Duality

How do we get an upper bound to a maximization LP?

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Duality

How do we get an upper bound to a maximization LP?

$$
\begin{aligned}
\max \quad 13 a & +23 b \\
\text { s.t. } \quad 5 a+15 b & \leq 480 \\
4 a+4 b & \leq 160 \\
35 a+20 b & \leq 1190 \\
a, b & \geq 0
\end{aligned}
$$

Note that a lower bound is easy to derive. Every choice of $a, b \geq 0$ gives us a lower bound (e.g. $a=12, b=28$ gives us a lower bound of 800).

Duality

How do we get an upper bound to a maximization LP?

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Note that a lower bound is easy to derive. Every choice of $a, b \geq 0$ gives us a lower bound (e.g. $a=12, b=28$ gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_{i} \geq 0$) such that $\sum_{i} y_{i} a_{i j} \geq c_{j}$ then $\sum_{i} y_{i} b_{i}$ will be an upper bound.

Duality

Definition 2

Let $z=\max \left\{c^{t} x \mid A x \leq b, x \geq 0\right\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$
w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}
$$

is called the dual problem.

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$
- $w=-\max \left\{-b^{t} y \mid-A^{t} y \leq-c, y \geq 0\right\}$

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$
- $w=-\max \left\{-b^{t} y \mid-A^{t} y \leq-c, y \geq 0\right\}$

The dual problem is

- $z=-\min \left\{-c^{t} x \mid-A x \geq-b, x \geq 0\right\}$

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$
- $w=-\max \left\{-b^{t} y \mid-A^{t} y \leq-c, y \geq 0\right\}$

The dual problem is

- $z=-\min \left\{-c^{t} x \mid-A x \geq-b, x \geq 0\right\}$
- $z=\max \left\{c^{t} x \mid A x \leq b, x \geq 0\right\}$

Weak Duality

Let $z=\max \left\{c^{t} x \mid A x \leq b, x \geq 0\right\}$ and
$w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$ be a primal dual pair.
x is primal feasible iff $x \in\{x \mid A x \leq b, x \geq 0\}$
y is dual feasible, iff $y \in\left\{y \mid A^{t} y \geq c, y \geq 0\right\}$.

Weak Duality

Let $z=\max \left\{c^{t} x \mid A x \leq b, x \geq 0\right\}$ and
$w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$ be a primal dual pair.
x is primal feasible iff $x \in\{x \mid A x \leq b, x \geq 0\}$
y is dual feasible, iff $y \in\left\{y \mid A^{t} y \geq c, y \geq 0\right\}$.

Theorem 4 (Weak Duality)
Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$
c^{t} \hat{x} \leq z \leq w \leq b^{t} \hat{y} .
$$

Weak Duality

$$
A^{t} \hat{y} \geq c
$$

Weak Duality

$$
A^{t} \hat{y} \geq c \Rightarrow \hat{x}^{t} A^{t} \hat{y} \geq \hat{x}^{t} c
$$

Weak Duality

$$
A^{t} \hat{y} \geq c \Rightarrow \hat{x}^{t} A^{t} \hat{y} \geq \hat{x}^{t} c(\hat{x} \geq 0)
$$

Weak Duality

$$
A^{t} \hat{y} \geq c \Rightarrow \hat{x}^{t} A^{t} \hat{y} \geq \hat{x}^{t} c(\hat{x} \geq 0)
$$

$A \hat{x} \leq b$

Weak Duality

$$
A^{t} \hat{y} \geq c \Rightarrow \hat{x}^{t} A^{t} \hat{y} \geq \hat{x}^{t} c(\hat{x} \geq 0)
$$

$$
A \hat{x} \leq b \Rightarrow y^{t} A \hat{x} \leq \hat{y}^{t} b
$$

Weak Duality

$$
\begin{aligned}
& A^{t} \hat{y} \geq c \Rightarrow \hat{x}^{t} A^{t} \hat{y} \geq \hat{x}^{t} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{t} A \hat{x} \leq \hat{y}^{t} b(\hat{y} \geq 0)
\end{aligned}
$$

Weak Duality

$$
\begin{aligned}
& A^{t} \hat{y} \geq c \Rightarrow \hat{x}^{t} A^{t} \hat{y} \geq \hat{x}^{t} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{t} A \hat{x} \leq \hat{y}^{t} b(\hat{y} \geq 0)
\end{aligned}
$$

This gives

$$
c^{t} \hat{x} \leq \hat{y}^{t} A \hat{x} \leq b^{t} \hat{y} .
$$

Weak Duality

$$
\begin{aligned}
& A^{t} \hat{y} \geq c \Rightarrow \hat{x}^{t} A^{t} \hat{y} \geq \hat{x}^{t} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{t} A \hat{x} \leq \hat{y}^{t} b(\hat{y} \geq 0)
\end{aligned}
$$

This gives

$$
c^{t} \hat{x} \leq \hat{y}^{t} A \hat{x} \leq b^{t} \hat{y} .
$$

Since, there exists primal feasible \hat{x} with $c^{t} \hat{x}=z$, and dual feasible \hat{y} with $b^{t} y=w$ we get $z \leq w$.

Weak Duality

$$
\begin{aligned}
& A^{t} \hat{y} \geq c \Rightarrow \hat{x}^{t} A^{t} \hat{y} \geq \hat{x}^{t} c(\hat{x} \geq 0) \\
& A \hat{x} \leq b \Rightarrow y^{t} A \hat{x} \leq \hat{y}^{t} b(\hat{y} \geq 0)
\end{aligned}
$$

This gives

$$
c^{t} \hat{x} \leq \hat{y}^{t} A \hat{x} \leq b^{t} \hat{y} .
$$

Since, there exists primal feasible \hat{x} with $c^{t} \hat{x}=z$, and dual feasible \hat{y} with $b^{t} y=w$ we get $z \leq w$.

If P is unbounded then D is infeasible.

The following linear programs form a primal dual pair:

$$
\begin{aligned}
z & =\max \left\{c^{t} x \mid A x=b, x \geq 0\right\} \\
w & =\min \left\{b^{t} y \mid A^{t} y \geq c\right\}
\end{aligned}
$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Proof

Primal:

$$
\max \left\{c^{t} x \mid A x=b, x \geq 0\right\}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{t} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{t} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{t} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\min \left\{\left[b^{t}-b^{t}\right] y \mid\left[A^{t}-A^{t}\right] y \geq c, y \geq 0\right\}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{t} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\min \{ & {\left.\left[b^{t}-b^{t}\right] y \mid\left[A^{t}-A^{t}\right] y \geq c, y \geq 0\right\} } \\
& =\min \left\{\left[b^{t}-b^{t}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \left\lvert\,\left[A^{t}-A^{t}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c\right., y^{-} \geq 0, y^{+} \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{t} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\min \{ & {\left.\left[b^{t}-b^{t}\right] y \mid\left[A^{t}-A^{t}\right] y \geq c, y \geq 0\right\} } \\
& =\min \left\{\left[b^{t}-b^{t}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \left\lvert\,\left[A^{t}-A^{t}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c\right., y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{t} \cdot\left(y^{+}-y^{-}\right) \mid A^{t} \cdot\left(y^{+}-y^{-}\right) \geq c, y^{-} \geq 0, y^{+} \geq 0\right\}
\end{aligned}
$$

Proof

Primal:

$$
\begin{aligned}
\max & \left\{c^{t} x \mid A x=b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \mid A x \leq b,-A x \leq-b, x \geq 0\right\} \\
& =\max \left\{c^{t} x \left\lvert\,\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]\right., x \geq 0\right\}
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\min \{ & {\left.\left[b^{t}-b^{t}\right] y \mid\left[A^{t}-A^{t}\right] y \geq c, y \geq 0\right\} } \\
& =\min \left\{\left[b^{t}-b^{t}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \left\lvert\,\left[A^{t}-A^{t}\right] \cdot\left[\begin{array}{l}
y^{+} \\
y^{-}
\end{array}\right] \geq c\right., y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{t} \cdot\left(y^{+}-y^{-}\right) \mid A^{t} \cdot\left(y^{+}-y^{-}\right) \geq c, y^{-} \geq 0, y^{+} \geq 0\right\} \\
& =\min \left\{b^{t} y^{\prime} \mid A^{t} y^{\prime} \geq c\right\}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{t}-c_{B}^{t} A_{B}^{-1} A \leq 0
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{t}-c_{B}^{t} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{t}\left(A_{B}^{-1}\right)^{t} C_{B} \geq c$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{t}-c_{B}^{t} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{t}\left(A_{B}^{-1}\right)^{t} C_{B} \geq c$
$y^{*}=\left(A_{B}^{-1}\right)^{t} c_{B}$ is solution to the dual $\min \left\{b^{t} y \mid A^{t} y \geq c\right\}$.

$$
b^{t} y^{*}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{t}-c_{B}^{t} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{t}\left(A_{B}^{-1}\right)^{t} C_{B} \geq c$
$y^{*}=\left(A_{B}^{-1}\right)^{t} c_{B}$ is solution to the dual $\min \left\{b^{t} y \mid A^{t} y \geq c\right\}$.

$$
b^{t} y^{*}=\left(A x^{*}\right)^{t} y^{*}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{t}-c_{B}^{t} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{t}\left(A_{B}^{-1}\right)^{t} C_{B} \geq c$
$y^{*}=\left(A_{B}^{-1}\right)^{t} c_{B}$ is solution to the dual $\min \left\{b^{t} y \mid A^{t} y \geq c\right\}$.

$$
b^{t} y^{*}=\left(A x^{*}\right)^{t} y^{*}=\left(A_{B} x_{B}^{*}\right)^{t} y^{*}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{t}-c_{B}^{t} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{t}\left(A_{B}^{-1}\right)^{t} c_{B} \geq c$
$y^{*}=\left(A_{B}^{-1}\right)^{t} c_{B}$ is solution to the dual $\min \left\{b^{t} y \mid A^{t} y \geq c\right\}$.

$$
\begin{aligned}
b^{t} y^{*} & =\left(A x^{*}\right)^{t} y^{*}=\left(A_{B} x_{B}^{*}\right)^{t} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{t}\left(A_{B}^{-1}\right)^{t} c_{B}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{t}-c_{B}^{t} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{t}\left(A_{B}^{-1}\right)^{t} c_{B} \geq c$
$y^{*}=\left(A_{B}^{-1}\right)^{t} c_{B}$ is solution to the dual $\min \left\{b^{t} y \mid A^{t} y \geq c\right\}$.

$$
\begin{aligned}
b^{t} y^{*} & =\left(A x^{*}\right)^{t} y^{*}=\left(A_{B} x_{B}^{*}\right)^{t} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{t}\left(A_{B}^{-1}\right)^{t} c_{B}=\left(x_{B}^{*}\right)^{t} A_{B}^{t}\left(A_{B}^{-1}\right)^{t} c_{B}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{t}-c_{B}^{t} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{t}\left(A_{B}^{-1}\right)^{t} c_{B} \geq c$
$y^{*}=\left(A_{B}^{-1}\right)^{t} c_{B}$ is solution to the dual $\min \left\{b^{t} y \mid A^{t} y \geq c\right\}$.

$$
\begin{aligned}
b^{t} y^{*} & =\left(A x^{*}\right)^{t} y^{*}=\left(A_{B} x_{B}^{*}\right)^{t} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{t}\left(A_{B}^{-1}\right)^{t} c_{B}=\left(x_{B}^{*}\right)^{t} A_{B}^{t}\left(A_{B}^{-1}\right)^{t} c_{B} \\
& =c^{t} x^{*}
\end{aligned}
$$

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$
\tilde{c}=c^{t}-c_{B}^{t} A_{B}^{-1} A \leq 0
$$

This is equivalent to $A^{t}\left(A_{B}^{-1}\right)^{t} c_{B} \geq c$
$y^{*}=\left(A_{B}^{-1}\right)^{t} c_{B}$ is solution to the dual $\min \left\{b^{t} y \mid A^{t} y \geq c\right\}$.

$$
\begin{aligned}
b^{t} y^{*} & =\left(A x^{*}\right)^{t} y^{*}=\left(A_{B} x_{B}^{*}\right)^{t} y^{*} \\
& =\left(A_{B} x_{B}^{*}\right)^{t}\left(A_{B}^{-1}\right)^{t} c_{B}=\left(x_{B}^{*}\right)^{t} A_{B}^{t}\left(A_{B}^{-1}\right)^{t} c_{B} \\
& =c^{t} x^{*}
\end{aligned}
$$

Hence, the solution is optimal.

Strong Duality

Theorem 5 (Strong Duality)
Let P and D be a primal dual pair of linear programs, and let z^{*} and w^{*} denote the optimal solution to P and D, respectively.
Then

$$
z^{*}=w^{*}
$$

Lemma 6 (Weierstrass)

Let X be a compact set and let $f(x)$ be a continuous function on X. Then $\min \{f(x): x \in X\}$ exists.

Lemma 7 (Projection Lemma)

Let $X \subseteq \mathbb{R}^{m}$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^{*} \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $\left(y-x^{*}\right)^{t}\left(x-x^{*}\right) \leq 0$.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x^{\prime} \in X$.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x^{\prime} \in X$.
- Define $X^{\prime}=\left\{x \in X \mid\|y-x\| \leq\left\|y-x^{\prime}\right\|\right\}$. This set is closed and bounded.

y

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x^{\prime} \in X$.
- Define $X^{\prime}=\left\{x \in X \mid\|y-x\| \leq\left\|y-x^{\prime}\right\|\right\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

Proof of the Projection Lemma (continued)

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\left\|y-x^{*}\right\|^{2}
$$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\left\|y-x^{*}\right\|^{2} \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2}
$$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{t}\left(x-x^{*}\right)
\end{aligned}
$$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{t}\left(x-x^{*}\right)
\end{aligned}
$$

Hence, $\left(y-x^{*}\right)^{t}\left(x-x^{*}\right) \leq \frac{1}{2} \epsilon\left\|x-x^{*}\right\|^{2}$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{t}\left(x-x^{*}\right)
\end{aligned}
$$

Hence, $\left(y-x^{*}\right)^{t}\left(x-x^{*}\right) \leq \frac{1}{2} \epsilon\left\|x-x^{*}\right\|^{2}$.
Letting $\epsilon \rightarrow 0$ gives the result.

Theorem 8 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^{m}$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\left\{x \in \mathbb{R}: a^{t} x=\alpha\right\}$ where $a \in \mathbb{R}^{m}, \alpha \in \mathbb{R}$ that separates y from X. ($a^{t} y<\alpha$; $a^{t} x \geq \alpha$ for all $x \in X$)

Proof of the Hyperplane Lemma

－Let $x^{*} \in X$ be closest point to y in X ．

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{t}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{t}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{t} x^{*}$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{t}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{t} x^{*}$.
- For $x \in X: a^{t}\left(x-x^{*}\right) \geq 0$, and, hence, $a^{t} x \geq \alpha$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{t}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{t} x^{*}$.
- For $x \in X: a^{t}\left(x-x^{*}\right) \geq 0$, and, hence, $a^{t} x \geq \alpha$.
- Also, $a^{t} y=a^{t}\left(x^{*}-a\right)=\alpha-\|a\|^{2}<\alpha$

Lemma 9 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x=b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{t} y \geq 0, b^{t} y<0$

Lemma 9 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x=b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{t} y \geq 0, b^{t} y<0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2 . Then

$$
0>y^{t} b=y^{t} A x \geq 0
$$

Lemma 9 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x=b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{t} y \geq 0, b^{t} y<0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2 . Then

$$
0>y^{t} b=y^{t} A x \geq 0
$$

Hence, at most one of the statements can hold.

Proof of Farkas Lemma

Proof of Farkas Lemma

Now, assume that 1 . does not hold.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{t} y \geq 0, b^{t} y<0$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{t} y \geq 0, b^{t} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{t} b<\alpha$ and $y^{t} s \geq \alpha$ for all $s \in S$.

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{t} y \geq 0, b^{t} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{t} b<\alpha$ and $y^{t} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{t} b<0$

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{t} y \geq 0, b^{t} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{t} b<\alpha$ and $y^{t} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{t} b<0$
$y^{t} A x \geq \alpha$ for all $x \geq 0$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{t} y \geq 0, b^{t} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{t} b<\alpha$ and $y^{t} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{t} b<0$
$y^{t} A x \geq \alpha$ for all $x \geq 0$. Hence, $y^{t} A \geq 0$ as we can choose x arbitrarily large.

Lemma 10 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x \leq b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{t} y \geq 0, b^{t} y<0, y \geq 0$

Lemma 10 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x \leq b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{t} y \geq 0, b^{t} y<0, y \geq 0$

Rewrite the conditions:

1. $\exists x \in \mathbb{R}^{n}$ with $[A I] \cdot\left[\begin{array}{l}x \\ s\end{array}\right]=b, x \geq 0, s \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $\left[\begin{array}{c}A^{t} \\ I\end{array}\right] y \geq 0, b^{t} y<0$

Proof of Strong Duality

$P: z=\max \left\{c^{t} x \mid A x \leq b, x \geq 0\right\}$
$D: w=\min \left\{b^{t} y \mid A^{t} y \geq c, y \geq 0\right\}$

Theorem 11 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$
z=w
$$

Proof of Strong Duality

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq w:$

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$\boldsymbol{z} \geq \boldsymbol{w}:$
We show $z<\alpha$ implies $w<\alpha$.

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$\boldsymbol{z} \geq \boldsymbol{w}:$
We show $z<\alpha$ implies $w<\alpha$.

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n} \\
& \text { s.t. } A x \leq b \\
& -c^{t} x \leq-\alpha \\
& x \geq 0
\end{aligned}
$$

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$\boldsymbol{z} \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$\boldsymbol{z} \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$$
\begin{array}{rrl}
\exists x \in \mathbb{R}^{n} & & \\
\text { s.t. } & A x & \leq b \\
& -c^{t} x & \leq-\alpha \\
& x & \geq 0
\end{array}
$$

$$
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R}
$$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

Proof of Strong Duality

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & \\
\text { s.t. } \quad A^{t} y-v & \geq 0 \\
& b^{t} y-\alpha v
\end{array}<0 \begin{aligned}
& \\
&
\end{aligned} \quad y, v \geq 0
$$

Proof of Strong Duality

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & \\
\text { s.t. } \quad A^{t} y-v & \geq 0 \\
& b^{t} y-\alpha v
\end{array} \quad<0
$$

If the solution y, v has $v=0$ we have that

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} & \\
\text { s.t. } & A^{t} y \geq 0 \\
& b^{t} y<0 \\
& y \geq 0
\end{array}
$$

is feasible.

Proof of Strong Duality

$$
\begin{array}{rrr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & & \\
\text { s.t. } & A^{t} y-v & \geq 0 \\
& b^{t} y-\alpha v & <0 \\
& y, v & \geq 0
\end{array}
$$

If the solution y, v has $v=0$ we have that

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} & \\
\text { s.t. } & A^{t} y \\
& b^{t} y<0 \\
& y \geq 0 \\
& y
\end{array}
$$

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.

Proof of Strong Duality

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.
We can rescale this solution (scaling both y and v) s.t. $v=1$.

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.
We can rescale this solution (scaling both y and v) s.t. $v=1$.
Then y is feasible for the dual but $b^{t} y<\alpha$. This means that $w<\alpha$.

Fundamental Questions

Definition 12 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{t} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Fundamental Questions

Definition 12 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{t} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.

Fundamental Questions

Definition 12 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{t} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.

Fundamental Questions

Definition 12 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{t} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $<\alpha$.

Complementary Slackness

Lemma 13

Assume a linear program $P=\max \left\{c^{t} x \mid A x \leq b ; x \geq 0\right\}$ has solution x^{*} and its dual $D=\min \left\{b^{t} y \mid A^{t} y \geq c ; y \geq 0\right\}$ has solution y^{*}.

1. If $x_{j}^{*}>0$ then the j-th constraint in D is tight.
2. If the j-th constraint in D is not tight than $x_{j}^{*}=0$.
3. If $y_{i}^{*}>0$ then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than $y_{i}^{*}=0$.

Complementary Slackness

Lemma 13

Assume a linear program $P=\max \left\{c^{t} x \mid A x \leq b ; x \geq 0\right\}$ has solution x^{*} and its dual $D=\min \left\{b^{t} y \mid A^{t} y \geq c ; y \geq 0\right\}$ has solution y^{*}.

1. If $x_{j}^{*}>0$ then the j-th constraint in D is tight.
2. If the j-th constraint in D is not tight than $x_{j}^{*}=0$.
3. If $y_{i}^{*}>0$ then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than $y_{i}^{*}=0$.

If we say that a variable $x_{j}^{*}\left(y_{i}^{*}\right)$ has slack if $x_{j}^{*}>0\left(y_{i}^{*}>0\right)$, (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint and its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{t} x^{*} \leq y^{* t} A x^{*} \leq b^{t} y^{*}
$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{t} x^{*} \leq y^{* t} A x^{*} \leq b^{t} y^{*}
$$

Because of strong duality we then get

$$
c^{t} x^{*}=y^{* t} A x^{*}=b^{t} y^{*}
$$

This gives e.g.

$$
\sum_{j}\left(y^{t} A-c^{t}\right)_{j} x_{j}^{*}=0
$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{t} x^{*} \leq y^{* t} A x^{*} \leq b^{t} y^{*}
$$

Because of strong duality we then get

$$
c^{t} x^{*}=y^{* t} A x^{*}=b^{t} y^{*}
$$

This gives e.g.

$$
\sum_{j}\left(y^{t} A-c^{t}\right)_{j} x_{j}^{*}=0
$$

From the constraint of the dual it follows that $y^{t} A \geq c^{t}$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $\left(y^{t} A-c^{t}\right)_{j}>0$ (the j-th constraint in the dual is not tight) then $x_{j}=0$ (2.). The result for (1./3./4.) follows similarly.

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

- Entrepeneur: buy resources from brewer at minimum cost C, H, M : unit price for corn, hops and malt.

$$
\begin{array}{rrrrr}
\min & 480 C & + & 160 H & + \\
\text { s.t. } & 5 C & + & 4 H & + \\
& 15 C & + & 4 H & + \\
& & & & \\
& & C, H, M & \geq 0
\end{array}
$$

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

- Entrepeneur: buy resources from brewer at minimum cost C, H, M : unit price for corn, hops and malt.

$$
\begin{array}{rrrrr}
\min & 480 C & +160 H & + & 1190 M \\
\text { s.t. } & 5 C & + & 4 H & + \\
& 15 C & + & 4 H & + \\
& & & & \\
& & C, H, M & \geq 0
\end{array}
$$

Note that brewer won't sell (at least not all) if e.g. $5 C+4 H+35 M<13$ as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.
The profit increases to $\max \left\{c^{t} x \mid A x \leq b+\varepsilon ; x \geq 0\right\}$.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.
The profit increases to $\max \left\{c^{t} x \mid A x \leq b+\varepsilon ; x \geq 0\right\}$. Because of strong duality this is equal to

$$
\begin{array}{|rrl|}
\hline \min & \left(b^{t}+\epsilon^{t}\right) y & \\
\text { s.t. } & A^{t} y & \geq c \\
& y & \geq 0 \\
\hline
\end{array}
$$

Interpretation of Dual Variables

© Harald Räcke

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.
Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.
Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Example

Example

Example

Example

Example

Example

The change in profit when increasing hops by one unit is $=c_{B}^{t} A_{B}^{-1} e_{h}$.

Example

The change in profit when increasing hops by one unit is

$$
=\underbrace{c_{B}^{t} A_{B}^{-1}}_{y^{*}} e_{h}
$$

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Flows

Definition 14

An (s, t)-flow in a (complete) directed graph $G=(V, V \times V, c)$ is a function $f: V \times V \mapsto \mathbb{R}_{0}^{+}$that satisfies

1. For each edge (x, y)

$$
0 \leq f_{x y} \leq c_{x y}
$$

(capacity constraints)

Flows

Definition 14

An (s, t)-flow in a (complete) directed graph $G=(V, V \times V, c)$ is a function $f: V \times V \mapsto \mathbb{R}_{0}^{+}$that satisfies

1. For each edge (x, y)

$$
0 \leq f_{x y} \leq c_{x y} .
$$

(capacity constraints)

2. For each $v \in V \backslash\{s, t\}$

$$
\sum_{x} f_{v x}=\sum_{x} f_{x v} .
$$

(flow conservation constraints)

Flows

Definition 15

The value of an (s, t)-flow f is defined as

$$
\operatorname{val}(f)=\sum_{x} f_{s x}-\sum_{x} f_{x s} .
$$

Flows

Definition 15

The value of an (s, t)-flow f is defined as

$$
\operatorname{val}(f)=\sum_{x} f_{s x}-\sum_{x} f_{x s} .
$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

LP-Formulation of Maxflow

$$
\begin{array}{|rrrll}
\hline \max & & \sum_{z} f_{s z}-\sum_{z} f_{z s} & & \\
\text { s.t. } & \forall(z, w) \in V \times V & f_{z w} & \leq c_{z w} & \ell_{z w} \\
& \forall w \neq s, t & \sum_{z} f_{z w}-\sum_{z} f_{w z} & =0 & p_{w} \\
& & f_{z w} & \geq 0 & \\
& & &
\end{array}
$$

\min		$\sum_{(x y)} c_{x y} \ell_{x y}$	
$\mathrm{s.t}$.	$f_{x y}(x, y \neq s, t):$	$1 \ell_{x y}-1 p_{x}+1 p_{y}$	≥ 0
	$f_{s y}(y \neq s, t):$	$1 \ell_{s y}+1 p_{y}$	≥ 1
	$f_{x s}(x \neq s, t):$	$1 \ell_{x s}-1 p_{x}$	≥-1
	$f_{t y}(y \neq s, t):$	$1 \ell_{t y}+1 p_{y}$	≥ 0
	$f_{x t}(x \neq s, t):$	$1 \ell_{x t}-1 p_{x}$	≥ 0
	$f_{s t}:$	$1 \ell_{s t}$	≥ 1
	$f_{t s}:$	$1 \ell_{t s}$	≥-1
		$\ell_{x y}$	≥ 0

LP-Formulation of Maxflow

LP-Formulation of Maxflow

$$
\begin{array}{|lrl}
\hline \min & & \sum_{(x y)} c_{x y} \ell_{x y} \\
\mathrm{s.t.} & f_{x y}(x, y \neq s, t): & 1 \ell_{x y}-1 p_{x}+1 p_{y} \geq 0 \\
& f_{s y}(y \neq s, t): & 1 \ell_{s y}-p_{s}+1 p_{y} \geq 0 \\
& f_{x s}(x \neq s, t): & 1 \ell_{x s}-1 p_{x}+p_{s} \geq 0 \\
& f_{t y}(y \neq s, t): & 1 \ell_{t y}-p_{t}+1 p_{y} \geq 0 \\
& f_{x t}(x \neq s, t): & 1 \ell_{x t}-1 p_{x}+p_{t} \geq 0 \\
& f_{s t}: & 1 \ell_{s t}-p_{s}+p_{t} \geq 0 \\
& f_{t s}: & 1 \ell_{t s}-p_{t}+p_{s} \geq 0 \\
& & \ell_{x y} \geq 0 \\
\hline
\end{array}
$$

with $p_{t}=0$ and $p_{s}=1$.

LP-Formulation of Maxflow

LP-Formulation of Maxflow

$$
\begin{array}{|rrr}
\min & \sum_{(x y)} c_{x y} \ell_{x y} & \\
\text { s.t. } & f_{x y}: & 1 \ell_{x y}-1 p_{x}+1 p_{y}
\end{array} \quad 0
$$

We can interpret the $\ell_{x y}$ value as assigning a length to every edge.

LP-Formulation of Maxflow

\min	$\sum_{(x y)} c_{x y} \ell_{x y}$		
s.t.	$f_{x y}:$	$1 \ell_{x y}-1 p_{x}+1 p_{y}$	≥ 0
		$\ell_{x y}$	≥ 0
	p_{s}	$=1$	
	p_{t}	$=0$	

We can interpret the $\ell_{x y}$ value as assigning a length to every edge.
The value p_{x} for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_{s}=1$).

LP-Formulation of Maxflow

\min	$\sum_{(x y)} c_{x y} \ell_{x y}$		
s.t. $\quad f_{x y}:$	$1 \ell_{x y}-1 p_{x}+1 p_{y}$	≥ 0	
		$\ell_{x y}$	≥ 0
	p_{s}	$=1$	
	p_{t}	$=0$	

We can interpret the $\ell_{x y}$ value as assigning a length to every edge.
The value p_{x} for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_{s}=1$).

The constraint $p_{x} \leq \ell_{x y}+p_{y}$ then simply follows from triangle inequality $\left(d(x, t) \leq d(x, y)+d(y, t) \Rightarrow d(x, t) \leq \ell_{x y}+d(y, t)\right)$.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{x}=1$ or $p_{x}=0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{x}=1$ or $p_{x}=0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

