Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_i \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

EADS II © Harald Räcke	17.1 Chernoff Bounds

18 MAXSAT

Problem definition:

- ► *n* Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Integer Multicommodity Flows

Choose $\delta = \sqrt{(c \ln n)/W^*}$.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

EADS II © Harald Räcke 17.1 Chernoff Bounds

383

18 MAXSAT

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x̄_j is not a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- ► For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

384

382

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

	18 MAXSAT	
UUU GHarald Räcke		386

$$E[W] = \sum_{j} w_{j}E[X_{j}]$$

= $\sum_{j} w_{j}Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$
\ge $\frac{1}{2}\sum_{j} w_{j}$
\ge $\frac{1}{2}OPT$

5

Define random variable X_i with

 $X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$

Then the total weight W of satisfied clauses is given by

 $W = \sum_{j} w_{j} X_{j}$ The second s

MAXSAT: LP formulation

Let for a clause C_j, P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{j \in P_j} x_i \vee \bigvee_{j \in N_j} \bar{x}_i$$

max		$\sum_j w_j z_j$		
s.t.	$\forall j$	$\sum_{i \in P_i} y_i + \sum_{i \in N_i} (1 - y_i)$	\geq	z_j
	∀i	\mathcal{Y}_i	\in	$\{0, 1\}$
	$\forall j$	z_j	\leq	1

EADS II ©Harald Räcke

388

18 MAXSAT

MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

EADS II © Harald Räcke	18 MAXSAT	

390

392

Definition 8

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

 $f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$

Lemma 9

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0, 1]$.

EADS II © Harald Räcke	18 MAXSAT	
---------------------------	-----------	--

Lemma 7 (Geometric Mean \leq **Arithmetic Mean)** For any nonnegative a_1, \ldots, a_k

 $\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$

EADS II © Harald Räcke	18 MAXSAT	391

$$\Pr[C_{j} \text{ not satisfied}] = \prod_{i \in P_{j}} (1 - y_{i}) \prod_{i \in N_{j}} y_{i}$$

$$\leq \left[\frac{1}{\ell_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}) + \sum_{i \in N_{j}} y_{i} \right) \right]^{\ell_{j}}$$

$$= \left[1 - \frac{1}{\ell_{j}} \left(\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \right) \right]^{\ell_{j}}$$

$$\leq \left(1 - \frac{z_{j}}{\ell_{j}} \right)^{\ell_{j}}.$$
EDS II
$$ls \text{ MXSAT}$$
18 MAXEM

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$
$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

 $f''(z) = -\frac{\ell-1}{\ell} \Big[1 - \frac{z}{\ell} \Big]^{\ell-2} \le 0$ for $z \in [0,1]$. Therefore, f is concave.

EADS II ©Harald Räcke 18 MAXSAT

MAXSAT: The better of two

Theorem 10

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

החוחר	EADS II © Harald Räcke
	© Harald Räcke

396

394

	$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$ $\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$ $\geq \left(1 - \frac{1}{e}\right) \text{ OPT }.$	
EADS II © Harald Räcke	18 MAXSAT	395

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

$$E[\max\{W_1, W_2\}]$$

$$\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2]$$

$$\geq \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)$$

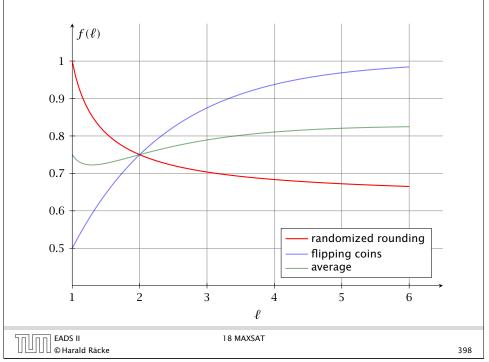
$$\geq \sum_j w_j z_j \left[\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)\right]$$

$$\geq \frac{3}{4} \text{ for all integers}$$

$$\geq \frac{3}{4} \text{ OPT}$$

$$EADS II \qquad 18 \text{ MAXSAT}$$

$$397$$



MAXSAT: Nonlinear Randomized Rounding

Let $f : [0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x-1}$$

Theorem 11

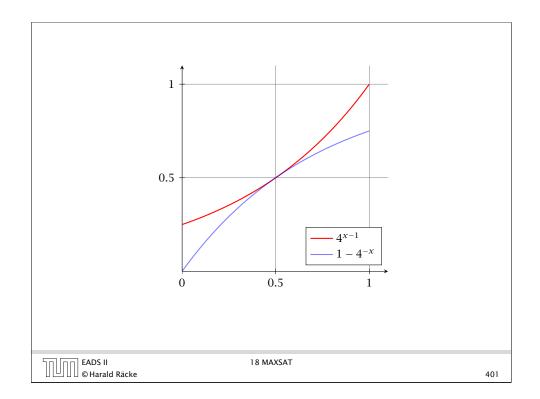
Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

MAXSAT: Nonlinear Randomized Rounding

We could define a function $f : [0,1] \rightarrow [0,1]$ and set x_i to true with probability $f(y_i)$.

EADS II 18 MAXSAT © Harald Räcke 399



EADS II © Harald Räcke

18 MAXSAT

400

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$
$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$
$$= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))}$$
$$\leq 4^{-z_j}$$

Can we do better?

5

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 12 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

The function $g(z) = 1 - 4^{-z}$ is concave on [0,1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \operatorname{OPT}$$

	18 MAXSAT	
UUU© Harald Räcke		403

Lemma 13

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

$$\begin{array}{|c|c|c|c|c|} \hline \max & & \sum_{j} w_{j} z_{j} \\ \text{s.t.} & \forall j & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) & \geq & z_{j} \\ & \forall i & & y_{i} & \in & \{0, 1\} \\ & \forall j & & z_{j} & \leq & 1 \end{array}$$

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- ▶ we can set y₁ = y₂ = 1/2 in the LP; this allows to set z₁ = z₂ = z₃ = z₄ = 1
- ▶ hence, the LP has value 4.