A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

EADS II © Harald Räcke		

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

EADS II © Harald Räcke

12 Integer Programs

267

265

Definition 2

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

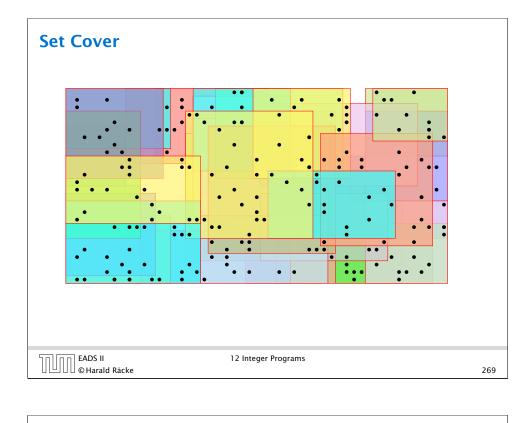
Definition 3

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

EADS II © Harald Räcke

12 Integer Programs

Set Cover Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the *i*-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that $\forall u \in U \exists i \in I : u \in S_i \text{ (every element is covered)}$ and $\sum_{i \in I} w_i$ is minimized.



Vertex Cover

Given a graph G = (V, E) and a weight w_v for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

IP-Formul	atior	n of Set Cove	er			
Ì	min		$\sum_i w_i x_i$			
	s.t.	$\forall u \in U$		\geq	1	
		$\forall i \in \{1, \dots, k\}$			0	
		$\forall i \in \{1, \dots, k\}$				
·						
EADS II © Harald Rä	icke	12 Integ	er Programs			270

IP-Formu	latio	n of Vertex C	Cover				
	min s.t.	$orall e = (i, j) \in E$ $orall v \in V$		≥ E	1 {0,1}		
EADS II © Harald F	Räcke	12 Integ	jer Programs			2	72

12 Integer Programs

271

Maximum Weighted Matching

Given a graph G = (V, E), and a weight w_e for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

max		$\sum_{e\in E} w_e x_e$		
s.t.	$\forall v \in V$	$\sum_{e:v \in e} x_e$	\leq	1
	$\forall e \in E$	x_e	\in	{0,1}

EADS II © Harald Räcke	12 Integer Programs	273

Knapsack

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most K such that the profit is maximized.

max		$\sum_{i=1}^{n} p_i x_i$		
s.t.		$\sum_{i=1}^{n} w_i x_i$	\leq	Κ
	$\forall i \in \{1, \dots, n\}$	x_i	\in	$\{0, 1\}$

. _

Given a graph G = (V, E), and a weight w_v for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

Maximum Independent Set

max		$\sum_{v \in V} w_v x_v$		
s.t.	$\forall e = (i, j) \in E$	$x_i + x_j$	\leq	1
	$\forall v \in V$	x_v	\in	$\{0,1\}$

EADS II © Harald Räcke	12 Integer Programs	274

Relaxations Definition 4 A linear program LP is a relaxation of an integer program IP if

any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

EADS II © Harald Räcke By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

	12 Integer Programs	
🛛 🕒 🗋 🕼 🛛 🖾 🛛 🖾 🖉 🖉 🖉		277

