Repetition: Primal Dual for Set Cover

Primal Relaxation:

$$\begin{array}{c|cccc} \min & & \sum_{i=1}^{k} w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i \geq 1 \\ & \forall i \in \{1, \dots, k\} & x_i \geq 0 \end{array}$$

Dual Formulation:

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with y = 0 (feasible dual solution).
 Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - ► If this is the constraint for set S_j set x_j = 1 (add this set to your solution).

Repetition: Primal Dual for Set Cover

Analysis:

For every set S_j with $x_j = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e} \le f \cdot \sum_{e} y_{e} \le f \cdot \text{OPT}$$

19 Primal Dual Revisited

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j: e \in S_j} x_j = 1$$

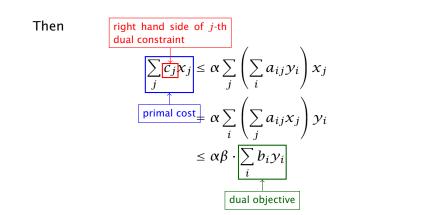
then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

Suppose we have a primal/dual pair


$$\begin{array}{|c|c|c|c|c|}\hline \min & & \sum_{j} c_{j} x_{j} \\ \text{s.t.} & \forall i & \sum_{j:} a_{ij} x_{j} \geq b_{i} \\ \forall j & & x_{j} \geq 0 \end{array} \begin{array}{|c|c|c|c|}\hline \max & & \sum_{i} b_{i} y_{i} \\ \text{s.t.} & \forall j & \sum_{i} a_{ij} y_{i} \leq c_{j} \\ \forall i & & y_{i} \geq 0 \end{array}$$

and solutions that fulfill approximate slackness conditions:

$$x_j > 0 \Rightarrow \sum_i a_{ij} y_i \ge \frac{1}{\alpha} c_j$$
$$y_i > 0 \Rightarrow \sum_j a_{ij} x_j \le \beta b_i$$

19 Primal Dual Revisited

Feedback Vertex Set for Undirected Graphs

- Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.
- Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- The O(log n)-approximation for Set Cover does not help us to get a good solution.

Let C denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

$$\begin{array}{|c|c|c|c|c|}\hline \min & & \sum_{v} w_{v} x_{v} \\ \text{s.t.} & \forall C \in C & \sum_{v \in C} x_{v} \geq 1 \\ & \forall v & x_{v} \geq 0 \end{array}$$

Dual Formulation:

If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.

• set
$$x_v = 1$$
.

Then

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

Algorithm 1 FeedbackVertexSet

- 1: $y \leftarrow 0$
- 2: *x* ← 0
- 3: while exists cycle C in G do
- 4: increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$

5:
$$x_v = 1$$

- 6: remove v from G
- 7: repeatedly remove vertices of degree 1 from G

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Theorem 2

In any graph with no vertices of degree 1, there always exists a cycle that has at most $O(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

 $\mathcal{Y}_C > 0 \Rightarrow |S \cap C| \leq \mathcal{O}(\log n)$.

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes $s, t \in V$ and edge-weights $c : E \to \mathbb{R}^+$ find a shortest path between s and t w.r.t. edge-weights c.

min		$\sum_{e} c(e) x_{e}$		
s.t.	$\forall S \in S$	$\sum_{e:\delta(S)} x_e$	\geq	1
	$\forall e \in E$	x_e	\in	$\{0, 1\}$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Primal Dual for Shortest Path

The Dual:

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

We can interpret the value y_S as the width of a moat surounding the set *S*.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

Algorithm 1 PrimalDualShortestPath

1: $y \leftarrow 0$

2:
$$F \leftarrow \emptyset$$

- 3: while there is no s-t path in (V, F) do
- 4: Let *C* be the connected component of (*V*,*F*) containing *s*
- 5: Increase γ_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e' \in \delta(S)} \gamma_S = c(e')$. 6: $F \leftarrow F \cup \{e'\}$

7: Let P be an s-t path in
$$(V, F)$$

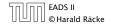
8: return P

Lemma 3

At each point in time the set F forms a tree.

Proof:

- ▶ In each iteration we take the current connected component from (V, F) that contains *s* (call this component *C*) and add some edge from $\delta(C)$ to *F*.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.


$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S .$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le \text{OPT}$$

by weak duality.

Hence, we find a shortest path.

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs $s_i, t_i, i = 1, ..., k$, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

min		$\sum_{e} c(e) x_{e}$		
s.t.	$\forall S \subseteq V : S \in S_i \text{ for some } i$	$\sum_{e \in \delta(S)} x_e$	\geq	1
	$\forall e \in E$	x_e	\in	{0,1}

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

$$\begin{array}{cccc} \max & \sum_{S: \exists i \text{ s.t. } S \in S_i} \mathcal{Y}S \\ \text{s.t.} & \forall e \in E & \sum_{S:e \in \delta(S)} \mathcal{Y}S &\leq c(e) \\ & \mathcal{Y}S &\geq 0 \end{array}$$

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

Algorithm 1 FirstTry

1:
$$y \leftarrow 0$$

2: $F \leftarrow \emptyset$
3: while not all $s_i \cdot t_i$ pairs connected in F do
4: Let C be some connected component of (V, F)
such that $|C \cap \{s_i, t_i\}| = 1$ for some i .
5: Increase y_C until there is an edge $e' \in \delta(C)$ s.t.
 $\sum_{S \in S_i: e' \in \delta(S)} y_S = C_{e'}$
6: $F \leftarrow F \cup \{e'\}$
7: return $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

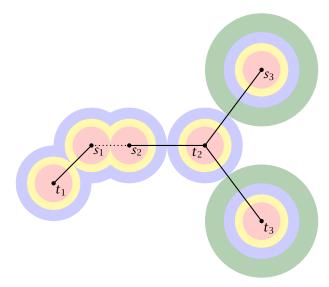
If we show that $y_S > 0$ implies that $|\delta(S) \cap F| \le \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- The *i*-th pair is v_0 - v_i .
- The first component *C* could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- The final set *F* contains all edges $\{v_0, v_i\}, i = 1, ..., k$.

•
$$y_{\{v_0\}} > 0$$
 but $|\delta(\{v_0\}) \cap F| = k$.

Algorithm 1 SecondTry


1:
$$y \leftarrow 0$$
; $F \leftarrow \emptyset$; $\ell \leftarrow 0$
2: while not all $s_i \cdot t_i$ pairs connected in F do
3: $\ell \leftarrow \ell + 1$
4: Let C be set of all connected components C of (V, F)
such that $|C \cap \{s_i, t_i\}| = 1$ for some i .
5: Increase y_C for all $C \in C$ uniformly until for some edge
 $e_\ell \in \delta(C'), C' \in C$ s.t. $\sum_{S:e_\ell \in \delta(S)} y_S = c_{e_\ell}$
6: $F \leftarrow F \cup \{e_\ell\}$
7: $F' \leftarrow F$
8: for $k \leftarrow \ell$ downto 1 do // reverse deletion
9: if $F' - e_k$ is feasible solution then
10: remove e_k from F'
11: return F'

The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

Example

Lemma 4 For any *C* in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|C|$$

This means that the number of times a moat from C is crossed in the final solution is at most twice the number of moats.

Proof: later...

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} \gamma_S = \sum_S |F' \cap \delta(S)| \cdot \gamma_S .$$

We want to show that

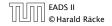
$$\sum_{S} |F' \cap \delta(S)| \cdot \gamma_{S} \le 2 \sum_{S} \gamma_{S}$$

In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.


Lemma 5

For any set of connected components *C* in any iteration of the algorithm

$$\sum_{C \in \mathcal{C}} |\delta(C) \cap F'| \le 2|C|$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- ► Fix iteration *i*. *e_i* is the set we add to *F*. Let *F_i* be the set of edges in *F* at the beginning of the iteration.
- Let $H = F' F_i$.
- All edges in *H* are necessary for the solution.

- ► Contract all edges in *F_i* into single vertices *V*′.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ► Color a vertex $v \in V'$ red if it corresponds to a component from *C* (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{\nu \in R} \deg(\nu) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

Suppose that no node in *B* has degree one.

Then

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.
 - But then it must be a red node.

