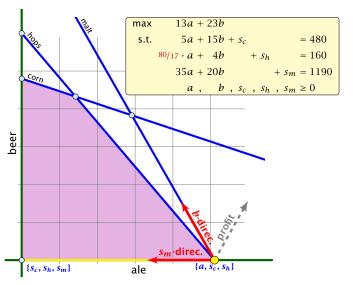
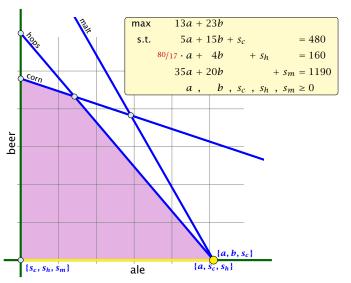
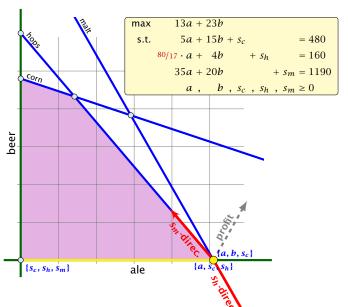
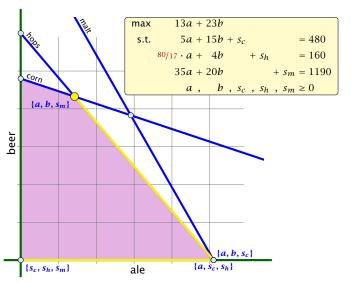


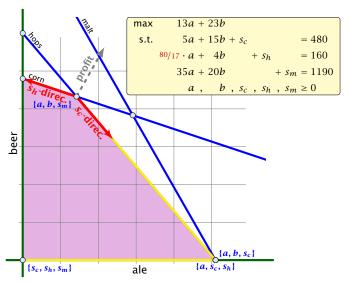
If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.











If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

```
Given feasible LP := \max\{c^tx, Ax = b; x \ge 0\}. Change it into LP' := \max\{c^tx, Ax = b', x \ge 0\} such that
```

- LP' is feasible
- If a set B of basis variables corresponds to an
- basis (i.e. $A_n^{-1}b \neq 0$) then B corresponds to an infeasible basis in LP (note that columns in As are linearly
- independent).
- LP' has no degenerate basic solutions

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^t x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^t x, Ax = b', x \ge 0\}$ such that

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^t x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^t x, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not \geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^t x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^t x, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not \geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^t x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^t x, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\geq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

Perturbation

Let B be index set of some basis with basic solution

$$x_B^* = A_B^{-1}b \ge 0, x_N^* = 0$$
 (i.e. *B* is feasible)

Fix

$$b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$
 for $\varepsilon > 0$.

This is the perturbation that we are using.

Perturbation

Let B be index set of some basis with basic solution

$$x_B^* = A_B^{-1}b \ge 0, x_N^* = 0$$
 (i.e. *B* is feasible)

Fix

$$b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$
 for $\varepsilon > 0$.

This is the perturbation that we are using.

The new LP is feasible because the set *B* of basis variables provides a feasible basis:

$$A_B^{-1} \left(b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix} \right) = x_B^* + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix} \ge 0$$

The new LP is feasible because the set *B* of basis variables provides a feasible basis:

$$A_B^{-1}\left(b+A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right)=x_B^*+\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\geq 0.$$

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row i.

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i<0$ for some row i.

Then for small enough $\epsilon>0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i}$$

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i<0$ for some row i.

Then for small enough $\epsilon>0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i}=(A_{\tilde{B}}^{-1}b)_{i}+\left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i}<0$$

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row i.

Then for small enough $\epsilon>0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i}=(A_{\tilde{B}}^{-1}b)_{i}+\left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i}<0$$

Hence, \tilde{B} is not feasible.

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_{B} \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{ ilde{B}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{ ilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Let \tilde{B} be a basis. It has an associated solution

$$\chi_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{R}}^{-1}A_B$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

If it terminates because the reduced cost vector fulfills

$$\tilde{c}=(c^t-c_B^tA_B^{-1}A)\leq 0$$

then we have found an optimal basis.

If it terminates because the reduced cost vector fulfills

$$\tilde{c}=(c^t-c_B^tA_B^{-1}A)\leq 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

If it terminates because the reduced cost vector fulfills

$$\tilde{c}=(c^t-c_B^tA_B^{-1}A)\leq 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

▶ If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the j-th basis direction d, fulfills $d \ge 0$ we know that LP' is unbounded. The basis direction does not depend on b. Hence, we also know that LP is unbounded.

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea

Simulate behaviour of LP' without explicitly doing a perturbation.

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A_B \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A_B \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

Matrix View

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$\boldsymbol{\theta}_{\boldsymbol{\ell}} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}}.$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B=\{1,3,7,14\}$ and leaving variable is 3 then $\ell=2$.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

$$\theta_\ell = \frac{\hat{b}_\ell}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_\ell}{(A_B^{-1}A_{*e})_\ell} \ .$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B=\{1,3,7,14\}$ and leaving variable is 3 then $\ell=2$.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$$

 ℓ is the index of a leaving variable within B. This means if e.g $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B=\{1,3,7,14\}$ and leaving variable is 3 then $\ell=2$.

Definition 2

 $u \leq_{\mathsf{lex}} v$ if and only if the first component in which u and v differ fulfills $u_i \leq v_i$.

LP' chooses an index that minimizes

 θ_ℓ

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1} \left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1} A_{*\ell})_{\ell}}$$

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_B^{-1}\left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}\right)\right)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} = \frac{\left(A_B^{-1}(b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}\right)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}}$$

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1} \left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}} = \frac{\left(A_{B}^{-1} (b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)_{\ell}}{(A_{B}^{-1} A_{*e})_{\ell}}$$

$$= \frac{\ell \cdot \text{th row of } A_{B}^{-1} (b \mid I)}{(A_{B}^{-1} A_{*e})_{\ell}} \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}$$

This means you can choose the variable/row ℓ for which the vector

$$\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*e})_\ell}$$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur

This means you can choose the variable/row ℓ for which the vector

$$\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*e})_\ell}$$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur

This means you can choose the variable/row ℓ for which the vector

$$\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*e})_\ell}$$

is lexicographically minimal.

Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

