in K$$
 or " K is empty"
4: $O \leftarrow \operatorname{diag}(R^2, \dots, R^2)$ // i.e., $L = \operatorname{diag}(R, \dots, R)$

if
$$c \in K$$
 then return c

choose a violated hyperplane
$$a$$

$$c \leftarrow c - \frac{1}{a} \frac{Qa}{\sqrt{a}}$$

$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{atC}}$$

$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^t Qa}}$$

$$c \leftarrow c - \frac{1}{n+1} \sqrt{\frac{1}{n+1}}$$

$$Q \leftarrow \frac{n^2}{n^2-1} \left(Q - \frac{n^2}{n^2-1}\right)$$

$$n^2-1$$
 endif

$$\Omega = \kappa^{2n} / / i \circ \det(I) < \kappa^{n}$$

12:
$$\mathbf{until} \det(Q) \le r^{2n} // \text{ i.e., } \det(L) \le r^n$$
13: $\mathbf{return} \text{ "}K \text{ is empty"}$

10:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^t Q}{a^t Qa} \right)$$

$$\frac{n^2}{n^2-1}\left(Q-\frac{2}{n+1}\frac{Qaa^2Q}{a^tQa}\right)$$

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- \triangleright or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm

In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball $\mathcal{B}(c,R)$ with radius R that contains K
- The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

a guarantee that a ball of radius \mathcal{R} is contained in \mathcal{K} , an initial ball $\mathcal{R}(c,\mathcal{R})$ with radius \mathcal{R} that contains \mathcal{K} ,

The Ellipsoid algorithm requires $\mathcal{O}(\mathrm{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- ightharpoonup a guarantee that a ball of radius r is contained in K,
- \blacktriangleright an initial ball B(c,R) with radius R that contains K,
- \triangleright a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- \blacktriangleright an initial ball B(c,R) with radius R that contains K,
- \triangleright a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\text{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- \blacktriangleright an initial ball B(c,R) with radius R that contains K,
- a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- ightharpoonup a guarantee that a ball of radius r is contained in K,
- ▶ an initial ball B(c,R) with radius R that contains K,
- a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

We want to solve the following linear program:

- ▶ $\min v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

- A is an $m \times n$ -matrix with rank m.
- Ae = 0, i.e., the center of the simplex is feasible.
- The optimum solution is 0...

We want to solve the following linear program:

- ▶ $\min v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

- A is an $m \times n$ -matrix with rank $m \times n$ -matrix with rank $m \times n$ -matrix.
 - Ac=0, i.e., the center of the simplex is feasibilities
 - The optimum solution is 0.

We want to solve the following linear program:

- ▶ $\min v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

- 1. A is an $m \times n$ -matrix with rank m.
- **2.** Ae = 0, i.e., the center of the simplex is feasible.
- 3. The optimum solution is 0.

We want to solve the following linear program:

- ▶ $\min v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

- 1. A is an $m \times n$ -matrix with rank m.
- **2.** Ae = 0, i.e., the center of the simplex is feasible.
- 3. The optimum solution is 0.

We want to solve the following linear program:

- $ightharpoonup \min v = c^t x$ subject to Ax = 0 and $x \in \Delta$.
- ► Here $\Delta = \{x \in \mathbb{R}^n \mid e^t x = 1, x \ge 0\}$ with $e^t = (1, ..., 1)$ denotes the standard simplex in \mathbb{R}^n .

- **1.** A is an $m \times n$ -matrix with rank m.
- **2.** Ae = 0, i.e., the center of the simplex is feasible.
- **3.** The optimum solution is 0.

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

```
problem
```

```
We can check for feasibility by using the two phase algorithm. In can assume that LP is feasible.
```

```
Compute the dual; pack primal and dual into one LP and minimize the duality gap. — optimum is 0
```

```
Add a new variable pair x_{\theta_i} x_{\theta_j}' (both restricted to be positive) and the constraint \Sigma_i x_i = 1. \Rightarrow solution in simple.
```

```
Add -(\sum_{i}x_{i})b_{i}=-b_{i} to every constraint. A vector b is 4. A does not have full row rank we can delete constraints
```

```
(or conclude that the LF is infeasible).

⇒ A has full row rank
```

We still need to make e/n feasible.

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- ▶ Multiply c by -1 and do a minimization. \Rightarrow minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- ▶ Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. ⇒ vector b is 0
- ▶ If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

We still need to make e/n feasible.

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- ▶ Multiply c by -1 and do a minimization. \Rightarrow minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- ▶ Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- ▶ If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

We still need to make e/n feasible.

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- ▶ Multiply c by -1 and do a minimization. \Rightarrow minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- ▶ Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. ⇒ vector b is 0
- ▶ If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

We still need to make e/n feasible.

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- ▶ Multiply c by -1 and do a minimization. \Rightarrow minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- ▶ Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. ⇒ vector b is 0
- ▶ If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- ▶ Multiply c by -1 and do a minimization. \Rightarrow minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- ► Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- ▶ Multiply c by -1 and do a minimization. \Rightarrow minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- ▶ Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

Suppose you start with $\max\{c^t x \mid Ax = b; x \ge 0\}$.

- ▶ Multiply c by -1 and do a minimization. \Rightarrow minimization problem
- We can check for feasibility by using the two phase algorithm. ⇒ can assume that LP is feasible.
- Compute the dual; pack primal and dual into one LP and minimize the duality gap. ⇒ optimum is 0
- Add a new variable pair x_{ℓ} , x'_{ℓ} (both restricted to be positive) and the constraint $\sum_{i} x_{i} = 1$. \Rightarrow solution in simplex
- ► Add $-(\sum_i x_i)b_i = -b_i$ to every constraint. \Rightarrow vector b is 0
- If A does not have full row rank we can delete constraints (or conclude that the LP is infeasible).
 - \Rightarrow A has full row rank

We still need to make e/n feasible.

The algorithm computes strictly feasible interior points $x^{(0)} = \frac{e}{n}, x^{(1)}, x^{(2)}, \dots$ with

$$c^t x^{(k)} \le 2^{-\Theta(L)} c^t x^{(0)}$$

For $k = \Theta(L)$. A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can "snap" to an optimum vertex.

The algorithm computes strictly feasible interior points $x^{(0)} = \frac{e}{n}, x^{(1)}, x^{(2)}, \dots$ with

$$c^t x^{(k)} \le 2^{-\Theta(L)} c^t x^{(0)}$$

For $k = \Theta(L)$. A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can "snap" to an optimum vertex.

Iteration:

- 1. Distort the problem by mapping the simplex onto itself so that the current point \bar{x} moves to the center.
- 2. Project the optimization direction c onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). \hat{x}_{new} is the point you reached.
- 3. Do a backtransformation to transform \hat{x} into your new point \bar{x}_{new} .

Iteration:

- 1. Distort the problem by mapping the simplex onto itself so that the current point \bar{x} moves to the center.
- 2. Project the optimization direction c onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). \hat{x}_{new} is the point you reached.
- 3. Do a backtransformation to transform \hat{x} into your new point \bar{x}_{new} .

Iteration:

- 1. Distort the problem by mapping the simplex onto itself so that the current point \bar{x} moves to the center.
- 2. Project the optimization direction c onto the feasible region. Determine a distance to travel along this direction such that you do not leave the simplex (and you do not touch the border). \hat{x}_{new} is the point you reached.
- 3. Do a backtransformation to transform \hat{x} into your new point \bar{x}_{new} .

Let $\bar{Y} = \mathrm{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

Define

$$F_{\bar{x}}: x \mapsto \frac{\bar{Y}^{-1}x}{e^t \bar{Y}^{-1}x} \ .$$

The inverse function is

$$F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}$$
.

Note that $\bar{x}>0$ in every coordinate. Therefore the above is well defined.

Let $\bar{Y} = \mathrm{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

Define

$$F_{\bar{x}}: x \mapsto \frac{\bar{Y}^{-1}x}{e^t\bar{Y}^{-1}x}$$
.

The inverse function is

$$F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}$$

Note that $\bar{x}>0$ in every coordinate. Therefore the above is well defined.

Let $\bar{Y} = \mathrm{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

Define

$$F_{\bar{x}}: x \mapsto \frac{\bar{Y}^{-1}x}{e^t\bar{Y}^{-1}x}$$
.

The inverse function is

$$F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y}\hat{x}}{e^t\bar{Y}\hat{x}}$$
.

Note that $\bar{x} > 0$ in every coordinate. Therefore the above is well defined.

Let $\bar{Y} = \mathrm{diag}(\bar{x})$ the diagonal matrix with entries \bar{x} on the diagonal.

Define

$$F_{\bar{x}}: x \mapsto \frac{\bar{Y}^{-1}x}{e^t\bar{Y}^{-1}x}$$
.

The inverse function is

$$F_{\bar{x}}^{-1}: \hat{x} \mapsto \frac{\bar{Y}\hat{x}}{e^t\bar{Y}\hat{x}}$$
.

Note that $\bar{x} > 0$ in every coordinate. Therefore the above is well defined.

 $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$:

$$F_{\bar{x}}(F_{\bar{x}}^{-1}(\hat{x})) = \frac{\bar{Y}^{-1} \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}}{e^t \bar{Y}^{-1} \frac{\bar{Y}\hat{x}}{e^t \bar{Y}\hat{x}}} = \frac{\hat{x}}{e^t \hat{x}} = \hat{x}$$

because $\hat{x} \in \Delta$.

Note that in particular every $\hat{x} \in \Delta$ has a preimage (Urbild) under $F_{\tilde{x}}$.

 \bar{x} is mapped to e/n

$$F_{\bar{x}}(\bar{x}) = \frac{\bar{Y}^{-1}\bar{x}}{e^t\bar{Y}^{-1}\bar{x}} = \frac{e}{e^te} = \frac{e}{n}$$

A unit vectors e_i is mapped to itself:

$$F_{\bar{X}}(e_i) = \frac{\bar{Y}^{-1}e_i}{e^t\bar{Y}^{-1}e_i} = \frac{(0,\dots,0,1/\bar{X}_i,0,\dots,0)^t}{e^t(0,\dots,0,1/\bar{X}_i,0,\dots,0)^t} = e_i$$

All nodes of the simplex are mapped to the simplex:

$$F_{\bar{\mathbf{x}}}(\mathbf{x}) = \frac{\bar{Y}^{-1}\mathbf{x}}{e^t \bar{Y}^{-1}\mathbf{x}} = \frac{\left(\frac{x_1}{\bar{x}_1}, \dots, \frac{x_n}{\bar{x}_n}\right)^t}{e^t \left(\frac{x_1}{\bar{x}_1}, \dots, \frac{x_n}{\bar{x}_n}\right)^t} = \frac{\left(\frac{x_1}{\bar{x}_1}, \dots, \frac{x_n}{\bar{x}_n}\right)^t}{\sum_i \frac{x_i}{\bar{x}_i}} \in \Delta$$

- $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$.
- \triangleright \bar{x} is mapped to e/n.
- ightharpoonup A unit vectors e_i is mapped to itself.
- ▶ All nodes of the simplex are mapped to the simplex.

- $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$.
- \bar{x} is mapped to e/n.
- ▶ A unit vectors e_i is mapped to itself.
- ▶ All nodes of the simplex are mapped to the simplex.

- $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$.
- \bar{x} is mapped to e/n.
- A unit vectors e_i is mapped to itself.
- All nodes of the simplex are mapped to the simplex

- $F_{\bar{x}}^{-1}$ really is the inverse of $F_{\bar{x}}$.
- $ightharpoonup \bar{x}$ is mapped to e/n.
- A unit vectors e_i is mapped to itself.
- All nodes of the simplex are mapped to the simplex.

$$\min\{c^t x \mid Ax = 0; x \in \Delta\}$$

$$\min\{c^{t}x \mid Ax = 0; x \in \Delta\}$$

= $\min\{c^{t}F_{\hat{x}}^{-1}(\hat{x}) \mid AF_{\hat{x}}^{-1}(\hat{x}) = 0; F_{\hat{x}}^{-1}(\hat{x}) \in \Delta\}$

$$\begin{aligned} & \min\{c^t x \mid Ax = 0; \, x \in \Delta\} \\ &= \min\{c^t F_{\tilde{X}}^{-1}(\hat{x}) \mid AF_{\tilde{X}}^{-1}(\hat{x}) = 0; \, F_{\tilde{X}}^{-1}(\hat{x}) \in \Delta\} \\ &= \min\{c^t F_{\tilde{X}}^{-1}(\hat{x}) \mid AF_{\tilde{X}}^{-1}(\hat{x}) = 0; \, \hat{x} \in \Delta\} \end{aligned}$$

$$\begin{aligned} & \min\{c^{t}x \mid Ax = 0; x \in \Delta\} \\ &= \min\{c^{t}F_{\bar{x}}^{-1}(\hat{x}) \mid AF_{\bar{x}}^{-1}(\hat{x}) = 0; F_{\bar{x}}^{-1}(\hat{x}) \in \Delta\} \\ &= \min\{c^{t}F_{\bar{x}}^{-1}(\hat{x}) \mid AF_{\bar{x}}^{-1}(\hat{x}) = 0; \hat{x} \in \Delta\} \\ &= \min\left\{\frac{c^{t}\bar{Y}\hat{x}}{c^{t}\bar{Y}\hat{x}} \mid \frac{A\bar{Y}\hat{x}}{c^{t}\bar{Y}\hat{x}} = 0; \hat{x} \in \Delta\right\} \end{aligned}$$

We have the problem

$$\begin{split} \min\{c^t x \mid Ax &= 0; \, x \in \Delta\} \\ &= \min\{c^t F_{\bar{X}}^{-1}(\hat{x}) \mid AF_{\bar{X}}^{-1}(\hat{x}) = 0; \, F_{\bar{X}}^{-1}(\hat{x}) \in \Delta\} \\ &= \min\{c^t F_{\bar{X}}^{-1}(\hat{x}) \mid AF_{\bar{X}}^{-1}(\hat{x}) = 0; \, \hat{x} \in \Delta\} \\ &= \min\left\{\frac{c^t \bar{Y} \hat{x}}{e^t \bar{Y} \hat{x}} \mid \frac{A\bar{Y} \hat{x}}{e^t \bar{Y} \hat{x}} = 0; \, \hat{x} \in \Delta\right\} \end{split}$$

Since the optimum solution is 0 this problem is the same as

$$\min\{\hat{c}^t\hat{x} \mid \hat{A}\hat{x} = 0, \hat{x} \in \Delta\}$$

with
$$\hat{c} = \bar{Y}^t c = \bar{Y}c$$
 and $\hat{A} = A\bar{Y}$.

We still need to make e/n feasible.

- We know that our LP is feasible. Let \bar{x} be a feasible point.
- ▶ Apply $F_{\bar{X}}$, and solve

$$\min\{\hat{c}^t x \mid \hat{A}x = 0; x \in \Delta\}$$

▶ The feasible point is moved to the center.

When computing \hat{x}_{new} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$B\left(\frac{e}{n},\rho\right) = \left\{x \in \mathbb{R}^n \mid \left\|x - \frac{e}{n}\right\| \le \rho\right\}$$
.

$$B\left(\frac{e}{n},r\right)\cap\left\{x\mid e^tx=1\right\}\subseteq\Delta.$$

When computing \hat{x}_{new} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$B\left(\frac{e}{n},\rho\right) = \left\{x \in \mathbb{R}^n \mid \left\|x - \frac{e}{n}\right\| \le \rho\right\}$$

$$B\left(\frac{e}{n},r\right)\cap\left\{x\mid e^tx=1\right\}\subseteq\Delta.$$

When computing \hat{x}_{new} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$B\left(\frac{e}{n},\rho\right) = \left\{x \in \mathbb{R}^n \mid \left\|x - \frac{e}{n}\right\| \le \rho\right\} \ .$$

$$B\left(\frac{e}{n},r\right)\cap\left\{x\mid e^tx=1\right\}\subseteq\Delta.$$

When computing \hat{x}_{new} we do not want to leave the simplex or touch its boundary (why?).

For this we compute the radius of a ball that completely lies in the simplex.

$$B\left(\frac{e}{n},\rho\right) = \left\{x \in \mathbb{R}^n \mid \left\|x - \frac{e}{n}\right\| \le \rho\right\} .$$

$$B\left(\frac{e}{n},r\right)\cap\left\{x\mid e^tx=1\right\}\subseteq\Delta.$$

This holds for $r = \|\frac{e}{n} - (e - e_1)\frac{1}{n-1}\|$. (r is the distance between the center e/n and the center of the (n-1)-dimensional simplex obtained by intersecting a side ($x_i = 0$) of the unit cube with Δ .)

This gives
$$r = \frac{1}{\sqrt{n(n-1)}}$$
.

Now we consider the problem

$$\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in B(e/n, r) \cap \Delta\}$$

This problem is easy to solve!!

This holds for $r = \|\frac{e}{n} - (e - e_1)\frac{1}{n-1}\|$. (r is the distance between the center e/n and the center of the (n-1)-dimensional simplex obtained by intersecting a side ($x_i = 0$) of the unit cube with Δ .)

This gives
$$r = \frac{1}{\sqrt{n(n-1)}}$$

Now we consider the problem

$$\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in B(e/n, r) \cap \Delta\}$$

This problem is easy to solve!!

This holds for $r = \|\frac{e}{n} - (e - e_1)\frac{1}{n-1}\|$. (r is the distance between the center e/n and the center of the (n-1)-dimensional simplex obtained by intersecting a side ($x_i = 0$) of the unit cube with Δ .)

This gives
$$r = \frac{1}{\sqrt{n(n-1)}}$$
.

Now we consider the problem

$$\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in B(e/n, r) \cap \Delta\}$$

This problem is easy to solve!!!

This holds for $r = \|\frac{e}{n} - (e - e_1)\frac{1}{n-1}\|$. (r is the distance between the center e/n and the center of the (n-1)-dimensional simplex obtained by intersecting a side ($x_i = 0$) of the unit cube with Δ .)

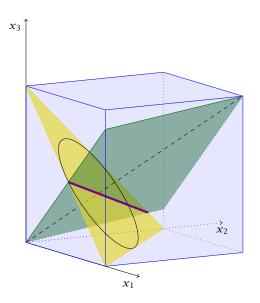
This gives
$$r = \frac{1}{\sqrt{n(n-1)}}$$
.

Now we consider the problem

$$\min\{\hat{c}^t x \mid \hat{A}x = 0, x \in B(e/n, r) \cap \Delta\}$$

This problem is easy to solve!!!

The Simplex



Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}\hat{x}=0$ or the constraint $\hat{x}\in\Delta$.

Therefore we first project \hat{c} on the nullspace of

$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$

We use

$$P = I - B^t (BB^t)^{-1} B$$

Then

$$\hat{d} = P\hat{c}$$

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}\hat{x}=0$ or the constraint $\hat{x}\in \Lambda$.

Therefore we first project \hat{c} on the nullspace of

$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$

We use

$$P = I - B^t (BB^t)^{-1} B$$

Then

$$\hat{d} = P\hat{c}$$

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}\hat{x}=0$ or the constraint $\hat{x}\in\Delta$.

Therefore we first project \hat{c} on the nullspace of

$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$

We use

$$P = I - B^t (BB^t)^{-1} B$$

Then

$$\hat{d} = P\hat{c}$$

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}\hat{x}=0$ or the constraint $\hat{x}\in\Delta$.

Therefore we first project \hat{c} on the nullspace of

$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$

We use

$$P = I - B^t (BB^t)^{-1} B$$

Ther

$$\hat{d} = P\hat{c}$$

Ideally we would like to go in direction of $-\hat{c}$ (starting from the center of the simplex).

However, doing this may violate constraints $\hat{A}\hat{x}=0$ or the constraint $\hat{x}\in\Delta$.

Therefore we first project \hat{c} on the nullspace of

$$B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$$

We use

$$P = I - B^t (BB^t)^{-1} B$$

Then

$$\hat{d} = P\hat{c}$$

We get the new point

$$\hat{x}(\rho) = \frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|}$$

for $\rho < r$.

Choose $\rho = \alpha r$ with $\alpha = 1/4$

We get the new point

$$\hat{x}(\rho) = \frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|}$$

for $\rho < r$.

Choose $\rho = \alpha r$ with $\alpha = 1/4$.

Iteration of Karmarkars Algorithm

- Current solution \bar{x} . $\bar{Y} := \text{diag}(\bar{x}_1, \dots, \bar{x}_n)$.
- ► Transform problem via $F_{\bar{X}}(x) = \frac{\bar{Y}^{-1}x}{e^t\bar{Y}^{-1}x}$. Let $\hat{c} = \bar{Y}c$, and $\hat{A} = A\bar{Y}$.
- Compute

$$\hat{d} = (I - B^t (BB^t)^{-1}B)\hat{c} ,$$

where $B = \begin{pmatrix} \hat{A} \\ e^t \end{pmatrix}$.

Set

$$\hat{x}_{\text{new}} = \frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|} ,$$

with $\rho = \alpha r$ with $\alpha = 1/4$ and $r = 1/\sqrt{n(n-1)}$.

• Compute $\bar{x}_{\text{new}} = F_{\bar{x}}^{-1}(\hat{x}_{\text{new}})$.

Lemma 40

The new point \hat{x}_{new} in the transformed space is the point that minimizes the cost $\hat{c}^t\hat{x}$ among all feasible points in $B(\frac{e}{n}, \rho)$.

As
$$\hat{A}\hat{z} = 0$$
, $\hat{A}\hat{x}_{new} = 0$, $e^{t}\hat{z} = 1$, $e^{t}\hat{x}_{new} = 1$

As $\hat{A}\hat{z}=0$, $\hat{A}\hat{x}_{\text{new}}=0$, $e^t\hat{z}=1$, $e^t\hat{x}_{\text{new}}=1$ we have

$$B(\hat{x}_{\text{new}} - \hat{z}) = 0 .$$

As $\hat{A}\hat{z} = 0$, $\hat{A}\hat{x}_{\text{new}} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{\text{new}} = 1$ we have

$$B(\hat{x}_{\text{new}} - \hat{z}) = 0 .$$

$$(\hat{c} - \hat{d})^t$$

As $\hat{A}\hat{z} = 0$, $\hat{A}\hat{x}_{\text{new}} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{\text{new}} = 1$ we have

$$B(\hat{x}_{\text{new}} - \hat{z}) = 0 .$$

$$(\hat{c} - \hat{d})^t = (\hat{c} - P\hat{c})^t$$

As $\hat{A}\hat{z}=0$, $\hat{A}\hat{x}_{\text{new}}=0$, $e^t\hat{z}=1$, $e^t\hat{x}_{\text{new}}=1$ we have

$$B(\hat{x}_{\text{new}} - \hat{z}) = 0$$
.

$$(\hat{c} - \hat{d})^t = (\hat{c} - P\hat{c})^t$$
$$= (B^t (BB^t)^{-1} B\hat{c})^t$$

As $\hat{A}\hat{z}=0$, $\hat{A}\hat{x}_{\text{new}}=0$, $e^t\hat{z}=1$, $e^t\hat{x}_{\text{new}}=1$ we have

$$B(\hat{x}_{\text{new}} - \hat{z}) = 0 .$$

$$(\hat{c} - \hat{d})^t = (\hat{c} - P\hat{c})^t$$
$$= (B^t (BB^t)^{-1} B\hat{c})^t$$
$$= \hat{c}^t B^t (BB^t)^{-1} B$$

As $\hat{A}\hat{z}=0$, $\hat{A}\hat{x}_{\text{new}}=0$, $e^t\hat{z}=1$, $e^t\hat{x}_{\text{new}}=1$ we have

$$B(\hat{x}_{\text{new}} - \hat{z}) = 0 .$$

Further,

$$(\hat{c} - \hat{d})^t = (\hat{c} - P\hat{c})^t$$
$$= (B^t (BB^t)^{-1} B\hat{c})^t$$
$$= \hat{c}^t B^t (BB^t)^{-1} B$$

Hence, we get

$$(\hat{c} - \hat{d})^t (\hat{x}_{\text{new}} - \hat{z}) = 0$$

As $\hat{A}\hat{z} = 0$, $\hat{A}\hat{x}_{\text{new}} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{\text{new}} = 1$ we have

$$B(\hat{x}_{\text{new}} - \hat{z}) = 0.$$

Further,

$$(\hat{c} - \hat{d})^t = (\hat{c} - P\hat{c})^t$$
$$= (B^t (BB^t)^{-1} B\hat{c})^t$$
$$= \hat{c}^t B^t (BB^t)^{-1} B$$

Hence, we get

$$(\hat{c} - \hat{d})^t (\hat{x}_{\text{new}} - \hat{z}) = 0 \text{ or } \hat{c}^t (\hat{x}_{\text{new}} - \hat{z}) = \hat{d}^t (\hat{x}_{\text{new}} - \hat{z})$$

As $\hat{A}\hat{z} = 0$, $\hat{A}\hat{x}_{new} = 0$, $e^t\hat{z} = 1$, $e^t\hat{x}_{new} = 1$ we have

$$B(\hat{x}_{\text{new}} - \hat{z}) = 0 .$$

Further,

$$(\hat{c} - \hat{d})^t = (\hat{c} - P\hat{c})^t$$
$$= (B^t (BB^t)^{-1} B\hat{c})^t$$
$$= \hat{c}^t B^t (BB^t)^{-1} B$$

Hence, we get

$$(\hat{c} - \hat{d})^t (\hat{x}_{\text{new}} - \hat{z}) = 0 \text{ or } \hat{c}^t (\hat{x}_{\text{new}} - \hat{z}) = \hat{d}^t (\hat{x}_{\text{new}} - \hat{z})$$

which means that the cost-difference between \hat{x}_{new} and \hat{z} is the same measured w.r.t. the cost-vector \hat{c} or the projected cost-vector \hat{d} .

$$\frac{\hat{d}^t}{\|\hat{d}\|} \left(\hat{x}_{\text{new}} - \hat{z} \right)$$

$$\frac{\hat{d}^t}{\|\hat{d}\|} \left(\hat{x}_{\text{new}} - \hat{z} \right) = \frac{\hat{d}^t}{\|\hat{d}\|} \left(\frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|} - \hat{z} \right)$$

$$\frac{\hat{d}^t}{\|\hat{d}\|}\left(\hat{x}_{\text{new}} - \hat{z}\right) = \frac{\hat{d}^t}{\|\hat{d}\|}\left(\frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|} - \hat{z}\right) = \frac{\hat{d}^t}{\|\hat{d}\|}\left(\frac{e}{n} - \hat{z}\right) - \rho$$

$$\frac{\hat{d}^t}{\|\hat{d}\|} \left(\hat{x}_{\text{new}} - \hat{z} \right) = \frac{\hat{d}^t}{\|\hat{d}\|} \left(\frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|} - \hat{z} \right) = \frac{\hat{d}^t}{\|\hat{d}\|} \left(\frac{e}{n} - \hat{z} \right) - \rho < 0$$

as $\frac{e}{n} - \hat{z}$ is a vector of length at most ρ .

$$\frac{\hat{d}^t}{\|\hat{d}\|}\left(\hat{x}_{\text{new}} - \hat{z}\right) = \frac{\hat{d}^t}{\|\hat{d}\|}\left(\frac{e}{n} - \rho \frac{\hat{d}}{\|\hat{d}\|} - \hat{z}\right) = \frac{\hat{d}^t}{\|\hat{d}\|}\left(\frac{e}{n} - \hat{z}\right) - \rho < 0$$

as $\frac{e}{n} - \hat{z}$ is a vector of length at most ρ .

This gives $\hat{d}(\hat{x}_{\text{new}} - \hat{z}) \leq 0$ and therefore $\hat{c}\hat{x}_{\text{new}} \leq \hat{c}\hat{z}$.

$$f(x) = \sum_{j} \ln(\frac{c^t x}{x_j})$$

$$f(x) = \sum_{j} \ln(\frac{c^t x}{x_j}) = n \ln(c^t x) - \sum_{j} \ln(x_j) .$$

$$f(x) = \sum_{j} \ln(\frac{c^t x}{x_j}) = n \ln(c^t x) - \sum_{j} \ln(x_j) .$$

▶ The function f is invariant to scaling (i.e., f(kx) = f(x)).

$$f(x) = \sum_{j} \ln(\frac{c^t x}{x_j}) = n \ln(c^t x) - \sum_{j} \ln(x_j) .$$

- ▶ The function f is invariant to scaling (i.e., f(kx) = f(x)).
- The potential function essentially measures cost (note the term $n \ln(c^t x)$) but it penalizes us for choosing x_j values very small (by the term $-\sum_j \ln(x_j)$; note that $-\ln(x_j)$ is always positive).

$$\hat{f}(\hat{z})$$

$$\hat{f}(\hat{z}) \coloneqq f(F_{\bar{x}}^{-1}(\hat{z}))$$

$$\hat{f}(\hat{z}) \coloneqq f(F_{\bar{x}}^{-1}(\hat{z})) = f(\frac{\bar{Y}\hat{z}}{e^t\bar{Y}\hat{z}}) = f(\bar{Y}\hat{z})$$

$$\begin{split} \hat{f}(\hat{z}) &:= f(F_{\bar{x}}^{-1}(\hat{z})) = f(\frac{\bar{Y}\hat{z}}{e^t\bar{Y}\hat{z}}) = f(\bar{Y}\hat{z}) \\ &= \sum_{j} \ln(\frac{c^t\bar{Y}\hat{z}}{\bar{x}_j\hat{z}_j}) \end{split}$$

$$\hat{f}(\hat{z}) := f(F_{\bar{x}}^{-1}(\hat{z})) = f(\frac{\bar{Y}\hat{z}}{e^t\bar{Y}\hat{z}}) = f(\bar{Y}\hat{z})$$

$$= \sum_{i} \ln(\frac{c^t\bar{Y}\hat{z}}{\bar{x}_j\hat{z}_j}) = \sum_{i} \ln(\frac{\hat{c}^t\hat{z}}{\hat{z}_j}) - \sum_{i} \ln\bar{x}_j$$

For a point \hat{z} in the transformed space we use the potential function

$$\begin{split} \hat{f}(\hat{z}) &:= f(F_{\bar{x}}^{-1}(\hat{z})) = f(\frac{\bar{Y}\hat{z}}{e^t\bar{Y}\hat{z}}) = f(\bar{Y}\hat{z}) \\ &= \sum_{j} \ln(\frac{c^t\bar{Y}\hat{z}}{\bar{x}_j\hat{z}_j}) = \sum_{j} \ln(\frac{\hat{c}^t\hat{z}}{\hat{z}_j}) - \sum_{j} \ln\bar{x}_j \end{split}$$

Observation:

This means the potential of a point in the transformed space is simply the potential of its pre-image under F.

For a point \hat{z} in the transformed space we use the potential function

$$\begin{split} \hat{f}(\hat{z}) &:= f(F_{\bar{x}}^{-1}(\hat{z})) = f(\frac{\bar{Y}\hat{z}}{e^t\bar{Y}\hat{z}}) = f(\bar{Y}\hat{z}) \\ &= \sum_{j} \ln(\frac{c^t\bar{Y}\hat{z}}{\bar{x}_j\hat{z}_j}) = \sum_{j} \ln(\frac{\hat{c}^t\hat{z}}{\hat{z}_j}) - \sum_{j} \ln\bar{x}_j \end{split}$$

Observation:

This means the potential of a point in the transformed space is simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore the additive term above. Then f and \hat{f} have the same form; only c is replaced by \hat{c} .

The basic idea is to show that one iteration of Karmarkar results in a constant decrease of \hat{f} . This means

$$\hat{f}(\hat{x}_{\text{new}}) \leq \hat{f}(\frac{e}{n}) - \delta$$
 ,

where δ is a constant.

The basic idea is to show that one iteration of Karmarkar results in a constant decrease of \hat{f} . This means

$$\hat{f}(\hat{x}_{\text{new}}) \leq \hat{f}(\frac{e}{n}) - \delta$$
,

where δ is a constant.

This gives

$$f(\bar{x}_{\text{new}}) \le f(\bar{x}) - \delta$$
.

Lemma 41

There is a feasible point z (i.e., $\hat{A}z=0$) in $B(\frac{e}{n},\rho)\cap\Delta$ that has

$$\hat{f}(z) \leq \hat{f}(\frac{e}{n}) - \delta$$

with $\delta = \ln(1 + \alpha)$.

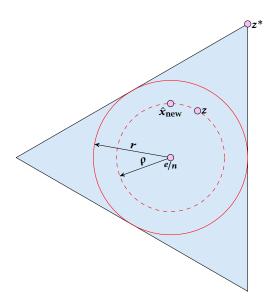
Lemma 41

There is a feasible point z (i.e., $\hat{A}z=0$) in $B(\frac{e}{n},\rho)\cap\Delta$ that has

$$\hat{f}(z) \leq \hat{f}(\frac{e}{n}) - \delta$$

with $\delta = \ln(1 + \alpha)$.

Note that this shows the existence of a good point within the ball. In general it will be difficult to find this point.



 z^* must lie at the boundary of the simplex. This means $z^* \notin B(\frac{e}{n}, \rho)$.

 z^* must lie at the boundary of the simplex. This means $z^* \notin B(\frac{e}{n}, \rho)$.

The point z we want to use lies farthest in the direction from $\frac{e}{n}$ to z^* , namely

 z^* must lie at the boundary of the simplex. This means $z^* \notin B(\frac{e}{n}, \rho)$.

The point z we want to use lies farthest in the direction from $\frac{e}{n}$ to z^* , namely

$$z = (1 - \lambda)\frac{e}{n} + \lambda z^*$$

for some positive $\lambda < 1$.

Hence,

$$\hat{c}^t z = (1 - \lambda)\hat{c}^t \frac{e}{n} + \lambda \hat{c}^t z^*$$

Hence,

$$\hat{c}^t z = (1 - \lambda)\hat{c}^t \frac{e}{n} + \lambda \hat{c}^t z^*$$

The optimum cost (at z^*) is zero.

Hence,

$$\hat{c}^t z = (1 - \lambda)\hat{c}^t \frac{e}{n} + \lambda \hat{c}^t z^*$$

The optimum cost (at z^*) is zero.

Therefore,

$$\frac{\hat{c}^t \frac{e}{n}}{\hat{c}^t z} = \frac{1}{1 - \lambda}$$

$$\hat{f}(\frac{e}{n}) - \hat{f}(z)$$

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{i} \ln(\frac{\hat{c}^t \frac{e}{n}}{\frac{1}{n}}) - \sum_{i} \ln(\frac{\hat{c}^t z}{z_j})$$

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}) - \sum_{j} \ln(\frac{\hat{c}^{t} z}{z_{j}})$$
$$= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}})$$

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}) - \sum_{j} \ln(\frac{\hat{c}^{t} z}{z_{j}})$$

$$= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}})$$

$$= \sum_{j} \ln(\frac{n}{1 - \lambda} z_{j})$$

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\frac{1}{n}}) - \sum_{j} \ln(\frac{\hat{c}^{t} z}{z_{j}})$$

$$= \sum_{j} \ln(\frac{\hat{c}^{t} \frac{e}{n}}{\hat{c}^{t} z} \cdot \frac{z_{j}}{\frac{1}{n}})$$

$$= \sum_{j} \ln(\frac{n}{1 - \lambda} z_{j})$$

$$= \sum_{j} \ln(\frac{n}{1 - \lambda} ((1 - \lambda) \frac{1}{n} + \lambda z_{j}^{*}))$$

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{j} \ln(\frac{\hat{c}^t \frac{e}{n}}{\frac{1}{n}}) - \sum_{j} \ln(\frac{\hat{c}^t z}{z_j})$$

$$= \sum_{j} \ln(\frac{\hat{c}^t \frac{e}{n}}{\hat{c}^t z} \cdot \frac{z_j}{\frac{1}{n}})$$

$$= \sum_{j} \ln(\frac{n}{1 - \lambda} z_j)$$

$$= \sum_{j} \ln(\frac{n}{1 - \lambda} ((1 - \lambda) \frac{1}{n} + \lambda z_j^*))$$

$$= \sum_{j} \ln(1 + \frac{n\lambda}{1 - \lambda} z_j^*)$$

$$\sum_{i} \ln(1+s_i) \geq \ln(1+\sum_{i} s_i)$$

$$\sum_{i} \ln(1+s_i) \geq \ln(1+\sum_{i} s_i)$$

This gives

$$\hat{f}(\frac{e}{n}) - \hat{f}(z)$$

$$\sum_{i} \ln(1+s_i) \geq \ln(1+\sum_{i} s_i)$$

This gives

$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_{i} \ln(1 + \frac{n\lambda}{1 - \lambda} z_j^*)$$

$$\sum_{i} \ln(1+s_i) \geq \ln(1+\sum_{i} s_i)$$

 $\geq \ln(1 + \frac{n\lambda}{1-\lambda})$

TI. . .

This gives
$$\hat{f}(\frac{e}{n}) - \hat{f}(z) = \sum_j \ln(1 + \frac{n\lambda}{1-\lambda}z_j^*)$$

αγ

$$\alpha r = \rho$$

$$\alpha r = \rho = ||z - e/n||$$

$$\alpha r = \rho = ||z - e/n|| = ||\lambda(z^* - e/n)||$$

$$\alpha r = \rho = ||z - e/n|| = ||\lambda(z^* - e/n)|| \le \lambda R$$

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here R is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here R is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R = \sqrt{(n-1)/n}.$$

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here R is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R=\sqrt{(n-1)/n}.$$
 Since $r=1/\sqrt{(n-1)n}$ we have $R/r=n-1$ and
$$\lambda \geq \alpha \frac{r}{R} \geq \alpha/(n-1)$$

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here R is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R=\sqrt{(n-1)/n}.$$
 Since $r=1/\sqrt{(n-1)n}$ we have $R/r=n-1$ and
$$\lambda \geq \alpha \frac{r}{R} \geq \alpha/(n-1)$$

Then

$$1 + n \frac{\lambda}{1 - \lambda}$$

In order to get further we need a bound on λ :

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here R is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R=\sqrt{(n-1)/n}.$$
 Since $r=1/\sqrt{(n-1)n}$ we have $R/r=n-1$ and
$$\lambda \geq \alpha \frac{r}{R} \geq \alpha/(n-1)$$

Then

$$1 + n \frac{\lambda}{1 - \lambda} \ge 1 + \frac{n\alpha}{n - \alpha - 1}$$

In order to get further we need a bound on λ :

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here R is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R=\sqrt{(n-1)/n}.$$
 Since $r=1/\sqrt{(n-1)n}$ we have $R/r=n-1$ and
$$\lambda \geq \alpha \frac{r}{R} \geq \alpha/(n-1)$$

Then

$$1 + n \frac{\lambda}{1 - \lambda} \ge 1 + \frac{n\alpha}{n - \alpha - 1} \ge 1 + \alpha$$

In order to get further we need a bound on λ :

$$\alpha r = \rho = \|z - e/n\| = \|\lambda(z^* - e/n)\| \le \lambda R$$

Here R is the radius of the ball around $\frac{e}{n}$ that contains the whole simplex.

$$R=\sqrt{(n-1)/n}.$$
 Since $r=1/\sqrt{(n-1)n}$ we have $R/r=n-1$ and
$$\lambda \geq \alpha \frac{r}{R} \geq \alpha/(n-1)$$

Then

$$1 + n \frac{\lambda}{1 - \lambda} \ge 1 + \frac{n\alpha}{n - \alpha - 1} \ge 1 + \alpha$$

This gives the lemma.

Lemma 42

If we choose $\alpha=1/4$ and $n\geq 4$ in Karmarkars algorithm the point \hat{x}_{new} satisfies

$$\hat{f}(\hat{x}_{\text{new}}) \leq \hat{f}(\frac{e}{n}) - \delta$$

with $\delta = 1/10$.

Define

$$g(\hat{x}) =$$

Define

$$g(\hat{x}) = n \ln \frac{\hat{c}^t \hat{x}}{\hat{c}^t \frac{e}{n}}$$

Define

$$\begin{split} g(\hat{x}) &= n \ln \frac{\hat{c}^t \hat{x}}{\hat{c}^t \frac{e}{n}} \\ &= n (\ln \hat{c}^t \hat{x} - \ln \hat{c}^t \frac{e}{n}) \ . \end{split}$$

Define

$$g(\hat{x}) = n \ln \frac{\hat{c}^t \hat{x}}{\hat{c}^t \frac{e}{n}}$$
$$= n(\ln \hat{c}^t \hat{x} - \ln \hat{c}^t \frac{e}{n}) .$$

This is the change in the cost part of the potential function when going from the center $\frac{e}{n}$ to the point \hat{x} in the transformed space.

Similar, the penalty when going from $\frac{e}{n}$ to w increases by

$$h(\hat{x}) = \operatorname{pen}(\hat{x}) - \operatorname{pen}(\frac{e}{n}) = -\sum_{j} \ln \frac{\hat{x}_{j}}{\frac{1}{n}}$$

where pen $(v) = -\sum_{j} \ln(v_j)$.

We want to derive a lower bound on

$$\hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}_{\text{new}})$$

We want to derive a lower bound on

$$\begin{split} \hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}_{\text{new}}) &= [\hat{f}(\frac{e}{n}) - \hat{f}(z)] \\ &+ h(z) \\ &- h(\hat{x}_{\text{new}}) \\ &+ [g(z) - g(\hat{x}_{\text{new}})] \end{split}$$

where z is the point in the ball where \hat{f} achieves its minimum.

We want to derive a lower bound on

$$\begin{split} \hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}_{\text{new}}) &= [\hat{f}(\frac{e}{n}) - \hat{f}(z)] \\ &+ h(z) \\ &- h(\hat{x}_{\text{new}}) \\ &+ [g(z) - g(\hat{x}_{\text{new}})] \end{split}$$

where z is the point in the ball where \hat{f} achieves its minimum.

We have

$$[\hat{f}(\frac{e}{n}) - \hat{f}(z)] \ge \ln(1 + \alpha)$$

by the previous lemma.

We have

$$[\hat{f}(\frac{e}{n}) - \hat{f}(z)] \ge \ln(1 + \alpha)$$

by the previous lemma.

We have

$$[g(z) - g(\hat{x}_{\text{new}})] \ge 0$$

since \hat{x}_{new} is the point with minimum cost in the ball, and g is monotonically increasing with cost.

We show that the change h(w) in penalty when going from e/n to w fulfills

$$|h(w)| \le \frac{\beta^2}{2(1-\beta)}$$

where $\beta = n\alpha r$ and w is some point in the ball $B(\frac{e}{n}, \alpha r)$.

We show that the change h(w) in penalty when going from e/n to w fulfills

$$|h(w)| \le \frac{\beta^2}{2(1-\beta)}$$

where $\beta = n\alpha r$ and w is some point in the ball $B(\frac{e}{n}, \alpha r)$.

Hence,

$$\hat{f}(\frac{e}{n}) - \hat{f}(\hat{x}_{\text{new}}) \ge \ln(1+\alpha) - \frac{\beta^2}{(1-\beta)}$$
.

Lemma 43

For $|x| \le \beta < 1$

$$|\ln(1+x)-x| \leq \frac{x^2}{2(1-\beta)} \ .$$

|h(w)|

$$|h(w)| = \left| \sum_{j} \ln \frac{w_j}{1/n} \right|$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right|$$

$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right|$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right|$$

$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right|$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right|$$

$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right|$$

$$= \left| \sum_{j} \left[\ln \left(1 + n(w_{j} - 1/n) \right) - n(w_{j} - 1/n) \right] \right|$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right|$$

$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right|$$

$$= \left| \sum_{j} \left[\ln \left(1 + n(w_{j} - 1/n) \right) - n(w_{j} - 1/n) \right] \right|$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right|$$

$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right|$$

$$= \left| \sum_{j} \left[\ln \left(1 + n \frac{s - 1}{m} \right) - n \frac{s - 1}{m} \right] \right|$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_{j}}{1/n} \right|$$

$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_{j} - 1/n)}{1/n} \right) - \sum_{j} n \left(w_{j} - \frac{1}{n} \right) \right|$$

$$= \left| \sum_{j} \left[\ln \left(1 + n(w_{j} - 1/n) \right) - n(w_{j} - 1/n) \right] \right|$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_j}{1/n} \right|$$

$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_j - 1/n)}{1/n} \right) - \sum_{j} n \left(w_j - \frac{1}{n} \right) \right|$$

$$= \left| \sum_{j} \left[\ln \left(1 + n(w_j - 1/n) \right) - n(w_j - 1/n) \right] \right|$$

$$\leq \sum_{j} \frac{n^2 (w_j - 1/n)^2}{2(1 - \alpha n r)}$$

$$|h(w)| = \left| \sum_{j} \ln \frac{w_j}{1/n} \right|$$

$$= \left| \sum_{j} \ln \left(\frac{1/n + (w_j - 1/n)}{1/n} \right) - \sum_{j} n \left(w_j - \frac{1}{n} \right) \right|$$

$$= \left| \sum_{j} \left[\ln \left(1 + n(w_j - 1/n) \right) - n(w_j - 1/n) \right] \right|$$

$$\leq \sum_{j} \frac{n^2 (w_j - 1/n)^2}{2(1 - \alpha n r)}$$

$$\leq \frac{(\alpha n r)^2}{2(1 - \alpha n r)}$$

The decrease in potential is therefore at least

$$\ln(1+\alpha) - \frac{\beta^2}{1-\beta}$$

with
$$\beta = n\alpha r = \alpha \sqrt{\frac{n}{n-1}}$$
.

It can be shown that this is at least $\frac{1}{10}$ for $n \ge 4$ and $\alpha = 1/4$.

The decrease in potential is therefore at least

$$\ln(1+\alpha) - \frac{\beta^2}{1-\beta}$$

with
$$\beta = n\alpha r = \alpha \sqrt{\frac{n}{n-1}}$$
.

It can be shown that this is at least $\frac{1}{10}$ for $n \ge 4$ and $\alpha = 1/4$.

Then $f(\bar{x}^{(k)}) \le f(e/n) - k/10$. This gives

$$n \ln \frac{e^{i \chi(t)}}{e^{i \frac{\pi}{n}}} \le \sum_{j} \ln \kappa_{j}^{(t)} - \sum_{j} \ln \frac{1}{n} - \kappa/10$$
$$\le n \ln n - \kappa/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{\varrho}{n}} \le e^{-\ell} \le 2^{-\ell}$$

Then
$$f(\bar{x}^{(k)}) \le f(e/n) - k/10$$
.

This gives

$$n \ln \frac{c(x^{(i)})}{c^{\frac{1}{2}} \frac{x^{(i)}}{n}} \le \sum_{j} \ln x_{j}^{(i)} - \sum_{j} \ln \frac{1}{n} - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le e^{-\ell} \le 2^{-\ell}$$

Then $f(\bar{x}^{(k)}) \leq f(e/n) - k/10$. This gives

$$n \ln \frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le \sum_j \ln \bar{x}_j^{(k)} - \sum_j \ln \frac{1}{n} - k/10$$

$$\le n \ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{\varrho}{n}} \le e^{-\ell} \le 2^{-\ell}$$

Then $f(\bar{x}^{(k)}) \leq f(e/n) - k/10$. This gives

$$n \ln \frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le \sum_j \ln \bar{x}_j^{(k)} - \sum_j \ln \frac{1}{n} - k/10$$

$$\le n \ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{\varrho}{n}} \le e^{-\ell} \le 2^{-\ell}$$

Then $f(\bar{x}^{(k)}) \le f(e/n) - k/10$. This gives

$$n \ln \frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le \sum_j \ln \bar{x}_j^{(k)} - \sum_j \ln \frac{1}{n} - k/10$$
$$\le n \ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{\varrho}{n}} \le e^{-\ell} \le 2^{-\ell}$$

Then $f(\bar{x}^{(k)}) \le f(e/n) - k/10$. This gives

$$n \ln \frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le \sum_j \ln \bar{x}_j^{(k)} - \sum_j \ln \frac{1}{n} - k/10$$
$$\le n \ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le e^{-\ell} \le 2^{-\ell} .$$

Let $\bar{x}^{(k)}$ be the current point after the k-th iteration, and let $\bar{x}^{(0)} = \frac{e}{n}$.

Then $f(\bar{x}^{(k)}) \le f(e/n) - k/10$. This gives

$$n \ln \frac{c^t \bar{x}^{(k)}}{c^t \frac{e}{n}} \le \sum_j \ln \bar{x}_j^{(k)} - \sum_j \ln \frac{1}{n} - k/10$$
$$\le n \ln n - k/10$$

Choosing $k = 10n(\ell + \ln n)$ with $\ell = \Theta(L)$ we get

$$\frac{c^t \bar{x}^{(k)}}{c^t \frac{\ell}{n}} \le e^{-\ell} \le 2^{-\ell} .$$

Hence, $\Theta(nL)$ iterations are sufficient. One iteration can be performed in time $\mathcal{O}(n^3)$.

Part III

Approximation Algorithms

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Definition 44

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying
- heuristics.
- It provides a metric to compare the difficulty of various
- optimization problems.
- Proving theorems may give a deeper theoretical
- understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Definition 45

An optimization problem P = (1, sol, m, goal) is in **NPO** if

- $x \in I$ can be decided in polynomial time
- ▶ $y \in sol(I)$ can be verified in polynomial time
- ightharpoonup m can be computed in polynomial time
- ▶ goal ∈ {min, max}

In other words: the decision problem is there a solution y with m(x,y) at most/at least z is in NP.

- x is problem instance
- y is candidate solution
- $m^*(x)$ cost/profit of an optimal solution

Definition 46 (Performance Ratio)

$$R(x,y) := \max \left\{ \frac{m(x,y)}{m^*(x)}, \frac{m^*(x)}{m(x,y)} \right\}$$

Definition 47 (γ -approximation)

An algorithm A is an γ -approximation algorithm iff

$$\forall x \in \mathcal{I} : R(x, A(x)) \le r$$
,

and A runs in polynomial time.

Definition 48 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as input $x\in\mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$R(x, y) \le 1 + \epsilon$$
.

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Definition 49 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as input $x\in\mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$R(x, y) \le 1 + \epsilon$$
.

The running time is polynomial in |x| and $1/\epsilon$.

approximation with arbitrary good factor... fast!

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Definition 50 (APX - approximable)

A problem P from NPO is in APX if there exist a constant $r \ge 1$ and an r-approximation algorithm for P.

constant factor approximation...

Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s. t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

Problems with polylogarithmic approximation guarantees

- Set Cover
- Minimum Multicut
- Sparsest Cut
- Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^c(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

There are really difficult problems!

Theorem 51

For any constant $\epsilon>0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P=NP.

Note that an n-approximation is trivial.

There are really difficult problems!

Theorem 51

For any constant $\epsilon>0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P=NP.

Note that an n-approximation is trivial.

There are really difficult problems!

Theorem 51

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

There are weird problems!

Asymmetric k-Center admits an $O(\log^* n)$ -approximation.

There is no $o(\log^* n)$ -approximation to Asymmetric k-Center unless $NP \subseteq DTIME(n^{\log\log\log n})$.

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits a 4-approximation.

One only says that a problem is APX-hard.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Definition 52

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 53

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Definition 52

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 53

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

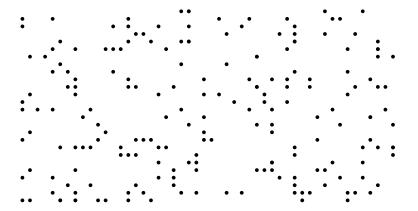
Note that solving Integer Programs in general is NP-complete!

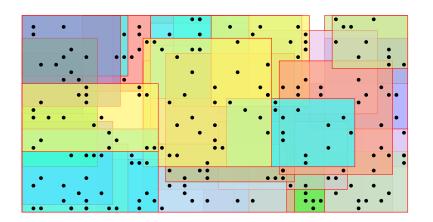
Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

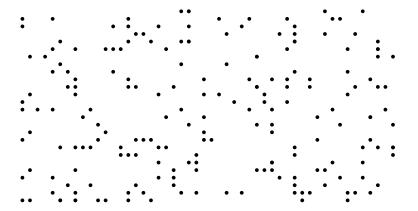
$$\forall u \in U \exists i \in I : u \in S_i$$
 (every element is covered)

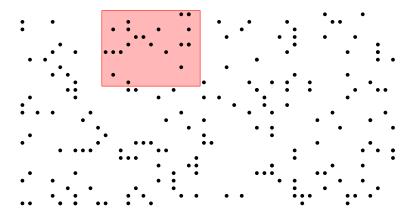
and

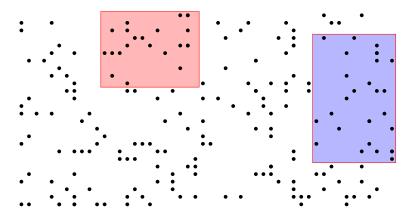
$$\sum_{i \in I} w_i$$
 is minimized.

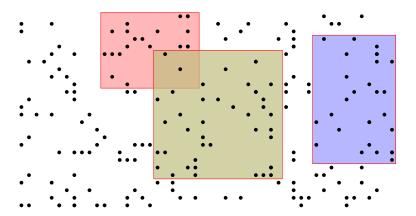


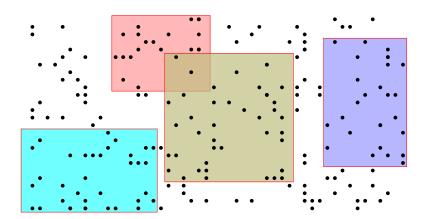


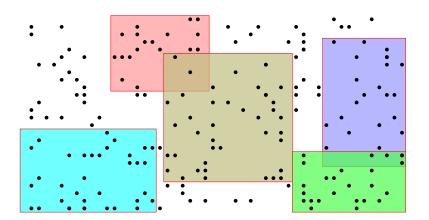


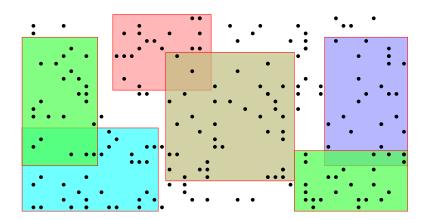


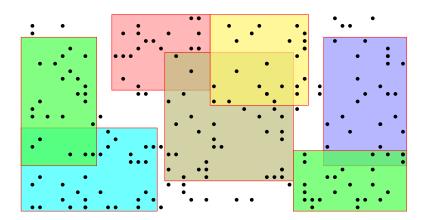


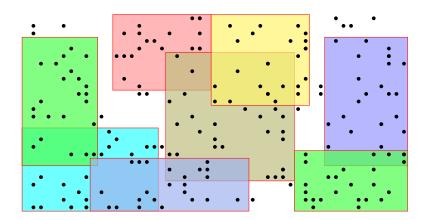


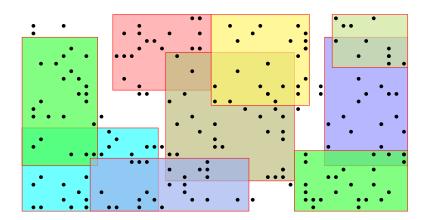


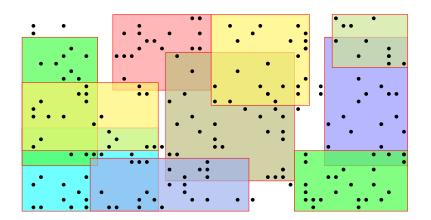


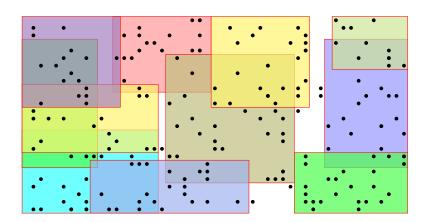


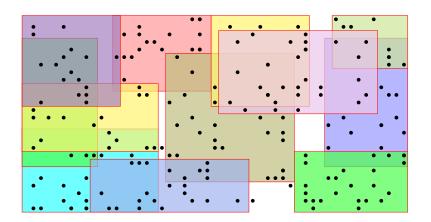


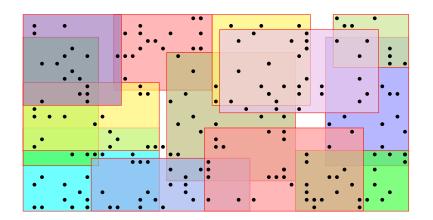


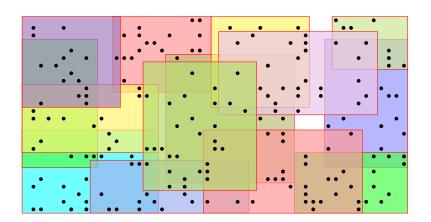












IP-Formulation of Set Cover

min		$\sum_i w_i x_i$		
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	≥	1
	$\forall i \in \{1, \ldots, k\}$	x_i	≥	0
	$\forall i \in \{1, \ldots, k\}$	x_i	integral	

Vertex Cover

Given a graph G = (V, E) and a weight w_v for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

IP-Formulation of Vertex Cover

min
$$\sum_{v \in V} w_v x_v$$
s.t. $\forall e = (i, j) \in E$ $x_i + x_j \ge 1$
$$\forall v \in V$$
 $x_v \in \{0, 1\}$

Maximum Weighted Matching

Given a graph G=(V,E), and a weight w_e for every edge $e\in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

Maximum Weighted Matching

Given a graph G = (V, E), and a weight w_e for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

Maximum Independent Set

Given a graph G=(V,E), and a weight w_v for every node $v\in V$. Find a subset $S\subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

$$\begin{array}{lll} \max & \sum_{v \in V} w_v x_v \\ \text{s.t.} & \forall e = (i,j) \in E & x_i + x_j & \leq & 1 \\ & \forall v \in V & x_v & \in & \{0,1\} \end{array}$$

Maximum Independent Set

Given a graph G=(V,E), and a weight w_v for every node $v\in V$. Find a subset $S\subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

Knapsack

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I \subseteq \{1,\ldots,n\}$ of items of total weight at most K such that the profit is maximized.

Knapsack

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I \subseteq \{1,\ldots,n\}$ of items of total weight at most K such that the profit is maximized.

max		$\sum_{i=1}^{n} p_i x_i$		
s.t.		$\sum_{i=1}^n w_i x_i$	\leq	K
	$\forall i \in \{1, \dots, n\}$	x_i	\in	{0,1}

Relaxations

Definition 54

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

Relaxations

Definition 54

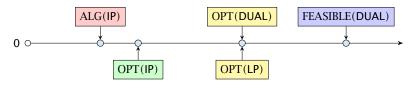
A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

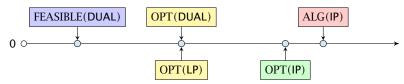
By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

Relations

Maximization Problems:



Minimization Problems:



We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{c|cccc} \min & & \sum_{i=1}^k w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i & \geq & 1 \\ & \forall i \in \{1,\dots,k\} & & x_i & \in & [0,1] \\ \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{|c|c|c|c|c|} \min & \sum_{i=1}^k w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i \geq 1 \\ & \forall i \in \{1,\dots,k\} & x_i \in [0,1] \\ \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{|c|c|c|c|c|}\hline \min & & \sum_{i=1}^k w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i & \geq & 1 \\ & \forall i \in \{1,\dots,k\} & x_i & \in & [0,1] \\ \hline \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 55

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered

Lemma 55

The rounding algorithm gives an f-approximation.

Lemma 55

The rounding algorithm gives an f-approximation.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

Lemma 55

The rounding algorithm gives an f-approximation.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

Lemma 55

The rounding algorithm gives an f-approximation.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

Lemma 55

The rounding algorithm gives an f-approximation.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

$$\sum_{i\in I} w_i$$

$$\sum_{i \in I} w_i \leq \sum_{i=1}^k w_i (f \cdot x_i)$$

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \text{cost}(x)$$

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$

$$= f \cdot \text{cost}(x)$$

$$\le f \cdot \text{OPT} .$$

Relaxation for Set Cover

Primal:

$$\min \sum_{i \in I} w_i x_i$$
s.t. $\forall u \sum_{i: u \in S_i} x_i \ge 1$

$$x_i \ge 0$$

Dual:

$$\max \sum_{u \in U} y_u$$
s.t. $\forall i \sum_{u:u \in S_i} y_u \leq w_i$

$$y_u \geq 0$$

Relaxation for Set Cover

Primal:

min
$$\sum_{i \in I} w_i x_i$$

s.t. $\forall u \quad \sum_{i:u \in S_i} x_i \ge 1$
 $x_i \ge 0$

Dual:

$$\max \sum_{u \in U} y_u$$
s.t. $\forall i \sum_{u:u \in S_i} y_u \le w_i$

$$y_u \ge 0$$

Relaxation for Set Cover

Primal:

min
$$\sum_{i \in I} w_i x_i$$

s.t. $\forall u \quad \sum_{i:u \in S_i} x_i \ge 1$
 $x_i \ge 0$

Dual:

$$\max_{\mathbf{s.t.}} \frac{\sum_{u \in U} y_u}{\sum_{u:u \in S_i} y_u \le w_i}$$

$$y_u \ge 0$$

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Lemma 56

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered

```
Suppose there is a u that is not covered
```

This means $\sum_{1 \le i \le S_i} y_{ii} < w_i$ for all sets S_i if

violating any constraint. This is a contradiction to the fact.

that the dual solution is optimal.

Lemma 56

The resulting index set is an f-approximation.

Proof:

Lemma 56

The resulting index set is an f-approximation.

Proof:

- Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 56

The resulting index set is an f-approximation.

Proof:

- Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 56

The resulting index set is an f-approximation.

Proof:

- ightharpoonup Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

$$\sum_{i\in I} w_i$$

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \operatorname{cost}(x^*)$$

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot OPT$$

$$I \subseteq I'$$
 .

$$I \subseteq I'$$
.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{T}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

$$I \subseteq I'$$
.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ▶ Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- \blacktriangleright Hence, the second algorithm will also choose S_i .

$$I \subseteq I'$$
.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- \blacktriangleright Hence, the second algorithm will also choose S_i .

$$I \subseteq I'$$
.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

```
The set I contains only sets for which the dual inequ
```


The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \cot(x^{*}) \le OPT$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \cot(x^{*}) \le OPT$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \cot(x^{*}) \le OPT$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

1: $y \leftarrow 0$

2: *I* ← Ø

3: while exists $u \notin \bigcup_{i \in I} S_i$ do

4: increase dual variable y_u until constraint for some new set S_ℓ becomes tight

5: $I \leftarrow I \cup \{\ell\}$

Algorithm 1 Greedy

Algorithm I Greedy

1:
$$I \leftarrow \emptyset$$
2: $\hat{S}_j \leftarrow S_j$ for all j
3: while I not a set cover do
4: $\ell \leftarrow \arg\min_{j:\hat{S}_j \neq 0} \frac{w_j}{|\hat{S}_j|}$
5: $I \leftarrow I \cup \{\ell\}$
6: $\hat{S}_j \leftarrow \hat{S}_j - S_\ell$ for all j

5:
$$I \leftarrow I \cup \{\ell\}$$

6:
$$\hat{S}_j \leftarrow \hat{S}_j - S_\ell$$
 for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Lemma 57

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ -th iteration

$$\frac{w_j}{|S_j|} = \frac{\sum_{j \in \text{OPT}} w_j}{\sum_{j \in \text{OPT}} |S_j|} = \frac{OPL}{\sum_{j \in \text{OPT}} |S_j|} = \frac{OPL}{n_{\mathcal{E}}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\mathrm{OPT}}{n_e}$.

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_e}$.

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_e}$.

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{j}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_e}$.

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_o}$.

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_o}$.

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\mathrm{OPT}}{n_\ell}.$

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\sum_{j\in I} w_j$$

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^{s} \frac{n_{\ell} - n_{\ell+1}}{n_{\ell}} \cdot \text{OPT}$$

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

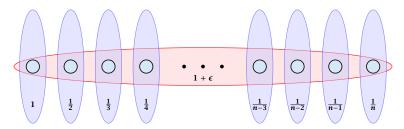
$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$= \text{OPT} \sum_{i=1}^k \frac{1}{i}$$

$$\begin{split} \sum_{j \in I} w_j &\leq \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT} \\ &\leq \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right) \\ &= \text{OPT} \sum_{i=1}^k \frac{1}{i} \\ &= H_n \cdot \text{OPT} \leq \text{OPT}(\ln n + 1) \ . \end{split}$$

A tight example:



Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_j uniformly at random with probability $1-x_j$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Pr[u not covered in one round]

Pr[u not covered in one round]

$$= \prod_{j: u \in S_j} (1-x_j)$$

$$Pr[u \text{ not covered in one round}]$$

$$= \prod_{j: u \in S_j} (1-x_j) \le \prod_{j: u \in S_j} e^{-x_j}$$

Pr[u not covered in one round]

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u \in S_j} x_j}$$

Pr[u not covered in one round]

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u \in S_j} x_j} \le e^{-1}.$$

$$\Pr[u \text{ not covered in one round}]$$

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$

$$= e^{-\sum_{j:u \in S_j} x_j} < e^{-1}$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{\varrho \ell}$$
.

= $Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$

= $Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$

 $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}]$

= $Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$

 $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$.

= $Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$

$$\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$$
.

Lemma 58

With high probability $O(\log n)$ rounds suffice.

=
$$\Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$$

$$\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$$
.

Lemma 58

With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1 - n^{-\alpha}$.

Proof: We have

$$\Pr[\#\text{rounds} \ge (\alpha + 1) \ln n] \le ne^{-(\alpha+1) \ln n} = n^{-\alpha}$$
.

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

E[cost]

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha}$$

Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Version B. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply repeat the whole process.

E[cost] =

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[\cos t] = \Pr[success] \cdot E[\cos t \mid success] + \Pr[no success] \cdot E[\cos t \mid no success]
```


Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success]$$

$$+ \Pr[no \ success] \cdot E[\cos t \mid no \ success]$$

This means

E[cost | success]

Version B.

Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success] \\ + \Pr[no \ success] \cdot E[\cos t \mid no \ success]$$

This means

$$= \frac{1}{\Pr[\mathsf{succ.}]} \left(E[\mathsf{cost}] - \Pr[\mathsf{no} \ \mathsf{success}] \cdot E[\mathsf{cost} \mid \mathsf{no} \ \mathsf{success}] \right)$$

Version B.

Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success] + \Pr[no success] \cdot E[\cos t \mid no success]$$

This means

$$E[\cos t \mid success]$$

$$= \frac{1}{\Pr[succ.]} (E[\cos t] - \Pr[no \ success] \cdot E[\cos t \mid no \ success])$$

$$\leq \frac{1}{\Pr[succ.]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \cos t(LP)$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success] + \Pr[no success] \cdot E[\cos t \mid no success]$$

This means

$$\begin{split} E[\cos t \mid & \mathsf{success}] \\ &= \frac{1}{\Pr[\mathsf{succ.}]} \Big(E[\cos t] - \Pr[\mathsf{no} \ \mathsf{success}] \cdot E[\cos t \mid \mathsf{no} \ \mathsf{success}] \Big) \\ &\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \mathsf{cost}(\mathsf{LP}) \\ &\leq 2(\alpha + 1) \ln n \cdot \mathsf{OPT} \end{split}$$

Version B.

Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success] + \Pr[no success] \cdot E[\cos t \mid no success]$$

This means

for $n \ge 2$ and $\alpha \ge 1$.

$$\begin{split} E[\cos t \mid & \mathsf{success}] \\ &= \frac{1}{\Pr[\mathsf{succ.}]} \Big(E[\cos t] - \Pr[\mathsf{no} \ \mathsf{success}] \cdot E[\cos t \mid \mathsf{no} \ \mathsf{success}] \Big) \\ &\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \mathsf{cost}(\mathsf{LP}) \\ &\leq 2(\alpha + 1) \ln n \cdot \mathsf{OPT} \end{split}$$

Randomized rounding gives an $O(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 59 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $poly(\log n)$)

Randomized rounding gives an $O(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 59 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\text{poly}(\log n)}$).

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n = 2^k 1$
- Elements are all vectors i over GF[2] of length k (excluding zero vector).
- ightharpoonup Every vector j defines a set as follows

$$S_{\boldsymbol{j}} := \{ \boldsymbol{i} \mid \boldsymbol{i} \cdot \boldsymbol{j} = 1 \}$$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_i = \frac{1}{2^{k-1}} = \frac{2}{n+1}$ is fractional solution.

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

Let for a given schedule C_j denote the finishing time of machine j, and let C_{\max} be the makespan.

Let C_{\max}^* denote the makespan of an optimal solution.

Clearly

$$C_{\max}^* \ge \max_j p_j$$

as the longest job needs to be scheduled somewhere.

Let for a given schedule C_j denote the finishing time of machine j, and let C_{\max} be the makespan.

Let C_{\max}^* denote the makespan of an optimal solution.

Clearly

$$C_{\max}^* \ge \max_j p_j$$

as the longest job needs to be scheduled somewhere.

Let for a given schedule C_j denote the finishing time of machine j, and let C_{\max} be the makespan.

Let C_{\max}^* denote the makespan of an optimal solution.

Clearly

$$C_{\max}^* \ge \max_j p_j$$

as the longest job needs to be scheduled somewhere.

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$.

Therefore

$$C_{\max}^* \ge \frac{1}{m} \sum_j p_j$$

The average work performed by a machine is $\frac{1}{m}\sum_{j}p_{j}$. Therefore,

$$C_{\max}^* \ge \frac{1}{m} \sum_j p_j$$

A local search algorithm successivley makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove

A local search algorithm successivley makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove

A local search algorithm successivley makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove

A local search algorithm successivley makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_ℓ , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_ℓ , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ} .

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0,S_\ell]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\delta} + \frac{1}{m} \sum_{j \in \mathcal{I}} p_{j} = (1 - \frac{1}{m}) p_{\delta} + \frac{1}{m} \sum_{j \in \mathcal{I}} p_{j} \leq (2 - \frac{1}{m}) C_{\max}^{s}$$

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ} .

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{i \neq j} p_{j} = (1 - \frac{1}{m})p_{\ell} + \frac{1}{m} \sum_{i} p_{j} \leq (2 - \frac{1}{m})C_{max}^{n}$$

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

$$p_{\ell} + \frac{1}{m} \sum_{i \neq j} p_j = (1 - \frac{1}{m})p_{\ell} + \frac{1}{m} \sum_i p_j = (2 - \frac{1}{m})C_{max}^*$$

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m\cdot S_{\ell}\leq \sum_{j\neq \ell}p_j$$
.

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

A Tight Example

$$p_{\ell} \approx S_{\ell} + \frac{S_{\ell}}{m-1}$$

$$\frac{ALG}{OPT} = \frac{S_{\ell} + p_{\ell}}{p_{\ell}} \approx \frac{2 + \frac{1}{m-1}}{1 + \frac{1}{m-1}} = 2 - \frac{1}{m}$$

$$p_{\ell}$$

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively

Consider processes in some order. Assign the i-th process to the least loaded machine.

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively

Consider processes in some order. Assign the \emph{i} -th process to the least loaded machine.

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

Lemma 60

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* .$$

$$> C_{\max}^*/3$$
.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* .$$

Hence, $p_n > C_{\text{max}}^*/3$.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* .$$

Hence, $p_n > C_{\text{max}}^* / 3$.

- ► This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3}C_{\max}^*.$$

Hence, $p_n > C_{\text{max}}^*/3$.

- ► This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- ► For such instances Longest-Processing-Time-First is optimal

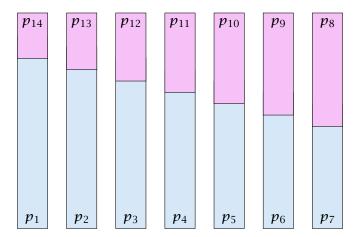
- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* .$$

Hence, $p_n > C_{\text{max}}^* / 3$.

- ► This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- ► For such instances Longest-Processing-Time-First is optimal.

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.



- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

Knapsack:

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1,\ldots,n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

```
\begin{array}{llll} \max & \sum_{i=1}^n p_i x_i \\ \text{s.t.} & \sum_{i=1}^n w_i x_i & \leq & W \\ & \forall i \in \{1,\dots,n\} & x_i & \in & \{0,1\} \end{array}
```


Knapsack:

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1,\ldots,n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).


```
Algorithm 1 Knapsack

1: A(1) \leftarrow [(0,0),(p_1,w_1)]
2: for j \leftarrow 2 to n do
3: A(j) \leftarrow A(j-1)
4: for each (p,w) \in A(j-1) do
5: if w + w_j \leq W then
6: add (p + p_j, w + w_j) to A(j)
7: remove dominated pairs from A(j)
8: return \max_{(p,w) \in A(n)} p
```

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

Definition 61

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

Let *M* be the maximum profit of an element.

- Let M be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.

- Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ▶ Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ▶ Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

- Let M be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ▶ Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

$$\mathcal{O}(nP')$$

- Let M be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ▶ Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

$$\mathcal{O}(nP') = \mathcal{O}\Big(n\sum_i p_i'\Big)$$

- Let M be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ▶ Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right)$$

- Let M be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ▶ Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i$$

$$\sum_{i \in S} p_i \geq \mu \sum_{i \in S} p'_i$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT}.$$

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

Partition the input into long jobs and short jobs.

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$p_\ell \leq \sum_j p_j/(mk)$$

which is at most C_{max}^*/k .

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 62

The above algorithm gives a polynomial time approximatior scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 62

The above algorithm gives a polynomial time approximatior scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 62

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m}\sum_j p_j$).

- ▶ A job is long if its size is larger than T/k.
- Otw. it is a short job.

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \ge \frac{1}{m} \sum_j p_j$).

- ▶ A job is long if its size is larger than T/k.
- Otw. it is a short job.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

- ▶ A job is long if its size is larger than T/k
- Otw. it is a short job.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

- ▶ A job is long if its size is larger than T/k.
- Otw. it is a short job.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- ▶ We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ▶ If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- ▶ We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

 $\left(1+\frac{1}{k}\right)T.$

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

$$\left(1+\frac{1}{k}\right)T$$
.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

$$\left(1+\frac{1}{k}\right)T$$
.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T .$$

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that

Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T .$$

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i\in\{k,\ldots,k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i\in\{k,\ldots,k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i\in\{k,\ldots,k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i\in\{k,\ldots,k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

 $OPT(n_1,\ldots,n_{k^2})$

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$OPT(n_1,\ldots,n_{k^2})$$

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ngeq 0 \\
& & \text{otw.}
\end{aligned}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Let $OPT(n_1,...,n_{k^2})$ be the number of machines that are required to schedule input vector $(n_1,...,n_{k^2})$ with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \text{otw.}
\end{aligned}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 63

There is no FPTAS for problems that are strongly NP-hard.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 63

There is no FPTAS for problems that are strongly NP-hard.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 63

There is no FPTAS for problems that are strongly NP-hard

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 63

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- ▶ We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ► Then

$$\mathsf{ALG} \le \left(1 + \frac{1}{k}\right)\mathsf{OPT} \le \mathsf{OPT} + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$\mathsf{ALG} \leq \left(1 + \frac{1}{k}\right)\mathsf{OPT} \leq \mathsf{OPT} + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$\mathsf{ALG} \leq \left(1 + \frac{1}{k}\right)\mathsf{OPT} \leq \mathsf{OPT} + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

More General

Let $OPT(n_1,...,n_A)$ be the number of machines that are required to schedule input vector $(n_1,...,n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \leq m$ we can schedule the input

$$OPT(n_1, \dots, n_A) = \begin{cases}
0 & (n_1, \dots, n_A) = 0 \\
1 + \min_{(s_1, \dots, s_A) \in C} OPT(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\
\infty & \text{otw.}
\end{cases}$$

where C is the set of all configurations

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

More General

Let $\mathrm{OPT}(n_1,\ldots,n_A)$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1,...,n_A) \leq m$ we can schedule the input.

$$\begin{aligned} & \mathsf{OPT}(n_1, \dots, n_A) \\ &= \left\{ \begin{array}{ll} 0 & (n_1, \dots, n_A) = 0 \\ 1 + \min_{(s_1, \dots, s_A) \in C} \mathsf{OPT}(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geqslant 0 \\ \infty & \mathsf{otw}. \end{array} \right. \end{aligned}$$

where C is the set of all configurations

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1,...,n_A) \leq m$ we can schedule the input.

$$\begin{aligned}
OPT(n_1, ..., n_A) &= \begin{cases}
0 & (n_1, ..., n_A) = 0 \\
1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \ge 0 \\
\infty & \text{otw.}
\end{aligned}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 64

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 64

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Proof

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i \quad ?$$

- We can solve this problem by setting s_i := 2b_i/B and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition

Proof

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i \quad ?$$

- ▶ We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence, such an algorithm can solve Partition

Proof

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i \quad ?$$

- ▶ We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition

Proof

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i \quad ?$$

- ▶ We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Definition 65

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon){\rm OPT}+c$ for minimization problems.

Definition 65

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon){\rm OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Definition 65

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon){\rm OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Again we can differentiate between small and large items.

Lemma 66

Again we can differentiate between small and large items.

Lemma 66

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, $r(1 \gamma) \le SIZE(I)$ where r is the number of nearly-full bins.
- ▶ This gives the lemma.

Again we can differentiate between small and large items.

Lemma 66

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, $r(1 y) \le SIZE(I)$ where r is the number of nearly-full bins.
- This gives the lemma.

Again we can differentiate between small and large items.

Lemma 66

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, $r(1 y) \le SIZE(I)$ where r is the number of nearly-full bins.
- This gives the lemma.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Linear Grouping:

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

Linear Grouping:

- Order large items according to size.
- ▶ Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

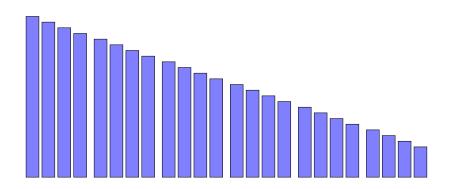
Linear Grouping:

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

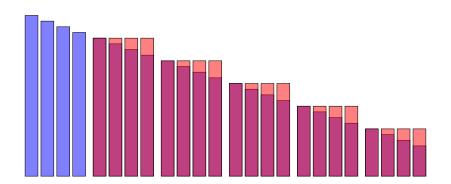
Linear Grouping:

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

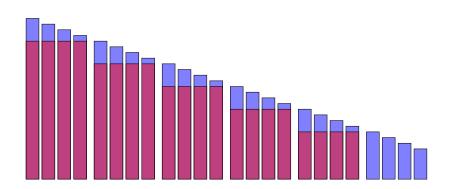
Linear Grouping



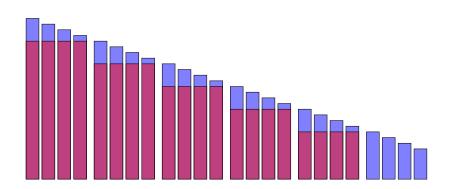
Linear Grouping



Linear Grouping



Linear Grouping



$$\mathrm{OPT}(I') \leq \mathrm{OPT}(I) \leq \mathrm{OPT}(I') + k$$

Proof 1:

Any bin packing for I gives a bin packing for I' as follows:

Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

Pack the items of groups 3, where in the packing for 7 the

items for group 2 have been packed;

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;
- **.** . . .

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

....

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;
- **.** . . .

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 2:

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

> ...

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 2:

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

> ...

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 2:

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

▶ ...

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 2:

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;
- **.**..

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

▶ running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$

We set $k = \lfloor \epsilon SIZE(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$\mathrm{OPT}(I') + k \leq \mathrm{OPT}(I) + \epsilon \mathrm{SIZE}(I) \leq (1+\epsilon)\mathrm{OPT}(I)$$
 ing time $\mathcal{O}((\frac{2}{\pi}n)^{4/\epsilon^2})$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

▶ running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)OPT(I)+1$$
.

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)OPT(I)+1$$
.

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1 + \epsilon)OPT(I) + 1$$
.

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- \triangleright s_2 is second largest size and b_2 number of pieces of size s_2
- · ...
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 :
- **.** . . .
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;

· ...

 \triangleright s_m smallest size and b_m number of pieces of size s_m .

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- **.**..
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- **...**
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i .

$$\sum_i t_i \cdot s_i \leq 1 \ .$$

We call a vector that fulfills the above constraint a configuration.

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

Let N be the number of configurations (exponential)

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

```
\begin{array}{llll} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ & \forall j \in \{1, \dots, N\} & x_j & \text{integral} \end{array}
```

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

```
\begin{array}{llll} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ & \forall j \in \{1, \dots, N\} & x_j & \text{integral} \end{array}
```

Let N be the number of configurations (exponential).

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

Let N be the number of configurations (exponential).

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

min		$\sum_{j=1}^{N} x_j$		
s.t.	$\forall i \in \{1 \dots m\}$	$\sum_{j=1}^{N} T_{ji} x_j$	≥	b_i
	$\forall j \in \{1, \dots, N\}$	x_{j}	≥	0
	$\forall j \in \{1, \dots, N\}$	x_j	integral	

How to solve this LP?

later...

We can assume that each item has size at least 1/SIZE(I).

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_r may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for $G_2, ..., G_{r-1}$
- ▶ Only the size of items in the last group G_r may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_r may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- Only the size of items in the last group G_r may sum up to less than 2.

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ▶ For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ► For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ► For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

- Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2
- ightharpoonup All items in a group have the same size in I'.

- ▶ Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- \blacktriangleright All items in a group have the same size in I'

- ▶ Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ▶ All items in a group have the same size in I'.

The total size of deleted items is at most $\mathcal{O}(\log(\text{SIZE}(I)))$.

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1}
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

- since the smallest piece has size at most $3/n_i$.
- ▶ Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{tr-1} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I)))$$

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{tr-1} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I)))$$

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{lr-1} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I)))$$

The total size of deleted items is at most $\mathcal{O}(\log(\text{SIZE}(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

$$\mathsf{OPT}_\mathsf{LP}(I_1) + \mathsf{OPT}_\mathsf{LP}(I_2) \le \mathsf{OPT}_\mathsf{LP}(I') \le \mathsf{OPT}_\mathsf{LP}(I)$$

Proof:

Each piece surviving in I' can be mapped to a piece in I of

HO lesser size. Hence, $Ur_{1}_{1}(t) \le Ur_{1}_{2}(t)$

 $\{x_j\}$ is feasible solution for t_1 (even integral)...

 $x_i - \lfloor x_i \rfloor$ is teasible solution for t_2 .

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- $\blacktriangleright [x_i]$ is feasible solution for I_1 (even integral).
- $\triangleright x_j \lfloor x_j \rfloor$ is feasible solution for I_2 .

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- ▶ $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $\triangleright x_j \lfloor x_j \rfloor$ is feasible solution for I_2 .

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- \triangleright $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $x_j \lfloor x_j \rfloor$ is feasible solution for I_2 .

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level

Pieces of type 2 summed over all recursion levels are packed into at most $\mathsf{OPT}_{\mathsf{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level

Pieces of type 2 summed over all recursion levels are packed into at most $\mathsf{OPT}_{\mathsf{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most ${
m OPT_{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$$

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{\text{original}})))$ in total.

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{\text{original}})))$ in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- ▶ The total size of items in I_2 can be at most $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{\text{original}})))$ in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- ▶ The total size of items in I_2 can be at most $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

How to solve the LP?

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

In total we have b_i pieces of size s_i .

Primal

Dual

```
\begin{array}{lll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i \leq 1 \\ & \forall i \in \{1, \dots, m\} & y_i \geq 0 \end{array}
```


How to solve the LP?

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

Dual

$$\begin{array}{lll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i \leq 1 \\ & \forall i \in \{1, \dots, m\} & y_i \geq 0 \end{array}$$

How to solve the LP?

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

$$\begin{array}{llll} \min & \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \end{array}$$

Dual

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, \dots, T_{jm})$ that

Suppose that I am given variable assignment \boldsymbol{y} for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, ..., T_{jm})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot s_i \le 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

Suppose that I am given variable assignment \boldsymbol{y} for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, \dots, T_{jm})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot s_i \leq 1 \ ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

Suppose that I am given variable assignment \boldsymbol{y} for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, \dots, T_{jm})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot s_i \leq 1 \ ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{lll} \max & \sum_{i=1}^m y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^m T_{ji} y_i \leq 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i \geq 0 \end{array}$$

Primal'

$$\begin{array}{lll} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ & \forall j \in \{1,\dots,N\} & x_j \geq 0 \end{array}$$

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & \mathbf{1} + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

Primal'

$$\begin{array}{llll} \min & (1+\epsilon') \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \end{array}$$

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal'

$$\begin{array}{lll} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ & \forall j \in \{1,\dots,N\} & x_j \geq 0 \end{array}$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used
- ▶ The optimum value for PRIMAL' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used
- ▶ The optimum value for PRIMAL' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

This gives that overall we need at most

$$(1 + \epsilon') \text{OPT}_{\text{LP}}(I) + \mathcal{O}(\log^2(\text{SIZE}(I)))$$

bins.

We can choose $\epsilon' = \frac{1}{\mathrm{OPT}}$ as $\mathrm{OPT} \leq \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

This gives that overall we need at most

$$(1 + \epsilon')$$
OPT_{LP} $(I) + \mathcal{O}(\log^2(SIZE(I)))$

bins.

We can choose $\epsilon' = \frac{1}{\text{OPT}}$ as $\text{OPT} \leq \#\text{items}$ and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

Lemma 71 (Chernoff Bounds)

Let $X_1, ..., X_n$ be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1 - \delta)L] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^L,$$

Lemma 72

For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \leq e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \leq e^{-L\delta^2/2}$$

Markovs Inequality:

Let \boldsymbol{X} be random variable taking non-negative values.

Then

$$\Pr[X \geq a] \leq \mathrm{E}[X]/a$$

Trivial

Markovs Inequality:

Let X be random variable taking non-negative values.

Then

$$\Pr[X \geq a] \leq \mathrm{E}[X]/a$$

Trivial!

Hence:

$$\Pr[X \ge (1+\delta)U] \le \frac{\mathrm{E}[X]}{(1+\delta)U}$$

Hence:

$$\Pr[X \geq (1+\delta)U] \leq \frac{\mathrm{E}[X]}{(1+\delta)U} \approx \frac{1}{1+\delta}$$

Hence:

$$\Pr[X \ge (1+\delta)U] \le \frac{\mathrm{E}[X]}{(1+\delta)U} \approx \frac{1}{1+\delta}$$

That's awfully weak:(

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Now, we apply Markov:

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathrm{E}[e^{tX}]}{\rho t(1+\delta)U} .$$

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Now, we apply Markov:

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}} \ .$$

This may be a lot better (!?)

$$E\left[e^{tX}\right]$$

$$E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right]$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right]$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathrm{E}\left[e^{tX_i}\right]$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$E\left[e^{tX_i}\right] = (1 - p_i) + p_i e^t$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1)$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right]$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right] \leq \prod_{i} e^{p_{i}(e^{t}-1)}$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$E[e^{tX_i}] = (1 - p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

$$\prod\nolimits_i \mathsf{E} \left[e^{tX_i} \right] \leq \prod\nolimits_i e^{p_i(e^t - 1)} = e^{\sum p_i(e^t - 1)}$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathrm{E}\left[e^{tX_i}\right] = (1-p_i) + p_i e^t = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$

$$\textstyle \prod_i \mathsf{E} \left[e^{tX_i} \right] \leq \prod_i e^{p_i(e^t-1)} = e^{\sum p_i(e^t-1)} = e^{(e^t-1)U}$$

$$\begin{split} \Pr[X \geq (1+\delta)U] &= \Pr[e^{tX} \geq e^{t(1+\delta)U}] \\ &\leq \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}} \end{split}$$

$$\begin{split} \Pr[X \geq (1+\delta)U] &= \Pr[e^{tX} \geq e^{t(1+\delta)U}] \\ &\leq \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}} \leq \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}} \end{split}$$

$$\begin{split} \Pr[X \geq (1+\delta)U] &= \Pr[e^{tX} \geq e^{t(1+\delta)U}] \\ &\leq \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}} \leq \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}} \end{split}$$

We choose $t = \ln(1 + \delta)$.

$$\begin{aligned} \Pr[X \geq (1+\delta)U] &= \Pr[e^{tX} \geq e^{t(1+\delta)U}] \\ &\leq \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}} \leq \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}} \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \end{aligned}$$

We choose $t = \ln(1 + \delta)$.

Lemma 73

For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^{2}/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \leq e^{-U\delta^2/3}$$

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \leq e^{-U\delta^2/3}$$

Take logarithms:

$$U(\delta - (1 + \delta) \ln(1 + \delta)) \le -U\delta^2/3$$

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \leq e^{-U\delta^2/3}$$

Take logarithms:

$$U(\delta - (1+\delta)\ln(1+\delta)) \le -U\delta^2/3$$

True for $\delta = 0$.

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \leq e^{-U\delta^2/3}$$

Take logarithms:

$$U(\delta - (1 + \delta)\ln(1 + \delta)) \le -U\delta^2/3$$

True for $\delta = 0$. Divide by U and take derivatives:

$$-\ln(1+\delta) \le -2\delta/3$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

$$f(0) = 0$$
 and $f(1) = -\ln(2) + 2/3 < 0$

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta/3}$$

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta/3}$$

Take logarithms:

$$U(\delta - (1 + \delta) \ln(1 + \delta)) \le -U\delta/3$$

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta/3}$$

Take logarithms:

$$U(\delta - (1 + \delta) \ln(1 + \delta)) \le -U\delta/3$$

True for $\delta = 0$.

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta/3}$$

Take logarithms:

$$U(\delta - (1 + \delta) \ln(1 + \delta)) \le -U\delta/3$$

True for $\delta = 0$. Divide by U and take derivatives:

$$-\ln(1+\delta) \le -1/3 \iff \ln(1+\delta) \ge 1/3$$
 (true)

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \leq e^{-L\delta^2/2}$$

Take logarithms:

$$L(-\delta - (1 - \delta)\ln(1 - \delta)) \le -L\delta^2/2$$

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Take logarithms:

$$L(-\delta - (1 - \delta)\ln(1 - \delta)) \le -L\delta^2/2$$

True for $\delta = 0$.

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \leq e^{-L\delta^2/2}$$

Take logarithms:

$$L(-\delta - (1 - \delta)\ln(1 - \delta)) \le -L\delta^2/2$$

True for $\delta = 0$. Divide by L and take derivatives:

$$ln(1-\delta) \leq -\delta$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$$\ln(1-\delta) \le -\delta$$

$$\ln(1-\delta) \le -\delta$$

True for $\delta = 0$.

$$\ln(1-\delta) \le -\delta$$

True for $\delta = 0$. Take derivatives:

$$-\frac{1}{1-\delta} \leq -1$$

$$\ln(1-\delta) \le -\delta$$

True for $\delta = 0$. Take derivatives:

$$-\frac{1}{1-\delta} \leq -1$$

This holds for $0 \le \delta < 1$.

- Given s_i - t_i pairs in a graph.
- Connect each pair by a path such that not too many path use any given edge.

min
$$W$$
s.t. $\forall i \quad \sum_{p \in \mathcal{P}_i} x_p = 1$

$$\sum_{p:e \in p} x_p \leq W$$

$$x_p \in \{0,1\}$$

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_i at random according to the probability distribution given by the Linear Programming solution.

Theorem 74

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Theorem 75

With probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + c \ln n$.

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

$$E[Y_e] = \sum_{i} \sum_{p \in P(e) \in p} x_p^p = \sum_{p \in e} x_p^p \le W^*$$

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

$$\mathrm{E}(Y_{p}) = \sum_{l} \sum_{p \in \mathcal{P}_{p} = p} x_{p}^{p} = \sum_{p \in \mathcal{P}_{p}} x_{p}^{p} \leq W^{p}$$

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

$$E[Y_e] = \sum_{i} \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

$$E[Y_e] = \sum_{i} \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

$$E[Y_e] = \sum_i \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

Choose
$$\delta = \sqrt{(c \ln n)/W^*}$$
.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

Integer Multicommodity Flows

Choose
$$\delta = \sqrt{(c \ln n)/W^*}$$
.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

- n Boolean variables
- ▶ m clauses $C_1, ..., C_m$. For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

- n Boolean variables
- ▶ m clauses $C_1, ..., C_m$. For example

$$C_7=x_3\vee\bar{x}_5\vee\bar{x}_9$$

- Non-negative weight w_j for each clause C_j .
- ► Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

- n Boolean variables
- ▶ m clauses $C_1, ..., C_m$. For example

$$C_7=x_3\vee\bar{x}_5\vee\bar{x}_9$$

- Non-negative weight w_j for each clause C_j .
- ► Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

- n Boolean variables
- ▶ m clauses $C_1, ..., C_m$. For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_i$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- ► Clauses of length one are called unit clauses

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_i$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- ► Clauses of length one are called unit clauses

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_i$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Define random variable X_j with

$$X_j = \left\{ egin{array}{ll} 1 & \mbox{if } C_j \ \mbox{satisfied} \ 0 & \mbox{otw.} \end{array}
ight.$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

Define random variable X_i with

$$X_j = \left\{ egin{array}{ll} 1 & \mbox{if } C_j \ \mbox{satisfied} \ 0 & \mbox{otw.} \end{array}
ight.$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

E[W]

$$E[W] = \sum_j w_j E[X_j]$$

$$\begin{split} E[W] &= \sum_{j} w_{j} E[X_{j}] \\ &= \sum_{j} w_{j} \text{Pr}[C_{j} \text{ is satisified}] \end{split}$$

$$\begin{split} E[W] &= \sum_{j} w_{j} E[X_{j}] \\ &= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}] \\ &= \sum_{j} w_{j} \Big(1 - \Big(\frac{1}{2}\Big)^{\ell_{j}}\Big) \end{split}$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

$$= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$$

$$\geq \frac{1}{2} \sum_{j} w_{j}$$

$$\begin{split} E[W] &= \sum_{j} w_{j} E[X_{j}] \\ &= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}] \\ &= \sum_{j} w_{j} \Big(1 - \Big(\frac{1}{2}\Big)^{\ell_{j}}\Big) \\ &\geq \frac{1}{2} \sum_{j} w_{j} \\ &\geq \frac{1}{2} \text{OPT} \end{split}$$

MAXSAT: LP formulation

Let for a clause C_j , P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{j \in P_j} x_i \vee \bigvee_{j \in N_j} \bar{x}_i$$

MAXSAT: LP formulation

Let for a clause C_j , P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{j \in P_j} x_i \vee \bigvee_{j \in N_j} \bar{x}_i$$

MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

Lemma 76 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 78

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b . Then

$$f(\lambda) = f((1 - \lambda)(0 + \lambda))$$

$$= (1 - \lambda)f(0) + \lambda f(1)$$

for $\lambda \in [0,1]$

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 78

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda) f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 78

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

for $\lambda \in [0,1]$.

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 78

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

 $Pr[C_j \text{ not satisfied}]$

$$Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$

$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_i} (1 - y_i) + \sum_{i \in N_i} y_i \right) \right]^{\ell_j}$$

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_i} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \end{split}$$

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \\ &\leq \left(1 - \frac{z_j}{\ell_j} \right)^{\ell_j} \end{split}.$$

The function $f(z)=1-(1-\frac{z}{\ell})^{\ell}$ is concave. Hence,

 $Pr[C_j \text{ satisfied}]$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j.$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j.$$

$$f''(z)=-rac{\ell-1}{\ell}\Big[1-rac{z}{\ell}\Big]^{\ell-2}\leq 0$$
 for $z\in[0,1].$ Therefore, f is concave.

E[W]

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}} \right)^{\ell_{j}} \right]$$

$$\begin{split} E[W] &= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}] \\ &\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}} \right)^{\ell_{j}} \right] \\ &\geq \left(1 - \frac{1}{\rho} \right) \text{OPT }. \end{split}$$

MAXSAT: The better of two

Theorem 79

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

 $E[\max\{W_1, W_2\}]$

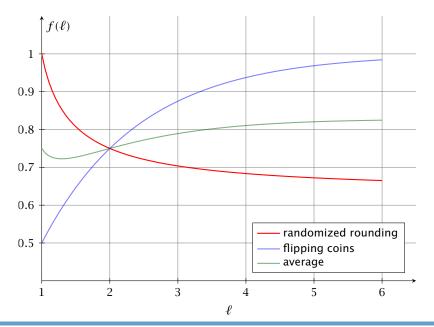
$$E[\max\{W_1, W_2\}]$$

 $\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2]$

$$\begin{split} E[\max\{W_{1}, W_{2}\}] \\ &\geq E[\frac{1}{2}W_{1} + \frac{1}{2}W_{2}] \\ &\geq \frac{1}{2} \sum_{i} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right] + \frac{1}{2} \sum_{i} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right) \end{split}$$

$$\begin{split} E[\max\{W_1,W_2\}] \\ &\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ &\geq \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right) \\ &\geq \sum_j w_j z_j \left[\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)\right] \\ &\geq \frac{3}{4} \text{for all integers} \end{split}$$

$$\begin{split} E[\max\{W_1,W_2\}] \\ &\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ &\geq \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right) \\ &\geq \sum_j w_j z_j \left[\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)\right] \\ &\geq \frac{3}{4} \text{for all integers} \\ &\geq \frac{3}{4} \text{OPT} \end{split}$$



So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(y_i)$.

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(y_i)$.

Let
$$f:[0,1] \rightarrow [0,1]$$
 be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x - 1}$$

Theorem 80

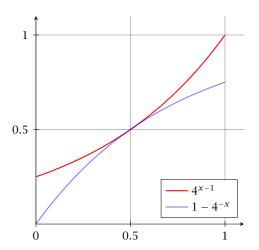
Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

Let $f:[0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x - 1}$$

Theorem 80

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.



 $Pr[C_j \text{ not satisfied}]$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \end{split}$$

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \end{split}$$

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &< 4^{-z_j} \end{split}$$

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence, $\Pr[C_j \text{ satisfied}]$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j}$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

E[W]

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{i} w_{j} \Pr[C_{j} \text{ satisfied}]$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j}$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 81 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 81 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 81 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 81 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 81 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Lemma 82

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set
- $z_1 = z_2 = z_3 = z_4 = 1$
- ▶ hence, the LP has value 4

Lemma 82

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- hence, the LP has value 4.

Primal Relaxation:

$$\begin{bmatrix} \min & \sum_{i=1}^k w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i \geq 1 \\ & \forall i \in \{1, \dots, k\} & x_i \geq 0 \end{bmatrix}$$

Dual Formulation:

Primal Relaxation:

Dual Formulation:

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element e that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element e that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element e that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element e that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Analysis:

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

$$\sum_{j} w_{j}$$

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

$$\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e}$$

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

$$\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

$$\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e} \le f \cdot \sum_{e} y_{e} \le f \cdot \text{OPT}$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j:e \in S_i} x_j = 1$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{i:e \in S_i} x_j \le f$$

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j: e \in S_i} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

Suppose we have a primal/dual pair

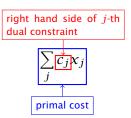
Suppose we have a primal/dual pair

and solutions that fulfill approximate slackness conditions:

$$x_j > 0 \Rightarrow \sum_i a_{ij} y_i \ge \frac{1}{\alpha} c_j$$

 $y_i > 0 \Rightarrow \sum_j a_{ij} x_j \le \beta b_i$

$$\sum_{j} c_{j} x_{j}$$



$$\frac{\sum_{j} c_{j} x_{j}}{\uparrow} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$
primal cost

$$\frac{\sum_{j} c_{j} x_{j}}{\uparrow} \leq \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$

$$\uparrow$$

$$primal cost} = \alpha \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$

$$\sum_{j} c_{j} x_{j} \le \alpha \sum_{j} \left(\sum_{i} a_{ij} y_{i} \right) x_{j}$$

$$\xrightarrow{\text{primal cost}} \alpha \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$

$$\le \alpha \beta \cdot \sum_{i} b_{i} y_{i}$$

Feedback Vertex Set for Undirected Graphs

▶ Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.

Feedback Vertex Set for Undirected Graphs

- ▶ Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.
- Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

Each vertex can be viewed as a set that contains some cycles.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- ▶ The $O(\log n)$ -approximation for Set Cover does not help us to get a good solution.

Let *C* denote the set of all cycles (where a cycle is identified by its set of vertices)

Let *C* denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

$$\begin{array}{c|cccc}
\min & \sum_{v} w_{v} x_{v} \\
\text{s.t.} & \forall C \in C & \sum_{v \in C} x_{v} \geq 1 \\
& \forall v & x_{v} \geq 0
\end{array}$$

Dual Formulation:

• Start with x = 0 and y = 0

- Start with x = 0 and y = 0
- ▶ While there is a cycle *C* that is not covered (does not contain a chosen vertex).

- Start with x = 0 and y = 0
- ▶ While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.

- Start with x = 0 and y = 0
- ▶ While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.
 - ightharpoonup set $x_v = 1$.

$$\sum_{v} w_{v} x_{v}$$

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C: v \in C} y_{C} x_{v}$$

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$

where S is the set of vertices we choose.

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$

$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$

$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C: v \in C} y_{C} x_{v}$$

$$= \sum_{v \in S} \sum_{C: v \in C} y_{C}$$

$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

Algorithm 1 FeedbackVertexSet

- 1: $y \leftarrow 0$
- 2: *x* ← 0
- 3: while exists cycle C in G do
- 4: increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$
- 5: $x_v = 1$
- 6: remove v from G
- 7: repeatedly remove vertices of degree 1 from G

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Theorem 83

In any graph with no vertices of degree 1, there always exists a cycle that has at most $O(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$y_C > 0 \Rightarrow |S \cap C| \leq \mathcal{O}(\log n)$$
.

Given a graph G=(V,E) with two nodes $s,t\in V$ and edge-weights $c:E\to\mathbb{R}^+$ find a shortest path between s and t w.r.t. edge-weights c.

Given a graph G=(V,E) with two nodes $s,t\in V$ and edge-weights $c:E\to\mathbb{R}^+$ find a shortest path between s and t w.r.t. edge-weights c.

$$\begin{array}{|c|c|c|}\hline \min & \sum_{e} c(e) x_e \\ \text{s.t.} & \forall S \in S & \sum_{e:\delta(S)} x_e & \geq & 1 \\ & \forall e \in E & x_e & \in & \{0,1\} \end{array}$$

The Dual:

The Dual:

$$\begin{array}{cccc} \max & \sum_{S} y_{S} \\ \text{s.t.} & \forall e \in E & \sum_{S:e \in \delta(S)} y_{S} \leq c(e) \\ & \forall S \in S & y_{S} \geq 0 \end{array}$$

We can interpret the value y_S as the width of a moat surrounding the set S.

Each set can have its own moat but all moats must be disjoint

An edge cannot be shorter than all the moats that it has to cross.

We can interpret the value y_S as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross

We can interpret the value y_S as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

We can interpret the value y_S as the width of a moat surrounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

Algorithm 1 PrimalDualShortestPath

1: $\gamma \leftarrow 0$

3: **while** there is no s-t path in (V, F) **do**

Let C be the connected component of (V,F) containing s

5: Increase γ_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e'\in\delta(S)}y_S=c(e')$. 6: $F\leftarrow F\cup\{e'\}$

7: Let P be an s-t path in (V, F)

8: return P

Lemma 84

At each point in time the set F forms a tree.

Proof:

in each iteration we take the current connected components from (V,E) that contains s (call this component C) and added

some edge from $\delta(C)$ to F.

Since, at most one end-point of the new edge is in C the

edge cannot close a cycle

Lemma 84

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V,F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- ▶ Since, at most one end-point of the new edge is in *C* the edge cannot close a cycle.

Lemma 84

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V,F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

$$\sum_{e \in P} c(e)$$

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$

$$\begin{split} \sum_{e \in P} c(e) &= \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S \\ &= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S \ . \end{split}$$

$$\begin{split} \sum_{e \in P} c(e) &= \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S \\ &= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S \end{split} .$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \leq \mathsf{OPT}$$

by weak duality.

$$\begin{split} \sum_{e \in P} c(e) &= \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S \\ &= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S \end{split} .$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le \text{OPT}$$

by weak duality.

Hence, we find a shortest path.

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

Steiner Forest Problem:

Given a graph G=(V,E), together with source-target pairs $s_i,t_i,i=1,\ldots,k$, and a cost function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that for every $i\in\{1,\ldots,k\}$ there is a path between s_i and t_i only using edges in F.

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$

Steiner Forest Problem:

Given a graph G=(V,E), together with source-target pairs $s_i,t_i,i=1,\ldots,k$, and a cost function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that for every $i\in\{1,\ldots,k\}$ there is a path between s_i and t_i only using edges in F.

$$\begin{array}{lll} \min & \sum_{e} c(e) x_e \\ \text{s.t.} & \forall S \subseteq V : S \in S_i \text{ for some } i & \sum_{e \in \delta(S)} x_e & \geq & 1 \\ & \forall e \in E & x_e & \in & \{0,1\} \end{array}$$

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

Steiner Forest Problem:

Given a graph G=(V,E), together with source-target pairs $s_i,t_i,i=1,\ldots,k$, and a cost function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that for every $i\in\{1,\ldots,k\}$ there is a path between s_i and t_i only using edges in F.

$$\begin{array}{lll} \min & \sum_{e} c(e) x_e \\ \text{s.t.} & \forall S \subseteq V : S \in S_i \text{ for some } i & \sum_{e \in \delta(S)} x_e & \geq & 1 \\ & \forall e \in E & x_e & \in & \{0,1\} \end{array}$$

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

Algorithm 1 FirstTry

- 1: $\gamma \leftarrow 0$
- 2: *F* ← Ø
- 3: **while** not all s_i - t_i pairs connected in F **do**
- Let C be some connected component of (V,F)such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- 5: Increase y_C until there is an edge $e' \in \delta(C)$ s.t.
- $\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$ 6: $F \leftarrow F \cup \{e'\}$
- 7: **return** $\bigcup_i P_i$

$$\sum_{e \in F} c(e)$$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S$$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

However, this is not true:

▶ Take a complete graph on k+1 vertices v_0, v_1, \ldots, v_k .

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

- ▶ Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.
- ▶ The *i*-th pair is v_0 - v_i .

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

- ▶ Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.
- ▶ The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

- ▶ Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.
- ▶ The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

- ▶ Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.
- ▶ The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- ▶ The final set F contains all edges $\{v_0, v_i\}$, i = 1, ..., k.

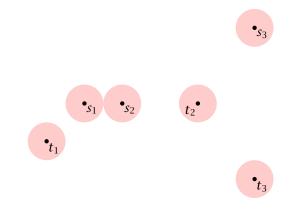
$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S \ .$$

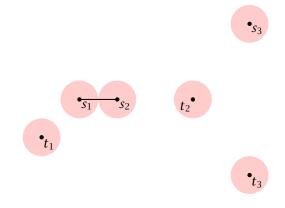
- ▶ Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.
- ▶ The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- ▶ The final set F contains all edges $\{v_0, v_i\}$, i = 1, ..., k.
- $y_{\{v_0\}} > 0$ but $|\delta(\{v_0\}) \cap F| = k$.

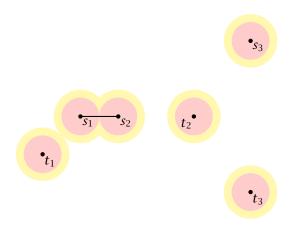
Algorithm 1 SecondTry

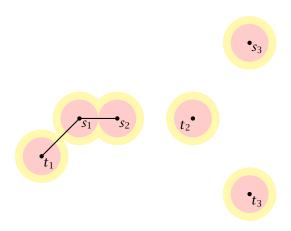
- 1: $y \leftarrow 0$; $F \leftarrow \emptyset$; $\ell \leftarrow 0$
- 2: **while** not all s_i - t_i pairs connected in F **do**
- 3: $\ell \leftarrow \ell + 1$
- 4: Let C be set of all connected components C of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.
- Increase y_C for all $C \in C$ uniformly until for some edge $e_\ell \in \delta(C')$, $C' \in C$ s.t. $\sum_{S:e_\ell \in \delta(S)} y_S = c_{e_\ell}$
- 6: $F \leftarrow F \cup \{e_{\ell}\}$
- 7: $F' \leftarrow F$
- 8: **for** $k \leftarrow \ell$ downto 1 **do** // reverse deletion
- 9: **if** $F' e_k$ is feasible solution **then**
- 10: remove e_k from F'
- 11: return F'

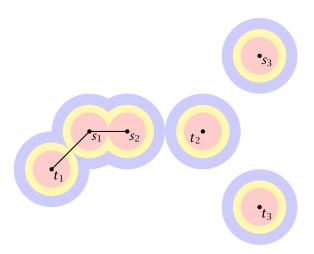
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

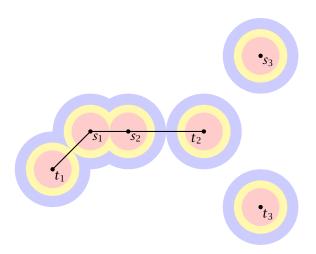


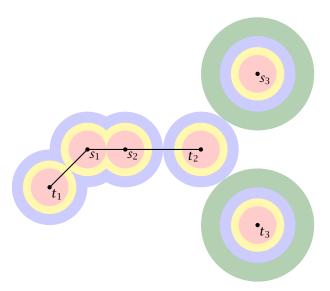


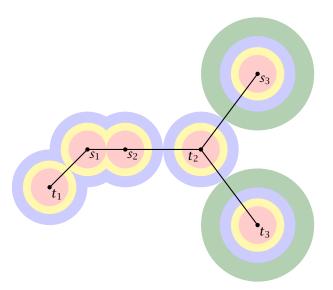


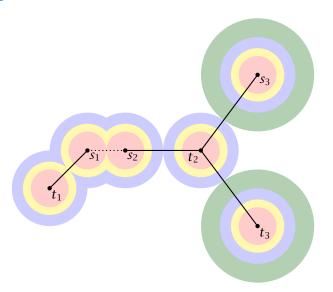












Lemma 85

For any C in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \leq 2|C|$$

This means that the number of times a moat from C is crossed in the final solution is at most twice the number of moats.

Proof: later ...

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| \cdot y_S .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

In the i-th iteration the increase of the left-hand side is

$$e \sum_{C \in C} |F' \cap \delta(C)|$$

- and the increase of the right hand side is $2\varepsilon|C|$.
- Hence, by the previous lemma the inequality holds after there
 - iteration if it holds in the beginning of the iteration

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| + y_S.$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

In the i-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

Hence, by the previous lemma the inequality holds after the transfer of the transfer.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S \ .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

In the i-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\varepsilon|C|$.

Hence, by the previous lemma the inequality holds after thee

iteration if it holds in the beginning of the iteration

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S \ .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S \ .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

In the i-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

► Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S \ .$$

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

In the i-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

► Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

For any set of connected components \mathcal{C} in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|C|$$

For any set of connected components \mathcal{C} in any iteration of the algorithm

$$\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|$$

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. e_i is the set we add to F. Let F_i be the set of edges in F at the beginning of the iteration.
- $\blacktriangleright \text{ Let } H = F' F_i.$
- ▶ All edges in *H* are necessary for the solution.

For any set of connected components $\mathcal C$ in any iteration of the algorithm

$$\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|$$

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. e_i is the set we add to F. Let F_i be the set of edges in F at the beginning of the iteration.
- $\blacktriangleright \text{ Let } H = F' F_i.$
- All edges in H are necessary for the solution.

For any set of connected components $\mathcal C$ in any iteration of the algorithm

$$\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|$$

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. e_i is the set we add to F. Let F_i be the set of edges in F at the beginning of the iteration.
- ▶ Let $H = F' F_i$.
- ▶ All edges in *H* are necessary for the solution

For any set of connected components ${\cal C}$ in any iteration of the algorithm

$$\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|$$

- At any point during the algorithm the set of edges forms a forest (why?).
- ► Fix iteration *i*. *e*^{*i*} is the set we add to *F*. Let *F*^{*i*} be the set of edges in *F* at the beginning of the iteration.
- ▶ Let $H = F' F_i$.
- All edges in H are necessary for the solution.

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest
- Color a vertex $v \in V'$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

- ▶ Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

▶ Suppose that no node in *B* has degree one.

- ▶ Suppose that no node in *B* has degree one.
- Then

- ▶ Suppose that no node in *B* has degree one.
- Then

$$\sum_{v \in R} \deg(v)$$

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B|$$

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

Every blue vertex with non-zero degree must have degree at least two.

- Suppose that no node in B has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - ▶ Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.

- ▶ Suppose that no node in *B* has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - ▶ But this means that the cluster corresponding to *b* must separate a source-target pair.

- ▶ Suppose that no node in *B* has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.
 - But then it must be a red node.

Shortest Path

$$\begin{array}{llll} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S & \sum_{e:\delta(S)} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \in & \{0,1\} \end{array}$$

S is the set of subsets that separate s from t.

The Dual:

max
$$\sum_{S} y_{S}$$

s.t. $\forall e \in E$ $\sum_{S:e \in \delta(S)} y_{S} \leq c(e)$
 $\forall S \in S$ $y_{S} \geq 0$

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

Shortest Path

$$\begin{array}{llll} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S & \sum_{e:\delta(S)} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \geq & 0 \end{array}$$

S is the set of subsets that separate s from t.

The Dual:

max
$$\sum_{S} y_{S}$$

s.t. $\forall e \in E$ $\sum_{S:e \in \delta(S)} y_{S} \leq c(e)$
 $\forall S \in S$ $y_{S} \geq 0$

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

Shortest Path

$$\begin{array}{c|cccc} \min & & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S & \sum_{e:\delta(S)} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \geq & 0 \end{array}$$

S is the set of subsets that separate s from t.

The Dual:

max
$$\sum_{S} y_{S}$$

s.t. $\forall e \in E$ $\sum_{S:e \in \delta(S)} y_{S} \leq c(e)$
 $\forall S \in S$ $y_{S} \geq 0$

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

Minimum Cut

$$\begin{array}{lllll} \min & & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall P \in \mathcal{P} & \sum_{e \in P} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \in & \{0,1\} \end{array}$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

max
$$\sum_{P} y_{P}$$

s.t. $\forall e \in E \quad \sum_{P:e \in P} y_{P} \leq c(e)$
 $\forall P \in P \quad y_{P} \geq 0$

Minimum Cut

$$\begin{array}{c|cccc} \min & & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall P \in \mathcal{P} & \sum_{e \in P} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \geq & 0 \end{array}$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

max
$$\sum_{P} y_{P}$$

s.t. $\forall e \in E$ $\sum_{P:e \in P} y_{P} \leq c(e)$
 $\forall P \in P$ $y_{P} \geq 0$

Minimum Cut

$$\begin{array}{lll} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall P \in \mathcal{P} & \sum_{e \in P} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \geq & 0 \end{array}$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

max
$$\sum_{P} y_{P}$$

s.t. $\forall e \in E$ $\sum_{P:e \in P} y_{P} \leq c(e)$
 $\forall P \in P$ $y_{P} \geq 0$

Minimum Cut

$$\begin{array}{|c|c|c|c|}\hline \min & & \sum_{e} c(e) \ell_{e} \\ \text{s.t.} & \forall P \in \mathcal{P} & \sum_{e \in P} \ell_{e} & \geq & 1 \\ & \forall e \in E & \ell_{e} & \geq & 0 \\ \hline \end{array}$$

 \mathcal{P} is the set of path that connect s and t.

The Dual:

max
$$\sum_{P} f_{P}$$
 s.t. $\forall e \in E$ $\sum_{P:e \in P} f_{P} \leq c(e)$ $\forall P \in \mathcal{P}$ $f_{P} \geq 0$

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- We have $d(u,v) = \ell_e$ for every edge e = (u,v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\mathsf{path}\ P \ \mathsf{btw.}\ u \ \mathsf{and}\ v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- We have $d(u,v) = \ell_e$ for every edge e = (u,v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\mathsf{path}\ P \ \mathsf{btw.}\ u \ \mathsf{and}\ v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- ▶ We have $d(u, v) = \ell_e$ for every edge e = (u, v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\mathsf{path}\ P \ \mathsf{btw.}\ u \ \mathsf{and}\ v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- ▶ We have $d(u, v) = \ell_e$ for every edge e = (u, v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally

Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally

Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s,r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally

Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

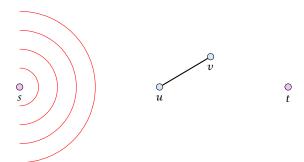
$$B = \{ v \in V \mid d(s, v) \le r \}$$

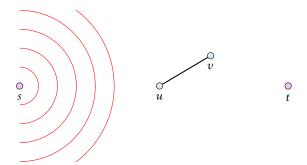
For $0 \le r < 1$, B(s,r) is an s-t-cut.

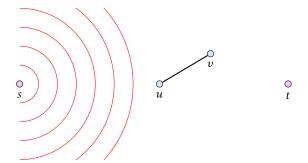
Which value of r should we choose? choose randomly!!!

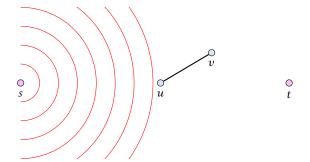
Formally:

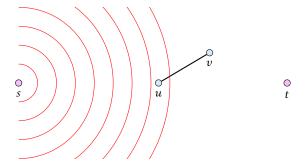
What is the probability that an edge (u, v) is in the cut?

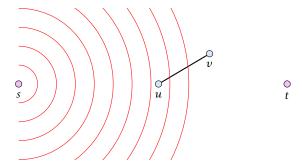


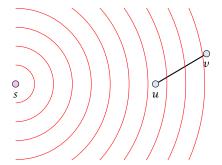


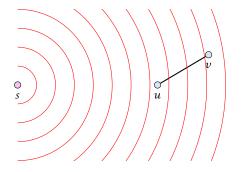


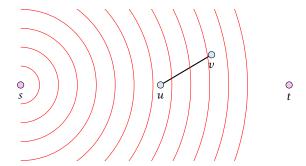


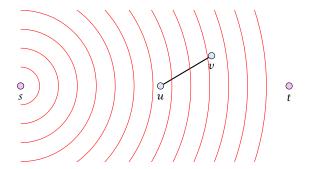


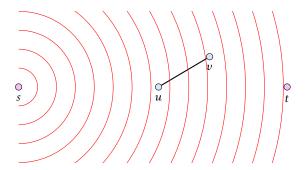


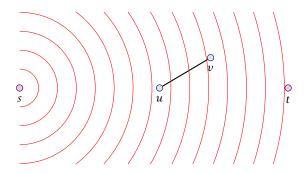






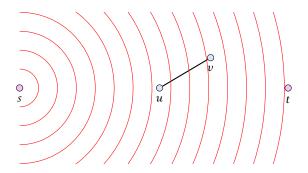






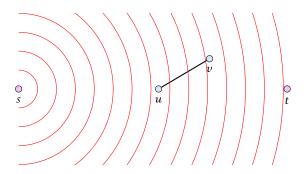
▶ asssume wlog. $d(s, u) \le d(s, v)$

Pr[e is cut]



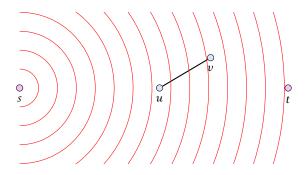
▶ asssume wlog. $d(s, u) \le d(s, v)$

 $\Pr[e \text{ is cut}] = \Pr[r \in [d(s, u), d(s, v))]$



▶ asssume wlog. $d(s, u) \le d(s, v)$

$$\Pr[e \text{ is cut}] = \Pr[r \in [d(s, u), d(s, v))] \le \frac{d(s, v) - d(s, u)}{1 - 0}$$



▶ asssume wlog. $d(s, u) \le d(s, v)$

$$\Pr[e \text{ is cut}] = \Pr[r \in [d(s,u),d(s,v))] \le \frac{d(s,v) - d(s,u)}{1 - 0}$$

$$\le \ell_{\ell}$$

What is the expected size of a cut?

E[size of cut] = E[
$$\sum_{e} c(e) \Pr[e \text{ is cut}]$$
]
 $\leq \sum_{e} c(e) \ell_{e}$

On the other hand:

$$\sum_e c(e) \ell_e \le$$
 size of mincut

as the ℓ_e are the solution to the Mincut LP $\emph{relaxation}.$

Hence, our rounding gives an optimal solution.

What is the expected size of a cut?

E[size of cut] = E[
$$\sum_{e} c(e) \Pr[e \text{ is cut}]$$
]
 $\leq \sum_{e} c(e) \ell_{e}$

On the other hand:

$$\sum_{e} c(e) \ell_e \le \text{size of mincut}$$

as the ℓ_e are the solution to the Mincut LP *relaxation*.

Hence, our rounding gives an optimal solution.

What is the expected size of a cut?

E[size of cut] = E[
$$\sum_{e} c(e) \Pr[e \text{ is cut}]$$
]
 $\leq \sum_{e} c(e) \ell_{e}$

On the other hand:

$$\sum_{e} c(e) \ell_e \le \text{size of mincut}$$

as the ℓ_e are the solution to the Mincut LP *relaxation*.

Hence, our rounding gives an optimal solution.

Minimum Multicut:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a capacity function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G=(V,E\setminus F)$.

Here \mathcal{P}_i contains all path P between s_i and t_i .

Minimum Multicut:

Given a graph G=(V,E), together with source-target pairs $s_i,t_i,$ $i=1,\ldots,k$, and a capacity function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G=(V,E\setminus F)$.

Here \mathcal{P}_i contains all path P between s_i and t_i .

Minimum Multicut:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a capacity function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G=(V,E\setminus F)$.

Here P_i contains all path P between s_i and t_i .

Re-using the analysis for the single-commodity case is difficult.

$$Pr[e \text{ is cut}] \leq ?$$

- ▶ If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- ▶ However, this cannot be guaranteed.

Re-using the analysis for the single-commodity case is difficult.

$$Pr[e \text{ is cut}] \leq ?$$

- ▶ If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- ▶ However, this cannot be guaranteed.

Re-using the analysis for the single-commodity case is difficult.

$$Pr[e \text{ is cut}] \leq ?$$

- ▶ If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- However, this cannot be guaranteed.

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- ▶ Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

Algorithm 1 RegionGrowing (s_i, p)

```
1: z \leftarrow 0
```

2: repeat

3: flip a coin (Pr[heads] = p)

4: $z \leftarrow z + 1$

5: until heads

6: return $B(s_i, z)$

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- ▶ Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

```
Algorithm 1 RegionGrowing (s_i, p)

1: z \leftarrow 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z \leftarrow z + 1

5: until heads
```


- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

```
Algorithm 1 RegionGrowing (s_i, p)

1: z \leftarrow 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z \leftarrow z + 1

5: until heads

6: return B(s_i, z)
```


- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \leq z\delta$.

Algorithm 1 RegionGrowing(s_i, p)

1: $z \leftarrow 0$

3: flip a coin (Pr[heads] = p) 4: $z \leftarrow z + 1$ 5: **until** heads 6: **return** $B(s_i, z)$

1: while $\exists s_i - t_i$ pair in G' do

2: $C \leftarrow \text{RegionGrowing}(s_i, p)$

3: $G' = G' \setminus C // \text{ cuts edges leaving } C$

4: return $B(s_i, z)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

1: while $\exists s_i - t_i$ pair in G' do

2: $C \leftarrow \text{RegionGrowing}(s_i, p)$

3: $G' = G' \setminus C // \text{ cuts edges leaving } C$

4: return $B(s_i, z)$

probability of cutting an edge is only p

- a source either does not reach an edge during Regior Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

1: **while** $\exists s_i - t_i$ pair in G' **do**

2: $C \leftarrow \text{RegionGrowing}(s_i, p)$

3: $G' = G' \setminus C // \text{ cuts edges leaving } C$

4: return $B(s_i, z)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

1: **while** $\exists s_i - t_i$ pair in G' **do**

2: $C \leftarrow \text{RegionGrowing}(s_i, p)$

3: $G' = G' \setminus C // \text{ cuts edges leaving } C$

4: return $B(s_i, z)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value: our expected cost are at most OPT.

1: while $\exists s_i - t_i$ pair in G' do

2: $C \leftarrow \text{RegionGrowing}(s_i, p)$ 3: $G' = G' \setminus C \text{ // cuts edges leaving } C$ 4: **return** $B(s_i, z)$

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not} \ \mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^2}$$

► Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq rac{1}{k^2}$$

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\text{not successful}] \le (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \le e^{-\frac{p}{2\delta}} \le \frac{1}{k^{\frac{p}{2}}}$$

Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq \frac{1}{k^2}$$

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq \frac{1}{k^2}$$

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq \frac{1}{k^2}$$

$$\begin{aligned} E[\text{cutsize}] &= \Pr[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &+ \Pr[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{aligned}$$

Note: success means all source-target pairs separated We assume k > 2.

$$\begin{split} E[\text{cutsize}] &= \text{Pr}[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \text{Pr}[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{aligned} \textbf{E[cutsize | succ.]} &= \frac{\textbf{E[cutsize]} - \textbf{Pr[no succ.]} \cdot \textbf{E[cutsize | no succ.]}}{\textbf{Pr[success]}} \\ &\leq \frac{\textbf{E[cutsize]}}{\textbf{Pr[success]}} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \textbf{OPT} \leq 8 \ln k \cdot \textbf{OPT} \end{aligned}$$

Note: success means all source-target pairs separated We assume k > 2.

$$\begin{split} E[\text{cutsize}] &= \text{Pr}[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \text{Pr}[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{split} E[\text{cutsize} \mid \text{succ.}] &= \frac{E[\text{cutsize}] - \text{Pr}[\text{no succ.}] \cdot E[\text{cutsize} \mid \text{no succ.}]}{\text{Pr}[\text{success}]} \\ &\leq \frac{E[\text{cutsize}]}{\text{Pr}[\text{success}]} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated We assume k > 2.

$$\begin{split} E[\text{cutsize}] &= Pr[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + Pr[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{split} E[\text{cutsize} \mid \text{succ.}] &= \frac{E[\text{cutsize}] - Pr[\text{no succ.}] \cdot E[\text{cutsize} \mid \text{no succ.}]}{Pr[\text{success}]} \\ &\leq \frac{E[\text{cutsize}]}{Pr[\text{success}]} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated We assume k > 2.

$$\begin{split} E[\text{cutsize}] &= \text{Pr}[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \text{Pr}[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{split} \text{E[cutsize \mid succ.]} &= \frac{\text{E[cutsize]} - \text{Pr[no succ.]} \cdot \text{E[cutsize \mid no succ.]}}{\text{Pr[success]}} \\ &\leq \frac{\text{E[cutsize]}}{\text{Pr[success]}} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated We assume k > 2.

$$\begin{split} E[\text{cutsize}] &= \text{Pr}[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \text{Pr}[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{split} \text{E[cutsize \mid succ.]} &= \frac{\text{E[cutsize]} - \text{Pr[no succ.]} \cdot \text{E[cutsize \mid no succ.]}}{\text{Pr[success]}} \\ &\leq \frac{\text{E[cutsize]}}{\text{Pr[success]}} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated

We assume k > 2.

$$\begin{split} E[\text{cutsize}] &= Pr[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + Pr[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{split} \text{E[cutsize \mid succ.]} &= \frac{\text{E[cutsize]} - \text{Pr[no succ.]} \cdot \text{E[cutsize \mid no succ.]}}{\text{Pr[success]}} \\ &\leq \frac{\text{E[cutsize]}}{\text{Pr[success]}} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated

We assume $k \ge 2$.

If we are not successful we simply perform a trivial k-approximation.

This only increases the expected cost by at most $\frac{1}{k^2} \cdot k\text{OPT} \leq \text{OPT}/k$.

Hence, our final cost is $O(\ln k) \cdot OPT$ in expectation.

Definition 87 (NP)

A language $L \in \text{NP}$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

[
$$x \in L$$
] There exists a proof string y , $|y| = poly(|x|)$, s.t. $V(x, y) =$ "accept".

$$[x \notin L]$$
 For any proof string y , $V(x, y) =$ "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (why?).

Definition 87 (NP)

A language $L \in NP$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

[
$$x \in L$$
] There exists a proof string y , $|y| = poly(|x|)$, s.t. $V(x, y) =$ "accept".

[$x \notin L$] For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (**why?**).

Probabilistic Proof Verification

Definition 88 (IP)

In an interactive proof system a randomized polynomial-time verifier V (with private coin tosses) interacts with an all powerful prover P in polynomially many rounds. $L \in \mathrm{IP}$ if

- $[x \in L]$ There exists a strategy for P s.t. V accepts with probability 1.
- $[x \notin L]$ Regardless of P's strategy V accepts with probability at most 1/2.

Probabilistic Checkable Proofs

Definition 89 (PCP)

A language $L \in PCP_{c(n),s(n)}(r(n),q(n))$ if there exists a polynomial time, non-adaptive, randomized verifier V (an Oracle Turing Machine), s.t.

- [$x \in L$] There exists a proof string y, s.t. $V^{\pi_y}(x) =$ "accept" with proability $\geq c(n)$.
- [$x \notin L$] For any proof string y, $V^{\pi_y}(x) =$ "accept" with probability $\leq s(n)$.

The verifier uses at most $\mathcal{V}(n)$ random bits and makes at most q(n) oracle queries.

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle π_{TSP} would allow M to write a TSP-instance x on a special oracle tape and obtain the answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query complexity, i.e., how often the machine queries the oracle.

For a proof string y, π_y is an oracle that upon given an index i returns the i-th character y_i of y.

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

$$IP \subseteq PCP_{1,1/2}(poly(n), poly(n))$$

We can view non-adadpative $PCP_{1,1/2}(poly(n), poly(n))$ as the version of IP in which the prover has written down his answers to all possible queries (beforehand).

This makes it harder for the prover to cheat.

The non-cheating prover does not loose power.

Note that the above is not a proof!

- PCP(0,0) = P
- \triangleright PCP($\mathcal{O}(\log n), 0) = P$
- $ightharpoonup PCP(0, \mathcal{O}(\log n)) = P$
- $ightharpoonup PCP(0, \mathcal{O}(poly(n))) = NP$
- ▶ $PCP(\mathcal{O}(\log n), \mathcal{O}(\text{poly}(n))) = NP$
- PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- $ightharpoonup PCP(\mathcal{O}(\log n), \mathcal{O}(1)) = NP \text{ (the PCP theorem)}$

- PCP(0,0) = P
- $ightharpoonup PCP(\mathcal{O}(\log n), 0) = P$
- $ightharpoonup PCP(0, \mathcal{O}(\log n)) = P$
- \triangleright PCP(0, $\mathcal{O}(\text{poly}(n))) = NP$
- ▶ $PCP(\mathcal{O}(\log n), \mathcal{O}(\text{poly}(n))) = NP$
- PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- ▶ $PCP(\mathcal{O}(\log n), \mathcal{O}(1)) = NP$ (the PCP theorem)

- PCP(0,0) = P
- $ightharpoonup PCP(\mathcal{O}(\log n), 0) = P$
- $ightharpoonup PCP(0, \mathcal{O}(\log n)) = P$
- \triangleright PCP(0, $\mathcal{O}(\text{poly}(n))) = NP$
- $ightharpoonup PCP(\mathcal{O}(\log n), \mathcal{O}(\text{poly}(n))) = NP$
- PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- $ightharpoonup PCP(\mathcal{O}(\log n), \mathcal{O}(1)) = NP \text{ (the PCP theorem)}$

- PCP(0,0) = P
- $ightharpoonup PCP(\mathcal{O}(\log n), 0) = P$
- $ightharpoonup PCP(0, \mathcal{O}(\log n)) = P$
- $ightharpoonup PCP(0, \mathcal{O}(poly(n))) = NP$
- $ightharpoonup PCP(\mathcal{O}(\log n), \mathcal{O}(\text{poly}(n))) = NP$
- ▶ PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- $ightharpoonup PCP(\mathcal{O}(\log n), \mathcal{O}(1)) = NP \text{ (the PCP theorem)}$

- PCP(0,0) = P
- $ightharpoonup PCP(\mathcal{O}(\log n), 0) = P$
- $ightharpoonup PCP(0, \mathcal{O}(\log n)) = P$
- $ightharpoonup PCP(0, \mathcal{O}(poly(n))) = NP$
- $ightharpoonup PCP(\mathcal{O}(\log n), \mathcal{O}(\text{poly}(n))) = NP$
- ▶ PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- $ightharpoonup PCP(\mathcal{O}(\log n), \mathcal{O}(1)) = NP \text{ (the PCP theorem)}$

- PCP(0,0) = P
- $ightharpoonup PCP(\mathcal{O}(\log n), 0) = P$
- $ightharpoonup PCP(0, \mathcal{O}(\log n)) = P$
- $ightharpoonup PCP(0, \mathcal{O}(poly(n))) = NP$
- ▶ $PCP(\mathcal{O}(\log n), \mathcal{O}(\text{poly}(n))) = NP$
- PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- ▶ $PCP(\mathcal{O}(\log n), \mathcal{O}(1)) = NP$ (the PCP theorem)

- PCP(0,0) = P
- $ightharpoonup PCP(\mathcal{O}(\log n), 0) = P$
- $ightharpoonup PCP(0, \mathcal{O}(\log n)) = P$
- $ightharpoonup PCP(0, \mathcal{O}(poly(n))) = NP$
- ▶ $PCP(\mathcal{O}(\log n), \mathcal{O}(\text{poly}(n))) = NP$
- ► PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- ▶ $PCP(\mathcal{O}(\log n), \mathcal{O}(1)) = NP$ (the PCP theorem)

$NP \subseteq PCP(poly(n), 1)$

PCP(poly(n), 1) means that we have a potentially long proof but we only read a constant number of bits from the proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions.

$NP \subseteq PCP(poly(n), 1)$

PCP(poly(n), 1) means that we have a potentially exponentially long proof but we only read a constant number of bits from the proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions.

$NP \subseteq PCP(poly(n), 1)$

PCP(poly(n), 1) means that we have a potentially exponentially long proof but we only read a constant number of bits from the proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions.

 $u \in \{0,1\}^n$ (satisfying assignment)

Walsh-Hadamard Code:

$$WH_u : \{0,1\}^n \to \{0,1\}, x \mapsto x^T u \text{ (over GF(2))}$$

The code-word for u is WH_u . We identify this function by a bit-vector of length 2^n .

Lemma 90

If $u \neq u'$ then WH_u and $WH_{u'}$ differ in at least 2^{n-1} bits.

Suppose that $u-u'\neq 0$. Then

$$WH_u(x) \neq WH_{u'}(x) \iff (u - u')^T x \neq 0$$

This holds for 2^{n-1} different vectors x

Lemma 90

If $u \neq u'$ then WH_u and $WH_{u'}$ differ in at least 2^{n-1} bits.

Suppose that $u - u' \neq 0$. Then

$$\mathrm{WH}_u(x) \neq \mathrm{WH}_{u'}(x) \Longleftrightarrow (u-u')^T x \neq 0$$

This holds for 2^{n-1} different vectors x.

Suppose we are given access to a function $f: \{0,1\}^n \to \{0,1\}$ and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions $\{0,1\}^n$ to $\{0,1\}$ we can check

$$f(x+y) = f(x) + f(y)$$

for all 2^{2n} pairs x, y. But that's not very efficient.

Suppose we are given access to a function $f: \{0,1\}^n \to \{0,1\}$ and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions $\{0,1\}^n$ to $\{0,1\}$ we can check

$$f(x + y) = f(x) + f(y)$$

for all 2^{2n} pairs x, y. But that's not very efficient.

Can we just check a constant number of positions?

Definition 91

Let $\rho \in [0,1]$. We say that $f,g:\{0,1\}^n \to \{0,1\}$ are ρ -close if

$$\Pr_{x \in \{0,1\}^n} [f(x) = g(x)] \ge \rho .$$

Theorem 92

Let $f: \{0,1\}^n \to \{0,1\}$ with

$$\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2}$$

Then there is a linear function $ilde{f}$ such that f and $ilde{f}$ are ho-close.

Definition 91

Let $\rho \in [0,1]$. We say that $f,g:\{0,1\}^n \to \{0,1\}$ are ρ -close if

$$\Pr_{x \in \{0,1\}^n} [f(x) = g(x)] \ge \rho \ .$$

Theorem 92

Let $f: \{0,1\}^n \to \{0,1\}$ with

$$\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2}.$$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

We need $\mathcal{O}(1/\delta)$ trials to be sure that f is $(1-\delta)$ -close to a linear function with (arbitrary) constant probability.

Suppose for $\delta < 1/4 \; f$ is $(1-\delta)$ -close to some linear function \tilde{f} .

 \widetilde{f} is uniquely defined by f , since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

Suppose for $\delta < 1/4 \ f$ is $(1-\delta)$ -close to some linear function \tilde{f} .

 \tilde{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

Suppose for $\delta < 1/4 \ f$ is $(1-\delta)$ -close to some linear function \tilde{f} .

 \tilde{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

- **1.** Choose $x' \in \{0, 1\}^n$ u.a.r.
- **2.** Set x'' := x + x'.
- 3. Let y' = f(x') and y'' = f(x'').
- **4.** Output y' + y''.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1-2\delta$ we have $f(x')=\tilde{f}(x')$ and $f(x'')=\tilde{f}(x'')$.

Then we can compute $\tilde{f}(x)$.

This technique is known as local decoding of the Walsh-Hadamard code.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

- **1.** Choose $x' \in \{0, 1\}^n$ u.a.r.
- **2.** Set x'' := x + x'.
- 3. Let y' = f(x') and y'' = f(x'').
- **4.** Output y' + y''.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1-2\delta$ we have $f(x')=\tilde{f}(x')$ and $f(x'')=\tilde{f}(x'')$.

Then we can compute $\tilde{f}(x)$

This technique is known as local decoding of the Walsh-Hadamard code.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

- **1.** Choose $x' \in \{0,1\}^n$ u.a.r.
- **2.** Set x'' := x + x'.
- 3. Let y' = f(x') and y'' = f(x'').
- **4.** Output y' + y''.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1-2\delta$ we have $f(x')=\tilde{f}(x')$ and $f(x'')=\tilde{f}(x'')$.

Then we can compute $\tilde{f}(x)$.

This technique is known as local decoding of the Walsh-Hadamard code.

$$NP \subseteq PCP(poly(n), 1)$$

We show that $QUADEQ \in PCP(poly(n), 1)$. The theorem follows since any PCP-class is closed under polynomial time reductions.

introduce QUADEQ...

prove NP-completeness...

Let A, b be an instance of QUADEQ. Let u be a satisfying assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u and $u \otimes u$. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not correspond to codewords for vectors of the form u, and $u \otimes u$.

We also have to reject proofs that correspond to codewords for vectors of the form z, and $z \otimes z$, where z is not a satisfying assignment.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.99-linearity test for both functions (requires a constant number of queries).

We also assume that the remaining constant number of (random) accesses only hit points where $f(x)= ilde{f}(x).$

Hence, our proof will only see f and therefore we use f for \hat{f} , in the following (similar for g, \tilde{g}).

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.99-linearity test for both functions (requires a constant number of queries).

We also assume that the remaining constant number of (random) accesses only hit points where $f(x) = \tilde{f}(x)$.

Hence, our proof will only see \tilde{f} and therefore we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.99-linearity test for both functions (requires a constant number of queries).

We also assume that the remaining constant number of (random) accesses only hit points where $f(x) = \tilde{f}(x)$.

Hence, our proof will only see \tilde{f} and therefore we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

The proof contains $2^n+2^{n^2}$ bits. This is interpreted as a pair of functions $f:\{0,1\}^n\to\{0,1\}$ and $g:\{0,1\}^{n^2}\to\{0,1\}$.

We do a 0.99-linearity test for both functions (requires a constant number of queries).

We also assume that the remaining constant number of (random) accesses only hit points where $f(x) = \tilde{f}(x)$.

Hence, our proof will only see \tilde{f} and therefore we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

 $f(r) = u^T r$ and $g(z) = w^T z$ since f, g are linear.

- choose r, r' independently, u.a.r. from $\{0,1\}^n$
- if $f(r)f(r') \neq g(r \otimes r')$ reject
- repeat 3 times

A correct proof survives the test

$$f(r) \cdot f(r')$$

A correct proof survives the test

$$f(\mathbf{r}) \cdot f(\mathbf{r}') = \mathbf{u}^T \mathbf{r} \cdot \mathbf{u}^T \mathbf{r}'$$

A correct proof survives the test

 $f(r) \cdot f(r') = u^T r \cdot u^T r' = \Big(\sum_i u_i r_i\Big) \cdot \Big(\sum_j u_j r'_j\Big)$

 $f(r) \cdot f(r') = u^T r \cdot u^T r' = \left(\sum_i u_i r_i\right) \cdot \left(\sum_i u_j r'_j\right)$

 $=\sum_{ij}u_iu_jr_ir_j'$

 $f(r) \cdot f(r') = u^T r \cdot u^T r' = \left(\sum_i u_i r_i\right) \cdot \left(\sum_i u_j r'_j\right)$

 $= \sum_{i,j} u_i u_j r_i r_j' = (u \otimes u)^T (r \otimes r')$

 $f(r) \cdot f(r') = u^T r \cdot u^T r' = \left(\sum_i u_i r_i\right) \cdot \left(\sum_j u_j r'_j\right)$

 $= \sum_{ij} u_i u_j r_i r_j' = (u \otimes u)^T (r \otimes r') = g(r \otimes r')$

$$g(r \otimes r')$$

$$g(r\otimes r')=w^T(r\otimes r')$$

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{i,j} w_{i,j} r_i r'_j$$

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^T W r'$$

$$g(r\otimes r')=w^T(r\otimes r')=\sum_{ij}w_{ij}r_ir_j'=r^TWr'$$

$$f(\mathbf{r}) f(\mathbf{r}')$$

$$g(r\otimes r')=w^T(r\otimes r')=\sum_{ij}w_{ij}r_ir'_j=r^TWr'$$

$$f(r)f(r') = u^T r \cdot u^T r'$$

$$g(r\otimes r')=w^T(r\otimes r')=\sum_{ij}w_{ij}r_ir'_j=r^TWr'$$

$$f(r)f(r') = u^T r \cdot u^T r' = r^T U r'$$

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{i,j} w_{i,j} r_i r'_j = r^T W r'$$

$$f(r) f(r') = u^T r \cdot u^T r' = r^T U r'$$

If $U \neq W$ then $Wr' \neq Ur'$ with probability at least 1/2. Then $r^TWr' \neq r^TUr'$ with probability at least 1/4.

Step 3. Verify that f encodes satisfying assignment.

We need to check

$$A_k(u\otimes u)=b_k$$

where A_k is the k-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute rA, where $r \in_R \{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraint.

In this case $rA(u \otimes u) \neq rb_k$. The left hand side is equal to $g(A^Tr^T)$.

Step 3. Verify that f encodes satisfying assignment.

We need to check

$$A_k(u\otimes u)=b_k$$

where A_k is the k-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute rA, where $r\in_R\{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an ode number of violated constraint.

In this case $rA(u \otimes u) \neq rb_k$. The left hand side is equal to $g(A^Tr^T)$.

Step 3. Verify that f encodes satisfying assignment.

We need to check

$$A_k(u\otimes u)=b_k$$

where A_k is the k-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute rA, where $r \in_R \{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraint.

In this case $rA(u \otimes u) \neq rb_k$. The left hand side is equal to $g(A^Tr^T)$.

Step 3. Verify that f encodes satisfying assignment.

We need to check

$$A_k(u \otimes u) = b_k$$

where A_k is the k-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute rA, where $r \in_R \{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraint.

In this case $rA(u \otimes u) \neq rb_k$. The left hand side is equal to $g(A^Tr^T)$.

Theorem 92

Let $f: \{0,1\}^n \to \{0,1\}$ with

$$\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2} .$$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

Fourier Transform over GF(2)

In the following we use $\{-1,1\}$ instead of $\{0,1\}$. We map $b \in \{0,1\}$ to $(-1)^b$.

This turns summation into multiplication.

The set of function $f: \{-1,1\} \to \mathbb{R}$ form a 2^n -dimensional Hilbert space.

Hilbert space

- ▶ addition (f + g)(x) = f(x) + g(x)
- scalar multiplication $(\alpha f)(x) = \alpha f(x)$
- inner product $\langle f, g \rangle = E_{x \in \{0,1\}^n}[f(x)g(x)]$ (bilinear, $\langle f, f \rangle \ge 0$, and $\langle f, f \rangle = 0 \Rightarrow f = 0$)
- **completeness**: any sequence x_k of vectors for which

$$\sum_{k=1}^{\infty} \|x_k\| < \infty \text{ fulfills } \left\| L - \sum_{k=1}^{N} x_k \right\| \to 0$$

for some vector L.

standard basis

$$e_X(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$$

Then, $f(x) = \sum_X \alpha_X e_X$ where $\alpha_X = f(x)$, this means the functions e_X form a basis. This basis is orthonormal.

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle$$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{x} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big]$$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{X} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_{X} \Big[\chi_{\alpha \triangle \beta}(x) \Big]$$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_x \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_x \Big[\chi_{\alpha \triangle \beta}(x) \Big] = \begin{cases} 1 & \alpha = \beta \\ 0 & \text{otw.} \end{cases}$$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_x \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_x \Big[\chi_{\alpha \triangle \beta}(x) \Big] = \begin{cases} 1 & \alpha = \beta \\ 0 & \text{otw.} \end{cases}$$

This means the χ_{α} 's also define an orthonormal basis. (since we have 2^n orthonormal vectors...)

A function χ_{α} multiplies a set of x_i 's. Back in the GF(2)-world this means summing a set of z_i 's where $x_i = (-1)^{z_i}$.

This means the function χ_{α} correspond to linear functions in the GF(2) world.

We can write any function $f: \{-1, 1\}^n \to \mathbb{R}$ as

$$f = \sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}$$

We call \hat{f}_{α} the α^{th} Fourier coefficient.

Lemma 93

- 1. $\langle f, g \rangle = \sum_{\alpha} f_{\alpha} g_{\alpha}$
- 2. $\langle f, f \rangle = \sum_{\alpha} f_{\alpha}^2$

Note that for Boolean functions $f: \{-1,1\}^n \to \{-1,1\}, \langle f,f \rangle = 1.$

GF(2)

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

GF(2)

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that $f:\{+1,-1\}^n \to \{-1,1\}$ satisfies $\Pr_{x,y}[f(x)f(y)=f(xy)] \geq \frac{1}{2}+\epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \geq 2\epsilon$.

GF(2)

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that $f: \{+1, -1\}^n \to \{-1, 1\}$ satisfies $\Pr_{x,y}[f(x)f(y) = f(xy)] \ge \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

GF(2)

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that $f: \{+1,-1\}^n \to \{-1,1\}$ satisfies $\Pr_{x,y}[f(x)f(y)=f(xy)] \geq \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_\alpha \geq 2\epsilon$.

$$2\epsilon \leq \hat{f}_{\alpha}$$

GF(2)

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that $f: \{+1,-1\}^n \to \{-1,1\}$ satisfies $\Pr_{x,y}[f(x)f(y)=f(xy)] \geq \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_\alpha \geq 2\epsilon$.

$$2\epsilon \leq \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle$$

GF(2)

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that $f:\{+1,-1\}^n \to \{-1,1\}$ satisfies $\Pr_{x,y}[f(x)f(y)=f(xy)] \geq \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \geq 2\epsilon$.

$$2\epsilon \leq \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree}$$

GF(2)

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that $f: \{+1, -1\}^n \to \{-1, 1\}$ satisfies $\Pr_{x,y}[f(x)f(y) = f(xy)] \ge \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

$$2\epsilon \leq \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree} = 2\text{agree} - 1$$

GF(2)

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x+y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that $f:\{+1,-1\}^n \to \{-1,1\}$ satisfies $\Pr_{x,y}[f(x)f(y)=f(xy)] \geq \frac{1}{2}+\epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \geq 2\epsilon$.

For Boolean functions $\langle f,g\rangle$ is the fraction of inputs on which f,g agree **minus** the fraction of inputs on which they disagree.

$$2\epsilon \le \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree} = 2\text{agree} - 1$$

This gives that the agreement between f and χ_{α} is at least $\frac{1}{2} + \epsilon$.

$$\Pr_{x,y}[f(xy) = f(x)f(y)] \ge \frac{1}{2} + \epsilon$$

is equivalent to

$$E_{x,y}[f(xy)f(x)f(y)] = \text{agreement} - \text{disagreement} \ge 2\epsilon$$

$$2\epsilon \le E_{x,y} \left[f(xy)f(x)f(y) \right]$$

$$2\epsilon \leq E_{x,y} \left[f(xy) f(x) f(y) \right]$$

$$= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$$

$$\begin{aligned} & 2\epsilon \leq E_{x,y} \left[f(xy) f(x) f(y) \right] \\ & = E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right] \\ & = E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right] \end{aligned}$$

$$\begin{aligned} & 2\epsilon \leq E_{x,y} \bigg[f(xy) f(x) f(y) \bigg] \\ & = E_{x,y} \bigg[\bigg(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \bigg) \cdot \bigg(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \bigg) \cdot \bigg(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \bigg) \bigg] \\ & = E_{x,y} \bigg[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \bigg] \\ & = \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \bigg[\chi_{\alpha}(x) \chi_{\beta}(x) \bigg] E_{y} \bigg[\chi_{\alpha}(y) \chi_{y}(y) \bigg] \end{aligned}$$

$$2\epsilon \leq E_{x,y} \left[f(xy) f(x) f(y) \right]$$

$$= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$$

$$= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha} \hat{f}_{\alpha}^{3}$$

$$2\epsilon \leq E_{x,y} \left[f(xy)f(x)f(y) \right]$$

$$= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$$

$$= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha} \hat{f}_{\alpha}^{3}$$

$$\leq \max_{\alpha} \hat{f}_{\alpha} \cdot \sum_{\alpha} \hat{f}_{\alpha}^{2} = \max_{\alpha} \hat{f}_{\alpha}$$

GNI is the language of pairs of non-isomorphic graphs

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with n-nodes)

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with n-nodes)

It expects a proof of the following form:

For any labeled n-node graph H the H's bit P[H] of the proof fulfills

$$G_0 \equiv H \implies P[H] = 0$$

 $G_1 \equiv H \implies P[H] = 1$
 $G_0, G_1 \not\equiv H \implies P[H] = \text{arbitrary}$

Verifier:

- choose $b \in \{0, 1\}$ at random
- take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

Verifier:

- choose $b \in \{0, 1\}$ at random
- take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If $G_0 \not\equiv G_1$ then by using the obvious proof the verifier will always accept.

Verifier:

- choose $b \in \{0, 1\}$ at random
- take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If $G_0 \not\equiv G_1$ then by using the obvious proof the verifier will always accept.

If $G_0 \not\equiv G_1$ a proof only accepts with probability 1/2.

- suppose $\pi(G_0) = G_1$
- if we accept for b=1 and permutation π_{rand} we reject for permutation b=0 and $\pi_{\mathsf{rand}} \circ \pi$

How to show Harndess of Approximation?

Decision version of optimization problems:

Suppose we have some maximization problem.

How to show Harndess of Approximation?

Decision version of optimization problems:

Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a parameter k and asks whether we can obtain a solution value of at least k. (where infeasible solutions are assumed to have value $-\infty$)

Decision version of optimization problems:

Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a parameter k and asks whether we can obtain a solution value of at least k. (where infeasible solutions are assumed to have value $-\infty$)

(Analogous for minimization problems.)

Decision version of optimization problems:

Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a parameter k and asks whether we can obtain a solution value of at least k. (where infeasible solutions are assumed to have value $-\infty$)

(Analogous for minimization problems.)

This is the standard way to show that some optimization problem is e.g. NP-hard.

Gap version of optimization problems:

Suppose we have some maximization problem.

Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α, β) -gap problem asks the following:

Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α, β) -gap problem asks the following:

Suppose we are given an instance I and a promise that either $opt(I) \ge \beta$ or $opt(I) \le \alpha$. Can we differentiate between these two cases?

Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α, β) -gap problem asks the following:

Suppose we are given an instance I and a promise that either $opt(I) \ge \beta$ or $opt(I) \le \alpha$. Can we differentiate between these two cases?

An algorithm A has to output

- ► A(I) = 1 if opt $(I) \ge \beta$
- ► A(I) = 0 if opt $(I) \le \alpha$
- A(I) = arbitrary, otw

Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α, β) -gap problem asks the following:

Suppose we are given an instance I and a promise that either $opt(I) \ge \beta$ or $opt(I) \le \alpha$. Can we differentiate between these two cases?

An algorithm A has to output

- ► A(I) = 1 if opt $(I) \ge \beta$
- ► A(I) = 0 if opt $(I) \le \alpha$
- A(I) = arbitrary, otw

Note that this is not a decision problem

An approximation algorithm with approximation guarantee $c \le \beta/\alpha$ can solve an (α, β) -gap problem.

Constraint Satisfaction Problem

A qCSP ϕ consists of m n-ary Boolean functions ϕ_1, \ldots, ϕ_m (constraints), where each function only depends on q inputs. The goal is to maximize the number of satisfied constraints.

- $u \in \{0,1\}^n$ satsifies constraint ϕ_i if $\phi_i(u) = 1$
- ho $r(u) := \sum_i \phi_i(u)/m$ is fraction of satisfied constraints
- ightharpoonup value(ϕ) = max_u r(u)
- ϕ is satisfiable if value(ϕ) = 1.

3SAT is a constraint satsifaction problem with q = 3.

Constraint Satisfaction Problem

GAP version:

A ρ GAPqCSP ϕ consists of m n-ary Boolean functions ϕ_1, \ldots, ϕ_m (constraints), where each function only depends on q inputs. We know that either ϕ is satisfiable or value(ϕ) $< \rho$, and want to differentiate between these cases.

hoGAPqCSP is NP-hard if for any $L \in \text{NP}$ there is a polytime computable function f mapping strings to instances of qCSP s.t.

- $x \in L \implies \text{value}(f(x)) = 1$
- ► $x \notin L \implies \text{value}(f(x)) < \rho$

Theorem 94

There exists constants q, ρ such that ρ GAPqCSP is NP-hard.

We reduce 3SAT to ρ GAPqCSP

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0,1\}^{c \log n}$ define

- ▶ $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- $\triangleright V_{x,r}$ only depends on q bits of the proof

For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

We reduce 3SAT to ρ GAPqCSP.

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0,1\}^{c \log n}$ define

- ▶ $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

We reduce 3SAT to ρ GAPqCSP.

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0,1\}^{c \log n}$ define

- ▶ $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- $\vdash V_{x,r}$ only depends on q bits of the proof For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

We reduce 3SAT to ρ GAPqCSP.

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0,1\}^{c \log n}$ define

- $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- $ightharpoonup V_{x,r}$ only depends on q bits of the proof

For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

We reduce 3SAT to ρ GAPqCSP.

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0,1\}^{c \log n}$ define

- $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- $ightharpoonup V_{x,r}$ only depends on q bits of the proof

For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

We reduce 3SAT to ρ GAPqCSP.

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0, 1\}^{c \log n}$ define

- $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- $\triangleright V_{x,r}$ only depends on q bits of the proof

For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

 $x \in 3SAT \Rightarrow \phi$ is satisfiable

$$x \notin 3SAT \Longrightarrow value(\phi) \le \frac{1}{2}$$

This means that ρ GAPqCSP is NP-hard.

 $x \in 3SAT \Longrightarrow \phi$ is satisfiable

$$x \notin 3SAT \Longrightarrow value(\phi) \le \frac{1}{2}$$

This means that ρ GAPqCSP is NP-hard.

Suppose that ρ GAPqCSP is NP-hard for some constants q, ρ ($\rho < 1$).

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of aCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Hence, $L \in \mathrm{PCP}_{1,
ho}(\log_2 m,q)$, where m is the number of constraints.

Suppose that $\rho {\rm GAP}q{\rm CSP}$ is NP-hard for some constants q,ρ ($\rho<1$).

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Hence, $L \in \mathrm{PCP}_{1,
ho}(\log_2 m,q)$, where m is the number of constraints.

Suppose that ρ GAPqCSP is NP-hard for some constants q, ρ ($\rho < 1$).

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Hence, $L \in \mathrm{PCP}_{1,\rho}(\log_2 m,q)$, where m is the number of constraints.

Suppose that $\rho {\rm GAP}q{\rm CSP}$ is NP-hard for some constants q,ρ ($\rho<1$).

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Hence, $L \in \mathrm{PCP}_{1,
ho}(\log_2 m, q)$, where m is the number of constraints.

Suppose that ρ GAPqCSP is NP-hard for some constants q, ρ ($\rho < 1$).

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Hence, $L\in \mathrm{PCP}_{1,
ho}(\log_2 m,q)$, where m is the number of constraints.

Suppose that ρ GAPqCSP is NP-hard for some constants q, ρ ($\rho < 1$).

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Hence, $L \in PCP_{1,\rho}(\log_2 m, q)$, where m is the number of constraints.

Suppose that ρ GAPqCSP is NP-hard for some constants q, ρ $(\rho < 1).$ Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

aCSP.

, , , ,

We use the reduction to map an input x into an instance ϕ of

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Hence, $L \in \mathrm{PCP}_{1,\rho}(\log_2 m,q)$, where m is the number of constraints.

Theorem 95

For any positive constants $\epsilon, \delta > 0$, it is the case that $NP \subseteq PCP_{1-\epsilon,1/2+\delta}(\log n,3)$, and the verifier is restricted to use only the functions odd and even.

It is NP-hard to approximate an ODD/EVEN constraint satisfaction problem by a factor better than $1/2 + \delta$, for any constant δ .

Theorem 96

For any positive constant $\delta > 0$, $\mathrm{NP} \subseteq \mathrm{PCP}_{1,7/8+\delta}(\mathcal{O}(\log n),3)$ and the verifier is restricted to use only functions that check the OR of three bits or their negations.

It is NP-hard to approximate 3SAT better than $7/8 + \delta$.

The following GAP-problem is NP-hard for any $\epsilon > 0$.

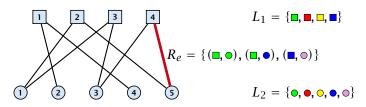
Given a graph G = (V, E) composed of m independent sets of size 3 (|V| = 3m). Distinguish between

- the graph has a CLIQUE of size m
- the largest CLIQUE has size at most $(7/8 + \epsilon)m$

Label Cover

Input:

- bipartite graph $G = (V_1, V_2, E)$
- ▶ label sets L_1, L_2
- ▶ for every edge $(u, v) \in E$ a relation $R_{u,v} \subseteq L_1 \times L_2$ that describe assignments that make the edge *happy*.
- maximize number of happy edges



Label Cover

- ▶ an instance of label cover is (d_1, d_2) -regular if every vertex in L_1 has degree d_1 and every vertex in L_2 has degree d_2 .
- if every vertex has the same degree d the instance is called d-regular

Minimization version:

- ▶ assign a set $L_x \subseteq L_1$ of labels to every node $x \in L_1$ and a set $L_y \subseteq L_2$ to every node $x \in L_2$
- make sure that for every edge (x,y) there is $\ell_x \in L_x$ and $\ell_y \in L_y$ s.t. $(\ell_x,\ell_y) \in R_{x,y}$
- ▶ minimize $\sum_{x \in L_1} |L_x| + \sum_{y \in L_2} |L_y|$ (total labels used)

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:

label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (T=true, F=false)

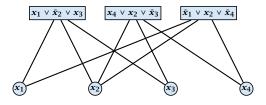
relation: $R_{C,x_i} = \{((u_i,u_j,u_k),u_i)\}$, where the clause C is over variables x_i,x_j,x_k and assignment (u_i,u_j,u_k) satisfies C

$$R = \{ ((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), ((T,T,T),T), ((T,T,F),F), ((T,F,F),F) \}$$

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (T=true, F=false)

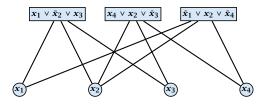
relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

$$R = \{((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), ((T,T,T),T), ((T,T,F),F), ((T,F,F),F)\}$$

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

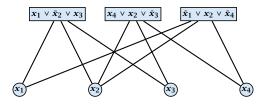
relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

$$R = \{((F, F, F), F), ((F, T, F), F), ((F, F, T), T), ((F, T, T), T), ((T, T, T), T), ((T, T, F), F), ((T, F, F), F)\}$$

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

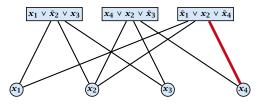
relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

 $R = \{((F, F, F), F), ((F, T, F), F), ((F, F, T), T), ((F, T, T), T), ((T, T, T), T), ((T, T, F), F), ((T, F, F), F)\}$

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,x_i} = \{((u_i,u_j,u_k),u_i)\}$, where the clause C is over variables x_i,x_j,x_k and assignment (u_i,u_j,u_k) satisfies C

$$R = \{((F, F, F), F), ((F, T, F), F), ((F, F, T), T), ((F, T, T), T), ((T, T, T), T), ((T, T, F), F), ((T, F, F), F)\}$$

Lemma 97

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

Proof:

Lemma 97

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

- for V_2 use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V₁ use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m-k) happy edges)

Lemma 97

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

- for V_2 use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V₁ use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m - k) happy edges)

Lemma 97

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

- for V_2 use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V₁ use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m-k) happy edges)

Lemma 98

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

Lemma 98

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- ▶ hence at most 3m (m k) = 2m + k edges are happy

Lemma 98

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- ▶ hence at most 3m (m k) = 2m + k edges are happy

Lemma 98

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- ► hence at most 3m (m k) = 2m + k edges are happy

Hardness for Label Cover

We cannot distinguish between the following two cases

- all 3m edges can be made happy
- ▶ at most $2m + (7/8 + \epsilon)m \approx (\frac{23}{8} + \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $lpha > rac{23}{24}$

Here α is a constant!!! Maybe a guarantee of the form $\frac{23}{8} + \frac{1}{m}$ is possible.

Hardness for Label Cover

We cannot distinguish between the following two cases

- all 3m edges can be made happy
- ▶ at most $2m + (7/8 + \epsilon)m \approx (\frac{23}{8} + \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{23}{24}$.

Here α is a constant!!! Maybe a guarantee of the form $\frac{23}{8} + \frac{1}{m}$ is possible.

Hardness for Label Cover

We cannot distinguish between the following two cases

- all 3m edges can be made happy
- ▶ at most $2m + (7/8 + \epsilon)m \approx (\frac{23}{8} + \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{23}{24}$.

Here α is a constant!!! Maybe a guarantee of the form $\frac{23}{8} + \frac{1}{m}$ is possible.

(3, 5)-regular instances

Theorem 99

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

(3, 5)-regular instances

Theorem 99

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- ▶ the resulting Label Cover instance is (3, 5)-regular
- it is hard to approximate for a constant $\alpha < 1$
- given a label ℓ_1 for x there is at most one label ℓ_2 for y that makes edge (x, y) happy (uniqueness property)

Regular instances

Theorem 100

If for a particular constant $\alpha < 1$ there is an α -approximation algorithm for Label Cover on 15-regular instances than P=NP.

Given a label ℓ_1 for $x \in V_1$ there is at most one label ℓ_2 for y that makes (x, y) happy. (uniqueness property)

Regular instances

proof...

Given Label Cover instance I with $G = (V_1, V_2, E)$, label sets L_1 and L_2 we construct a new instance I':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$ightharpoonup E' = E^k = E \times \cdots \times E$$

An edge $((x_1,\ldots,x_k),(y_1,\ldots,y_k))$ whose end-points are labelled by $(\ell_1^x,\ldots,\ell_k^x)$ and $(\ell_1^y,\ldots,\ell_k^y)$ is happy if $(\ell_i^x,\ell_i^y)\in R_{x_i,y_i}$ for all i.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 101

There is a constant c>0 such if $\mathrm{OPT}(I)=|E|(1-\delta)$ then $\mathrm{OPT}(I')\leq |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L=|L_1|+|L_2|$ denotes total number of labels in I.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 101

There is a constant c>0 such if $\mathrm{OPT}(I)=|E|(1-\delta)$ then $\mathrm{OPT}(I')\leq |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L=|L_1|+|L_2|$ denotes total number of labels in I.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 101

There is a constant c>0 such if $\mathrm{OPT}(I)=|E|(1-\delta)$ then $\mathrm{OPT}(I')\leq |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L=|L_1|+|L_2|$ denotes total number of labels in I.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 101

There is a constant c>0 such if $OPT(I)=|E|(1-\delta)$ then $OPT(I')\leq |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L=|L_1|+|L_2|$ denotes total number of labels in I.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 101

There is a constant c>0 such if $OPT(I)=|E|(1-\delta)$ then $OPT(I')\leq |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L=|L_1|+|L_2|$ denotes total number of labels in I.

Theorem 102

There are constants c>0, $\delta<1$ s.t. for any k we cannot distinguish regular instances for Label Cover in which either

- ightharpoonup OPT(I) = |E|, or

unless each problem in NP has an algorithm running in time $\mathcal{O}(n^{\mathcal{O}(k)})$.

Corollary 103

There is no α -approximation for Label Cover for any constant α .

Theorem 104

There exist regular Label Cover instances s.t. we cannot distinguish whether

- all edges are satisfiable, or
- ▶ at most a $1/\log^2(|L_2||E|)$ -fraction is satisfiable unless NP-problems have algorithms with running time $\mathcal{O}(n^{\mathcal{O}(\log\log n)})$.

choose
$$k = \frac{2\log 10}{c} \log_{1/(1-\delta)}(\log(|L_2||E|)) = \mathcal{O}(\log\log n)$$
.

Partition System (s, t, h)

- universe *U* of size *s*
- ▶ t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t)$; $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any h pairs only one of A_i , \bar{A}_i we do not cover the whole set U

For any h, t with $h \le t$ there exist systems with $s = |U| \le 2^{2h+2}t^2$.

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_2|, h = (\log |E||L_2|))$

for all $v \in V_2, j \in L_2$

$$S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$$

for all $u \in V_1, i \in L_1$

$$S_{u,i} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_j, \text{ where } (i,j) \in R_{(u,v)}\}$$

note that $S_{n,i}$ is well-defined because of the uniqueness property

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_2|, h = (\log |E||L_2|))$

for all $v \in V_2, j \in L_2$

$$S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$$

for all $u \in V_1$, $i \in L_1$

$$S_{u,i} = \{((u,v),a) \mid (u,v) \in E, a \in A_j, \text{ where } (i,j) \in R_{(u,v)}\}$$

note that $S_{n,i}$ is well-defined because of the uniqueness property

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_2|, h = (\log |E||L_2|))$

for all $v \in V_2, j \in L_2$

$$S_{v,j} = \{((u,v), a) \mid (u,v) \in E, a \in A_j\}$$

for all $u \in V_1, i \in L_1$

 $S_{u,i} = \{((u,v),a) \mid (u,v) \in E, a \in A_j, \text{ where } (i,j) \in R_{(u,v)}\}$

note that $S_{u,i}$ is well-defined because of the uniqueness property

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_2|, h = (\log |E||L_2|))$

for all $v \in V_2, j \in L_2$

$$S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$$

for all $u \in V_1, i \in L_1$

 $S_{u,i} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_i, \text{ where } (i,j) \in R_{(u,v)}\}$

note that $S_{n,i}$ is well-defined because of the uniqueness property

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_2|, h = (\log |E||L_2|))$

for all $v \in V_2, j \in L_2$

$$S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$$

for all $u \in V_1$, $i \in L_1$

$$S_{u,i} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_j, \text{ where } (i,j) \in R_{(u,v)}\}$$

note that $S_{n,i}$ is well-defined because of the uniqueness property

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_2|, h = (\log |E||L_2|))$

for all $v \in V_2, j \in L_2$

$$S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$$

for all $u \in V_1$, $i \in L_1$

$$S_{u,i} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_j, \text{ where } (i,j) \in R_{(u,v)}\}$$

note that $S_{u,i}$ is well-defined because of the uniqueness property

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where i is the label we assigned to u, and j the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u,v), $S_{v,j}$ contains $\{(u,v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u,v)\} \times \bar{A}_j$.

Since all edges are happy we have covered the whole universe

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where i is the label we assigned to u, and j the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u, v), $S_{v,j}$ contains $\{(u, v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u, v)\} \times \bar{A}_j$.

Since all edges are happy we have covered the whole universe

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where i is the label we assigned to u, and j the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u, v), $S_{v,j}$ contains $\{(u, v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u, v)\} \times \bar{A}_j$.

Since all edges are happy we have covered the whole universe

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where i is the label we assigned to u, and j the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u, v), $S_{v,j}$ contains $\{(u, v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u, v)\} \times \bar{A}_j$.

Since all edges are happy we have covered the whole universe.

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where i is the label we assigned to u, and j the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u, v), $S_{v,j}$ contains $\{(u, v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u, v)\} \times \bar{A}_j$.

Since all edges are happy we have covered the whole universe.

Lemma 105

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

▶ n_u : number of $S_{u,i}$'s in cover

- $ightharpoonup n_v$: number of $S_{v,j}$'s in cover
- at most 1/4 of the vertices can have n_u, n_v ≥ h/2; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i,j) \in R_{u,v}$ (making (u,v) happy
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- ▶ hence we make an $2/h^2$ -fraction of edges happy

- ▶ n_u : number of $S_{u,i}$'s in cover
- $ightharpoonup n_v$: number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,i}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- ▶ hence we make an $2/h^2$ -fraction of edges happy

- ▶ n_u : number of $S_{u,i}$'s in cover
- $ightharpoonup n_v$: number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,i}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- ▶ hence we make an $2/h^2$ -fraction of edges happy

- ▶ n_u : number of $S_{u,i}$'s in cover
- $ightharpoonup n_v$: number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,i}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- ▶ hence we make an $2/h^2$ -fraction of edges happy

- ▶ n_u : number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- \blacktriangleright (u,v) gets happy with probability at least $4/h^2$
- ▶ hence we make an $2/h^2$ -fraction of edges happy

- ▶ n_u : number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- ▶ hence we make an $2/h^2$ -fraction of edges happy

- ▶ n_u : number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- ▶ hence we make an $2/h^2$ -fraction of edges happy

- ▶ n_u : number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make an $2/h^2$ -fraction of edges happy

Set Cover

Theorem 106

There is no $\frac{1}{32} \log N$ -approximation for the unweighted Set Cover problem unless problems in NP can be solved in time $\mathcal{O}(n^{\mathcal{O}(\log\log n)})$.

Set
$$h = \log(|E||L_2|)$$
 and $t = |L_2|$; Size of partition system is
$$s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$$

The size of the ground set is ther

$$N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$$

for sufficiently large |E|. Then $h \geq \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

If we find a cover of size at most $\frac{h}{8}(|V_1|+|V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_2|)$ of the edges, this is not possible...

Set
$$h = \log(|E||L_2|)$$
 and $t = |L_2|$; Size of partition system is $s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$

The size of the ground set is ther

$$N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$$

for sufficiently large |E|. Then $h \geq \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

If we find a cover of size at most $\frac{h}{8}(|V_1|+|V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_2|)$ of the edges, this is not possible...

Set $h = \log(|E||L_2|)$ and $t = |L_2|$; Size of partition system is

$$s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$$

The size of the ground set is then

$$N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

If we find a cover of size at most $\frac{h}{8}(|V_1|+|V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_2|)$ of the edges, this is not possible...

Set $h = \log(|E||L_2|)$ and $t = |L_2|$; Size of partition system is

$$s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$$

The size of the ground set is then

$$N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

If we find a cover of size at most $\frac{h}{8}(|V_1| + |V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_2|)$ of the edges. this is not possible...

Set $h = \log(|E||L_2|)$ and $t = |L_2|$; Size of partition system is

$$s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$$

The size of the ground set is then

$$N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

If we find a cover of size at most $\frac{h}{8}(|V_1|+|V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_2|)$ of the edges. this is not possible...

Partition Systems

Lemma 107

Given h and t there is a partition system of size $s = 2^h h \ln(4t) \le 2^{2h+2} t^2$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

Partition Systems

Lemma 107

Given h and t there is a partition system of size $s = 2^h h \ln(4t) \le 2^{2h+2} t^2$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

Partition Systems

Lemma 107

Given h and t there is a partition system of size $s = 2^h h \ln(4t) \le 2^{2h+2} t^2$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

The probability that u is covered is $1-\frac{1}{2^h}$.

The probability that all u are covered is $(1-\frac{1}{2^h})^s$

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h}\right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} \le \frac{1}{2^h}$$

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

The probability that u is covered is $1 - \frac{1}{2^h}$.

The probability that all u are covered is $(1-rac{1}{2^h})^s$

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h}\right)^s \leq (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} \leq \frac{1}{2^h}$$

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

The probability that u is covered is $1 - \frac{1}{2^h}$.

The probability that all u are covered is $(1-rac{1}{2h})^s$

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h}\right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} \le \frac{1}{2^h}$$

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

The probability that u is covered is $1 - \frac{1}{2^h}$.

The probability that all u are covered is $(1-rac{1}{2^h})^s$

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h}\right)^s \leq (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} \leq \frac{1}{2^h}$$

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

The probability that u is covered is $1 - \frac{1}{2^h}$.

The probability that all u are covered is $(1 - \frac{1}{2h})^s$

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h}\right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} \le \frac{1}{2^h}$$

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

The probability that u is covered is $1 - \frac{1}{2^h}$.

The probability that all u are covered is $(1 - \frac{1}{2h})^s$

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h}\right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} \le \frac{1}{2^h}$$

