10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

©Harald Racke

10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

» Here A ={x e R" | elx =1,x = 0} with el = (1,...

denotes the standard simplex in R™.

1)

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

» Here A={x eR" |elx =1,x =0} withef =(1,...,1)
denotes the standard simplex in R™.
Further assumptions:
1. Ais an m X n-matrix with rank m.
P -

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

» Here A={x eR" |elx =1,x =0} withef =(1,...,1)
denotes the standard simplex in R™.
Further assumptions:
1. Ais an m X n-matrix with rank m.
2. Ae =0, i.e., the center of the simplex is feasible.
P -

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

» Here A={x eR" |elx =1,x =0} withef =(1,...,1)
denotes the standard simplex in R™.

Further assumptions:
1. Ais an m X n-matrix with rank m.
2. Ae =0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

10 Karmarkars Algorithm

10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x = 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x = 0}.
» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x = 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

» Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x = 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

» Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

» Add a new variable pair xyp, x,’,; (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex

10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x = 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xy, x,’,; (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex

Add —(3; x;)b; = —b; to every constraint. = vector b is 0

10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x = 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xy, xé; (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex
Add —(>; x;)b; = —b; to every constraint. = vector b is 0
If A does not have full row rank we can delete constraints

(or conclude that the LP is infeasible).
= A has full row rank

10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x = 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xy, xé; (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex

Add —(>; x;)b; = —b; to every constraint. = vector b is 0

If A does not have full row rank we can delete constraints
(or conclude that the LP is infeasible).
= A has full row rank

We still need to make e/n feasible.

10 Karmarkars Algorithm

The algorithm computes strictly feasible interior points
x(= 2 xW x@) . with

clx®) < -0ty (0)

For k = ®(L). A point x is strictly feasible if x > 0.

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm

The algorithm computes strictly feasible interior points
x(= 2 xW x@) . with

Ctx(k) < 2—®(L)Ctx(0)
For k = ®(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) | can
“snap” to an optimum vertex.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

‘m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible

region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). Xpew is the point you reached.

T

EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

10K

armarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible

region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). Xpew is the point you reached.

3. Do a backtransformation to transform X into your new point

Xnew-

T

EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.

Define ;

Y-1x
-
etY-lx

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the

diagonal.
Define .
Y 'x
Fz:x =
* etY-1x
The inverse function is
Yx
F?l X — —
X etYx

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.

Define .
Y 'x
Fy:ixv— ———— .
* etY-1x
The inverse function is
Yx
Fzligx —» —— .
X etYx

Note that x > O in every coordinate. Therefore the above is well
defined.

‘m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

Properties

Fz! really is the inverse of Fx:

Y71 Yx %
1. YR -
F;‘c(F;‘cl(X)) = ﬁ = olx =X
ety etyx

because X € A.

Note that in particular every X € A has a preimage (Urbild) under
Fx.

‘m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

Properties

X is mapped to e/n

©Harald Racke

10 Karmarkars Algorithm

Properties

A unit vectors e; is mapped to itself:

Y‘lei 0,...,0,1/x4,0,...

,0)f

Feled = =1, = et0.....0.1/%,.0,

L

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

Properties

All nodes of the simplex are mapped to the simplex:

t
X1 X1 Xn
i (3 --’xn) (&%)
2 (x) = 5o = =i €A
e X tx1 Xn Zl_
e X R Xi

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

The Transformation

Easy to check:

> F;l really is the inverse of Fx.

m EADS I 10 Karmarkars Algorithm
©Harald Racke

The Transformation

Easy to check:
> F;l really is the inverse of Fx.

> X is mapped to e/n.

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

The Transformation

Easy to check:
> F;l really is the inverse of Fx.
» X is mapped to e/n.

» A unit vectors ¢; is mapped to itself.

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

The Transformation

Easy to check:

v

F;l really is the inverse of Fx.
> X is mapped to e/n.

» A unit vectors ¢; is mapped to itself.

v

All nodes of the simplex are mapped to the simplex.

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm
We have the problem

min{cix | Ax = 0; x € A}

m EADS I 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm
We have the problem

min{ctx | Ax = 0; x € A}
=min{c'Fz1 (%) | AF{1(%) = 0; Fz1 (%) € A}

m EADS I 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm
We have the problem

min{cix | Ax = 0; x € A}
=min{c'Fz1 (%) | AF{1(%) = 0; Fz1 (%) € A}
=min{c'Fz1 (%) | AF;1(%) = 0; X € A}

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm
We have the problem

min{cix | Ax = 0; x € A}
=min{c'Fz1 (%) | AF{1(%) = 0; Fz1 (%) € A}
=min{c'Fz1 (%) | AF;1(%) = 0; X € A}
clYx AYX .
_mm{etch elYX 0;x e A}

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm

We have the problem

min{ctx | Ax = 0; x € A}
=min{c'Fz1 (%) | AF{1(%) = 0; Fz1 (%) € A}
=min{c'Fz1 (%) | AF;1(%) = 0; X € A}

{CtY)% AYX . A}

— — =0; x €
elYx elYx

Since the optimum solution is 0 this problem is the same as

min{é'% | AX = 0,% € A}

with ¢ = Yic = Yc and A = AY.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

We still need to make e/n feasible.

» We know that our LP is feasible. Let X be a feasible point.

» Apply F&, and solve
min{é'x | Ax = 0; x € A}

» The feasible point is moved to the center.

T

EADS I 10 Karmarkars Algorithm =)
©Harald Racke

10 Karmarkars Algorithm

When computing Xpew We do not want to leave the simplex or
touch its boundary (why?).

m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

10 Karmarkars Algorithm

When computing Xpew We do not want to leave the simplex or
touch its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

10 Karmarkars Algorithm

When computing Xpew We do not want to leave the simplex or
touch its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

b() = frem o] =0}

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

10 Karmarkars Algorithm

When computing Xpew We do not want to leave the simplex or
touch its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

b() = frem o] =0}

We are looking for the largest radius 7 such that

B(%,r) m{xletx=1} c A.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

10 Karmarkars Algorithm

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm

This holds for » = II% — (e — el)ﬁll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

10 Karmarkars Algorithm

This holds for » = II% — (e — el)ﬁll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

This gives v =

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

10 Karmarkars Algorithm

This holds for » = ||% — (e — el)ﬁll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

Now we consider the problem

This gives v =

min{éix | Ax =0,x € B(e/n,r) N A}

This problem is easy to solve!!!

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

The Simplex

X3

©Harald Racke

10 Karmarkars Algorithm

10 Karmarkars Algorithm

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm

Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints AX = 0 or the
constraint X € A.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints AX = 0 or the
constraint X € A.

Therefore we first project ¢ on the nullspace of

r-(0)

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

10 Karmarkars Algorithm

Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints AX = 0 or the
constraint X € A.

Therefore we first project ¢ on the nullspace of
A
o~ (2]

P=1-BYBBY) !B

We use

Then
d =Pé

is the required projection.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

10 Karmarkars Algorithm

We get the new point

forp < r.

m EADS I 10 Karmarkars Algorithm
©Harald Racke

10 Karmarkars Algorithm

We get the new point

forp < r.

Choose p = ar with ox = 1/4.

m EADS II 10 Karmarkars Algorithm
©Harald Racke

Iteration of Karmarkars Algorithm

» Current solution x. Y := diag(x1,...,Xn).
Y-1x
etY-1x"

» Transform problem via Fx(x) =
Let ¢ = Yc,and A = AY.

» Compute
d = (I -BYBBY) 'B)¢ ,
A
where B = (t).
e
» Set -
Foew = & — p2
new n ||d"||]

with p = ar withx=1/4andr =1/yn(n—-1).

» Compute Xnew = Fg ! (Xnew)-

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

Lemma 2
The new point Xnew in the transformed space is the point that
minimizes the cost ¢'X among all feasible points in B(%, p).

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

Proof: Let Z be another feasible point in B(%,p).

Proof: Let Z be another feasible point in B(%,p).

AS Aé = 0, A,’%new = O, eté = 1, et)%new = 1

Proof: Let Z be another feasible point in B(%,p).
As A2 =0, AXpew = 0, €12 = 1, e! Xpew = 1 we have

B(knew _2) = 0 .

Proof: Let Z be another feasible point in B(%,p).

As A2 =0, AXpew = 0, €12 = 1, e! Xpew = 1 we have
B(Xpew —2) =0 .

Further,

(¢ —d)t

Proof: Let Z be another feasible point in B(%,p).

As A2 =0, AXpew = 0, €12 = 1, e! Xpew = 1 we have
B(Xpew —2) =0 .

Further,

(6 —d)t =(¢-po)t

Proof: Let Z be another feasible point in B(%,p).

As A2 =0, AXpew = 0, €12 = 1, e! Xpew = 1 we have
B(Xpew —2) =0 .

Further,

(¢ —d)t = (& -Po)t
= (B"(BB")"'B¢)!

Proof: Let Z be another feasible point in B(%,p).

As A2 =0, AXpew = 0, €12 = 1, e! Xpew = 1 we have
B(Xpew —2) =0 .

Further,

(6 —d)t =(¢-po)t
= (B"(BB")"'B¢)!
= ¢tBY(BBY)"1B

Proof: Let Z be another feasible point in B(%,p).

As A2 =0, AXpew = 0, €12 = 1, e! Xpew = 1 we have
B(Xpew —2) =0 .

Further,

(6 —d)t =(¢-po)t
= (B"(BB")"'B¢)!
= ¢tBY(BBY)"1B

Hence, we get

(é - d’\)t()%new - 2) = 0

Proof: Let Z be another feasible point in B(%,p).

As A2 =0, AXpew = 0, €12 = 1, e! Xpew = 1 we have
B(Xpew —2) =0 .

Further,

(6 —d)t =(¢-po)t
= (B"(BB")"'B¢)!
= ¢tBY(BBY)"1B

Hence, we get

(¢ — d)! (Rnew — 2) = 0 or ¢E(Rnew — 2) = d' (Xnew — 2)

Proof: Let Z be another feasible point in B(%,p).
As A2 =0, AXpew = 0, €12 = 1, e! Xpew = 1 we have
B(Xpew —2) =0 .
Further,
(6 —d)t =(-po)

= (B'(BB")"'B¢)!

— ¢tBY(BBY)"!B
Hence, we get

(6 —d) (Rnew — 2) = 0 or ¢ (Rnew — 2) = d* (Rnew — 2)

which means that the cost-difference between Xpew and Z is the
same measured w.r.t. the cost-vector ¢ or the projected
cost-vector d.

But

a . .
—— (X -z
||d|| (new)

©Harald Racke

10 Karmarkars Algorithm

But

dt ~ ~
—— (Xpew — 2) =
” l” (new)

dt

Idll

(

e ,d4 _2>
n Cidl

©Harald Racke

10 Karmarkars Algorithm

But

dAt ~ ~
—— (Xpew — 2) =
” l” (new)

(it

Idll

[

e _ pi _ 2) -
no - dl

dt
Id|

(

e
n

)-o

©Harald Racke

10 Karmarkars Algorithm

But

& = (2l)
T Idil \n " id]

as % — 2 is a vector of length at most p.

(it
o dll

(e

3
n

)—p<0

10 Karmarkars Algorithm

©Harald Racke

But

NPT (Y S A i Y
T Idil \n " id] Id| \n

as % — 2 is a vector of length at most p.

This gives d(Xnew — 2) < 0 and therefore ¢Xpew < ¢2.

)—p<0

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

In order to measure the progress of the algorithm we introduce
a potential function f:

S(x)

m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

In order to measure the progress of the algorithm we introduce
a potential function f:

t
) =YY
PR

m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

In order to measure the progress of the algorithm we introduce
a potential function f:

t
Fex) = () = nin(ex) - YIn(x;)) -
J J J

m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

In order to measure the progress of the algorithm we introduce
a potential function f:

t
Fex) = () = nin(ex) - YIn(x;)) -
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

In order to measure the progress of the algorithm we introduce
a potential function f:

t
£ = S In(<) = ninetx) - 3 In(x;)) -
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

» The potential function essentially measures cost (note the
term nIn(c!x)) but it penalizes us for choosing x; values
very small (by the term — > ;In(x;); note that —In(x;) is
always positive).

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

For a point Z in the transformed space we use the potential
function

f(2)

m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

For a point Z in the transformed space we use the potential
function

m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

For a point Z in the transformed space we use the potential
function

Y2
elYZz

f(2):= fFFZH2) = f() = f(Y2)

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

For a point Z in the transformed space we use the potential

function
F@) = fFEN @) = f25) = f(T2)
clYz
= > In(—5)
% XJ'ZJ'

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

For a point Z in the transformed space we use the potential
function

f(2) = f(F-—l(én = f(etYJ = f(¥2)
—zl(%2,)—Zl —)—zlnxj
J .

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

For a point Z in the transformed space we use the potential
function

f(2) = f(F-‘l(é)) = f(ew) = f(¥2)

—ZH =S H—Zlnxj

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

For a point Z in the transformed space we use the potential
function

f(2) = fFz)—f(etYA)—f(2)
—Zl & %Z; >—Zl <f>—ZlnxJ

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore
the additive term above. Then f and f have the same form; only
c is replaced by €.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

5 5 e
f(Xnew)Sf(ﬁ)_(S,

where 6 is a constant.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

AL Y-
f (Xnew) Sf(ﬁ) -0,
where § is a constant.

This gives
S (Xnew) < f(x) -6 .

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

Lemma 3
There is a feasible point z (i.e., Az = 0) in B(%,p) N A that has

P L e
f(z)sf(ﬁ)—é

with 6 = In(1 +).

m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

Lemma 3
There is a feasible point z (i.e., Az = 0) in B(%,p) N A that has

- ~e
f(2) Sf(ﬁ) -0
with 6 = In(1 +).

Note that this shows the existence of a good point within the
ball. In general it will be difficult to find this point.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

T

EADS Il
©Harald Racke

10 Karmarkars Algorithm

Let z* be the feasible point in the transformed space where éfx
is minimized. (Note that in contrast Xpew is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* # Xpew)

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

Let z* be the feasible point in the transformed space where éfx
is minimized. (Note that in contrast Xpew is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* # Xpew)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

Let z* be the feasible point in the transformed space where ¢tx
is minimized. (Note that in contrast Xpew is the point in the
intersection of the feasible region and B(%, p) that minimizes
this function; in general z* # Xpew)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

The point z we want to use lies farthest in the direction from %
to z*, namely

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

Let z* be the feasible point in the transformed space where ¢tx
is minimized. (Note that in contrast Xpew is the point in the
intersection of the feasible region and B(%, p) that minimizes
this function; in general z* # Xpew)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

The point z we want to use lies farthest in the direction from %
to z*, namely

z=(1-0< Az
n

for some positive A < 1.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

Hence,

. 4l
¢lz=(1- A)cta +Actz*

T

EADS Il
©Harald Racke

10 Karmarkars Algorithm

Hence, 0
flz=(1- A)étﬁ + Aétz*

The optimum cost (at z*) is zero.

m EADS I 10 Karmarkars Algorithm
©Harald Racke

Hence,

flz=(1- A)ét% +Aétz*

The optimum cost (at z*) is zero.

Therefore,

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

[T

EADS Il
©Harald Racke

10 Karmarkars Algorithm

The improvement in the potential function is

f(%) - f(2)

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

The improvement in the potential function is

C

te otz
f(—)—f(z)—Zln() = XI5
i J

n

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

T

The improvement in the potential function is

éte ctz
f(*)—f(Z)—Zln() — > In(—=

n
fte
n

= Zln(

¢tz

SIEIRN

EADS Il 10 Karmarkars Algorithm
©Harald Racke

The improvement in the potential function is

cty ¢tz
F&) - f@ = 21n<)-S5
i J

Zj
- Zln(étZ 1)
n

= gln(ﬁzj)

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

The improvement in the potential function is

A e Ate ctz
f(ﬁ)— f(z) = Zln(1 Zln(z)
t
—Zln(ét TJ

= %m(ﬁzj)

- Zln(%((l —)\)% +Az$))
J

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

T

The improvement in the potential function is

e cte étz
f(;i)—xf(z) EZIn(E;ln(igf)

fte
n

A

—Zhu -f
=%m%ijz

—Zmﬁ%%ﬂl—M%+AzD
j

=>1In(1+
J

*
1A%

EADS I

©Harald Racke

10 Karmarkars Algorithm

We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)

We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)

This gives

~ e A~
f(ﬁ) —f(Z)

We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)

This gives
naA
—-A

FE)-F@=Sma+
J

*
1A%

We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)

This gives
naA
—-A

FE)-F@=Sma+
J

*
1A%

A

n
zln(1+1_A

[T

EADS Il
©Harald Racke

10 Karmarkars Algorithm

In order to get further we need a bound on A:

Xr

m EADS I 10 Karmarkars Algorithm
©Harald Racke

In order to get further we need a bound on A:

o =p

m EADS I 10 Karmarkars Algorithm
©Harald Racke

In order to get further we need a bound on A:

xr =p = |z —e/n|

m EADS I 10 Karmarkars Algorithm
©Harald Racke

In order to get further we need a bound on A:

ar =p =llz—enl =A(z* —¢/n)|

m EADS I 10 Karmarkars Algorithm
©Harald Racke

In order to get further we need a bound on A:

ar =p =z —¢/nl =[IA(z* —¢/n)|l < AR

m EADS I 10 Karmarkars Algorithm
©Harald Racke

In order to get further we need a bound on A:

ar =p =z —¢/nl =[IA(z* —¢/n)|l < AR

m EADS I 10 Karmarkars Algorithm
©Harald Racke

In order to get further we need a bound on A:
oar =p = llz—e/n| = [[A(Z* —¢/n)|l < AR

Here R is the radius of the ball around % that contains the whole
simplex.

‘m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

In order to get further we need a bound on A:
oar =p = llz—e/n| = [[A(Z* —¢/n)|l < AR

Here R is the radius of the ball around % that contains the whole

simplex.
R=V(n-1)/n.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

In order to get further we need a bound on A:
oar =p = llz—e/n| = [[A(Z* —¢/n)|l < AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+ (n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

Aza%za/(n—l)

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

In order to get further we need a bound on A:
oar =p = llz—e/n| = [[A(Z* —¢/n)|l < AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+ (n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

Aza%za/(n—l)

Then

A
1+n71_?\

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

In order to get further we need a bound on A:
oar =p = llz—e/n| = [[A(Z* —¢/n)|l < AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+ (n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

Aza%za/(n—l)

Then

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

In order to get further we need a bound on A:
oar =p = llz—e/n| = [[A(Z* —¢/n)|l < AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+ (n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

Aza%za/(n—l)

Then

1_2\214-7”_0(_121-1—0(

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

In order to get further we need a bound on A:
oar =p = llz—e/n| = [[A(Z* —¢/n)|l < AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+ (n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

Aza%za/(n—l)

Then

1_2\214-7”_0(_121-1—0(

1+n

This gives the lemma.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

Lemma 4
If we choose « = 1/4 and n > 4 in Karmarkars algorithm the
point Xnew Satisfies

A A AL e
J‘C(Xnew)ﬁf(ﬁ)—(s

with 6 = 1/10.

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

Proof:

[T

EADS Il
©Harald Racke

10 Karmarkars Algorithm

Proof:

Define

T

EADS Il
©Harald Racke

10 Karmarkars Algorithm

Proof:

Define
At ~
~ c'X
gxX)=nln—_->
fte
n
m EADS II 10 Karmarkars Algorithm
©Harald Racke

Proof:

Define

I

=
5
>
=

EADS I

T

©Harald Racke

10 Karmarkars Algorithm

Proof:

Define

gxX)=nln

=n(nétx —Inét=) .

e
n

This is the change in the cost part of the potential function when
going from the center % to the point X in the transformed space.

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

Similar, the penalty when going from % to w increases by

R(%) = pen(%) - pen() = - 3 In !

J n

where pen(v) = - > ;In(v;).

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

We want to derive a lower bound on

f(%) — F(Rnew)

m EADS I 10 Karmarkars Algorithm
©Harald Racke

We want to derive a lower bound on
s € AL A ~ e ~
f(ﬁ) — f(Xnew) = [f(ﬁ) - f(2)]
+ h(z)

— h(Xnew)
+[9(2) — g(Xnew)]

where z is the point in the ball where f achieves its minimum.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

We want to derive a lower bound on
~ e ~ N ~ e ~
f(ﬁ) — f(Xpew) = [f(ﬁ) _f(Z)]
+ h(z)

— h(Xnew)

+[9(2) — g(Xnew)]

where z is the point in the ball where f achieves its minimum.

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

We have

[f(%) ~f@1=In1+

by the previous lemma.

m EADS I 10 Karmarkars Algorithm
©Harald Racke

We have

[F(£) - f(2)]=In(+)

n
by the previous lemma.

We have
[g(2) — g(Xnew)] =0

since Xpew is the point with minimum cost in the ball, and g is
monotonically increasing with cost.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

We show that the change h(w) in penalty when going from e/n

to w fulfills
BZ
lh(w)| < 20-B)

where B = nar and w is some point in the ball B(%,(xr).

‘m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

We show that the change h(w) in penalty when going from e/n
to w fulfills
BZ
h(w)| € ——~
|)| 20 - B)
where B = nar and w is some point in the ball B(%,(xr).
Hence,

~ e ao BZ
f(ﬁ)_f(xnew) 2In(1 +) - 1-p)

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

Lemma 5
For|x| <B <1

x2

| In(1 +x) — x| <

21-B) °

©Harald Racke

10 Karmarkars Algorithm

This gives for w € B(;, p)

[h(w)|

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

This gives for w € B(;, p)

lh(w)| = 'Zlnlw/;
j

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

This gives for w € B(y,p)

lh(w)| = lzlnluj/il
J

1/n

Zln(1/n+ (w;j —1/n)
J

)-Snfus-2)

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

This gives for w € B(y,p)

lh(w)| =

Wi
%ml/n‘

1/n

Zln(1/n+ (w;j —1/n)
J

)i

w 1
7 n

]

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

This gives for w € B(n,p)

[h(w)|

Zln l/n
?n(”"”fﬁ;‘””))—%n(w—i)\

> [ln (1 +n(wj— 1/n)> -n(wj - l/n)] ‘

J

T

EADS Il
©Harald Racke

10 Karmarkars Algorithm &

This gives for w € B(n,p)

lh(w)| = Zlnl/n
_ %ln(l/n+(ltﬁl—l/n))_%n(wj—;)‘
= %[ln(lﬂq(wn)) —n(wj—l/n)]‘

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

This gives for w € B(n,

[h(w)|

Zln l/n

p)

[z

J

- ;m(”"“;:;-”“)—;nw—;)\

<nar <1

1+n(w; - 1/n)> -n(w;j — l/n)] ‘

©Harald Racke

10 Karmarkars Algorithm &

This gives for w € B(n,

[h(w)|

Zln l/n

p)

[z

J

- ;m(”"“;:;-”“)—;nw—;)\

l+n(wj—-1/n)) -n(w;-1/n)

©Harald Racke

10 Karmarkars Algorithm &

This gives for w € B(n,p)

[h(w)|

Zln l/n
?n(”"”fﬁ;‘””))—%n(w—i)\

> [ln (1 +n(wj— 1/n)> -n(wj - l/n)] ‘

J

20w — 2
Szn (w; —1/n)

; 2(1 — anr)

T

EADS Il
©Harald Racke

10 Karmarkars Algorithm =)

This gives for w € B(n,p)

[h(w)|

Zln l/n
: ?n(uw;;;—w)_gn@,}._;)\

= > |In(1+nw;-1/n))-nw;-1/n) ‘

SR
n?(w; —1/n)?

<230 —ann)

J
(anr)?

- 2(1 — anr)

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

The decrease in potential is therefore at least

BZ
1-8

In(1 + x) —

with B = noar = a1

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

The decrease in potential is therefore at least

BZ
1-8

In(1 + x) —

with B = noar = a1

It can be shown that this is at least % form =4 and x =1/4.

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

Let x*) be the current point after the k-th iteration, and let
50 = €
n

m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

Let x*) be the current point after the k-th iteration, and let
50 = €
n

Then f(x®)) < f(e/n) — k/10.

m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

Let x*) be the current point after the k-th iteration, and let
50 = €
n

Then f(x®)) < f(e/n) — k/10.
This gives
ctx®)

te
T

nln

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

Let x*) be the current point after the k-th iteration, and let
%0 = ¢
<.

Then f(x®)) < f(e/n) — k/10.
This gives

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

te
n

(k)
nln S5 Zln g Zln% ~k/10
j

< nlnn - k/10

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

Let x*) be the current point after the k-th iteration, and let
%0 = ¢
<.

Then f(x®)) < f(e/n) — k/10.

This gives
ctx®) _(k 1
nln e lenx;)—Zlnﬁ—k/lo
n J J

<nlnn-k/10
Choosing k = 10n (£ + Inn) with £ = ©(L) we get

ctx®

e <e <27l
€'

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

te
n

(k)
nin € X < Zln g Zln% ~k/10
j
< nlnn— k/10

Choosing k = 10n (£ + Inn) with £ = ©(L) we get

ctx®

Tse_€52_g.
T

Hence, ®(nL) iterations are sufficient. One iteration can be
performed in time O(n3).

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

	Karmarkars Algorithm

