Definition 2 (NP)

A language $L \in N P$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.
$[x \in L] \quad$ There exists a proof string $y,|y|=\operatorname{poly}(|x|)$, s.t. $V(x, y)=$ "accept".
[$x \notin L] \quad$ For any proof string $y, V(x, y)=$ "reject".
Note that requiring $|y|=\operatorname{poly}(|x|)$ for $x \notin L$ does not make a difference (why?).
© Harald Räcke

Probabilistic Checkable Proofs

Definition 4 (PCP)

A language $L \in \operatorname{PCP}_{c(n), s(n)}(r(n), q(n))$ if there exists a polynomial time, non-adaptive, randomized verifier V (an Oracle Turing Machine), s.t.
[$x \in L] \quad$ There exists a proof string y, s.t. $V^{\pi_{y}}(x)=$ "accept" with proability $\geq c(n)$.
[$x \notin L] \quad$ For any proof string $y, V^{\pi_{y}}(x)=$ "accept" with probability $\leq s(n)$.

The verifier uses at most $r(n)$ random bits and makes at most $q(n)$ oracle queries.

Probabilistic Proof Verification

Definition 3 (IP)

In an interactive proof system a randomized polynomial-time verifier V (with private coin tosses) interacts with an all powerful prover P in polynomially many rounds. $L \in \mathrm{IP}$ if
[$x \in L]$ There exists a strategy for P s.t. V accepts with probability 1.
[$x \notin L]$ Regardless of P 's strategy V accepts with probability at most $1 / 2$.

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access to an oracle.

Such an oracle allows M to solve some problem in a single step.
For example having access to a TSP-oracle $\pi_{T S P}$ would allow M to write a TSP-instance x on a special oracle tape and obtain the answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query complexity, i.e., how often the machine queries the oracle.

For a proof string y, π_{y} is an oracle that upon given an index i returns the i-th character y_{i} of y.
$c(n)$ is called the completeness. If not specified otw. $c(n)=1$.
Probability of accepting a correct proof.
$s(n)<c(n)$ is called the soundness. If not specified otw.
$s(n)=1 / 2$. Probability of accepting a wrong proof.
$r(n)$ is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.
$q(n)$ is the query complexity of the verifier.

- $\operatorname{PCP}(0,0)=\mathrm{P}$
- $\operatorname{PCP}(\mathcal{O}(\log n), 0)=\mathrm{P}$
- $\operatorname{PCP}(0, \mathcal{O}(\log n))=\mathrm{P}$
- $\operatorname{PCP}(0, \mathcal{O}(\operatorname{poly}(n)))=\mathrm{NP}$
- $\operatorname{PCP}(\mathcal{O}(\log n), \mathcal{O}(\operatorname{poly}(n)))=\mathrm{NP}$
- $\operatorname{PCP}(\mathcal{O}(\operatorname{poly}(n)), 0)=\operatorname{coRP}$
randomized polynomial time with one sided error (positive probability of accepting a false statement)
- $\operatorname{PCP}(\mathcal{O}(\log n), \mathcal{O}(1))=$ NP (the PCP theorem)

$$
\mathrm{IP} \subseteq \mathrm{PCP}_{1,1 / 2}(\operatorname{poly}(n), \operatorname{poly}(n))
$$

We can view non-adadpative $\operatorname{PCP}_{1,1 / 2}(\operatorname{poly}(n), \operatorname{poly}(n))$ as the version of IP in which the prover has written down his answers to all possible queries (beforehand).

This makes it harder for the prover to cheat.
The non-cheating prover does not loose power.
Note that the above is not a proof!
1021 Probabilistically Checkable Proofs

$\mathrm{NP} \subseteq \mathrm{PCP}(\operatorname{poly}(n), 1)$

$\operatorname{PCP}(\operatorname{poly}(n), 1)$ means that we have a potentially exponentially long proof but we only read a constant number of bits from the proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^{n} bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions.

THT EADS II | OHarald Räcke |
| :--- |

The Code

$u \in\{0,1\}^{n}$ (satisfying assignment)

Walsh-Hadamard Code

$\mathrm{WH}_{u}:\{0,1\}^{n} \rightarrow\{0,1\}, x \mapsto x^{T} u$ (over GF(2))
The code-word for u is WH_{u}. We identify this function by a bit-vector of length 2^{n}.

The Code
 The Code

Suppose we are given access to a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions $\{0,1\}^{n}$ to $\{0,1\}$ we can check

$$
f(x+y)=f(x)+f(y)
$$

for all $2^{2 n}$ pairs x, y. But that's not very efficient.
-

The Code

Lemma 5
If $u \neq u^{\prime}$ then WH_{u} and $\mathrm{WH}_{u^{\prime}}$ differ in at least 2^{n-1} bits.

Suppose that $u-u^{\prime} \neq 0$. Then

$$
\mathrm{WH}_{u}(x) \neq \mathrm{WH}_{u^{\prime}}(x) \Longleftrightarrow\left(u-u^{\prime}\right)^{T} x \neq 0
$$

This holds for 2^{n-1} different vectors x.

Definition 6

Let $\rho \in[0,1]$. We say that $f, g:\{0,1\}^{n} \rightarrow\{0,1\}$ are ρ-close if

$$
\operatorname{Pr}_{x \in\{0,1\}^{n}}[f(x)=g(x)] \geq \rho .
$$

Theorem 7
Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with

$$
\operatorname{Pr}_{x, y \in\{0,1\}^{n}}[f(x)+f(y)=f(x+y)] \geq \rho>\frac{1}{2} .
$$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ-close.

| EADS II | | |
| :--- | :--- | :--- | :--- |
| OHarald Räcke | 21 Probabilistically Checkable Proofs | 466 |

Suppose for $\delta<1 / 4 f$ is $(1-\delta)$-close to some linear function \tilde{f}.
\tilde{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in\{0,1\}^{n}$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

We need $\mathcal{O}(1 / \delta)$ trials to be sure that f is $(1-\delta)$-close to a linear function with (arbitrary) constant probability.

Suppose we are given $x \in\{0,1\}^{n}$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

1. Choose $x^{\prime} \in\{0,1\}^{n}$ u.a.r.
2. Set $x^{\prime \prime}:=x+x^{\prime}$.
3. Let $y^{\prime}=f\left(x^{\prime}\right)$ and $y^{\prime \prime}=f\left(x^{\prime \prime}\right)$.
4. Output $y^{\prime}+y^{\prime \prime}$.
x^{\prime} and $x^{\prime \prime}$ are uniformly distributed (albeit dependent). With probability at least $1-2 \delta$ we have $f\left(x^{\prime}\right)=\tilde{f}\left(x^{\prime}\right)$ and $f\left(x^{\prime \prime}\right)=\tilde{f}\left(x^{\prime \prime}\right)$.

Then we can compute $\tilde{f}(x)$.
This technique is known as local decoding of the Walsh-Hadamard code.

$\mathrm{NP} \subseteq \mathrm{PCP}(\operatorname{poly}(n), 1)$

We show that $\operatorname{QUADEQ} \in \operatorname{PCP}(\operatorname{poly}(n), 1)$. The theorem follows since any PCP-class is closed under polynomial time reductions.
introduce QUADEQ...
prove NP-completeness...

Step 1. Linearity Test.

The proof contains $2^{n}+2^{n^{2}}$ bits. This is interpreted as a pair of functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n^{2}} \rightarrow\{0,1\}$.

We do a 0.99-linearity test for both functions (requires a constant number of queries).

We also assume that the remaining constant number of (random) accesses only hit points where $f(x)=\tilde{f}(x)$.

Hence, our proof will only see \tilde{f} and therefore we use f for \tilde{f}, in the following (similar for \mathfrak{g}, \tilde{g}).

Let A, b be an instance of QUADEQ. Let u be a satisfying assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u and $u \otimes u$. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not correspond to codewords for vectors of the form u, and $u \otimes u$.

We also have to reject proofs that correspond to codewords for vectors of the form z, and $z \otimes z$, where z is not a satisfying assignment.

Step 2. Verify that \boldsymbol{g} encodes $\boldsymbol{u} \otimes u$ where \boldsymbol{u} is string encoded by f.
$f(r)=u^{T} r$ and $g(z)=w^{T} z$ since f, g are linear.

- choose r, r^{\prime} independently, u.a.r. from $\{0,1\}^{n}$
- if $f(r) f\left(r^{\prime}\right) \neq g\left(r \otimes r^{\prime}\right)$ reject
- repeat 3 times

A correct proof survives the test

$$
\begin{aligned}
f(r) \cdot f\left(r^{\prime}\right) & =u^{T} r \cdot u^{T} r^{\prime}=\left(\sum_{i} u_{i} r_{i}\right) \cdot\left(\sum_{j} u_{j} r_{j}^{\prime}\right) \\
& =\sum_{i j} u_{i} u_{j} r_{i} r_{j}^{\prime}=(u \otimes u)^{T}\left(r \otimes r^{\prime}\right)=g\left(r \otimes r^{\prime}\right)
\end{aligned}
$$

Step 3. Verify that f encodes satisfying assignment.

We need to check

$$
A_{k}(u \otimes u)=b_{k}
$$

where A_{k} is the k-th row of the constraint matrix. But the left hand side is just $g\left(A_{k}^{T}\right)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute $r A$, where $r \in_{R}\{0,1\}^{m}$. If u is not a satisfying assignment then with probability $1 / 2$ the vector r will hit an odd number of violated constraint.

In this case $r A(u \otimes u) \neq r b_{k}$. The left hand side is equal to $g\left(A^{T} r^{T}\right)$.

Suppose that the proof is not correct and $w \neq u \otimes u$.
Let W be $n \times n$-matrix with entries from w. Let U be matrix with $U_{i j}=u_{i} \cdot u_{j}$ (entries from $u \otimes u$).

$$
\begin{gathered}
g\left(r \otimes r^{\prime}\right)=w^{T}\left(r \otimes r^{\prime}\right)=\sum_{i j} w_{i j} r_{i} r_{j}^{\prime}=r^{T} W r^{\prime} \\
f(r) f\left(r^{\prime}\right)=u^{T} r \cdot u^{T} r^{\prime}=r^{T} U r^{\prime}
\end{gathered}
$$

If $U \neq W$ then $W r^{\prime} \neq U r^{\prime}$ with probability at least $1 / 2$. Then $r^{T} W r^{\prime} \neq r^{T} U r^{\prime}$ with probability at least $1 / 4$.

Theorem 7
Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with

$$
\operatorname{Pr}_{x, y \in\{0,1\}^{n}}[f(x)+f(y)=f(x+y)] \geq \rho>\frac{1}{2}
$$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ-close.

Fourier Transform over GF(2)

In the following we use $\{-1,1\}$ instead of $\{0,1\}$. We map $b \in\{0,1\}$ to $(-1)^{b}$.

This turns summation into multiplication.
The set of function $f:\{-1,1\} \rightarrow \mathbb{R}$ form a 2^{n}-dimensional Hilbert space.

Hilbert space

- addition $(f+g)(x)=f(x)+g(x)$
- scalar multiplication $(\alpha f)(x)=\alpha f(x)$
- inner product $\langle f, g\rangle=E_{x \in\{0,1\}^{n}}[f(x) g(x)]$
(bilinear, $\langle f, f\rangle \geq 0$, and $\langle f, f\rangle=0 \Rightarrow f=0$)
- completeness: any sequence x_{k} of vectors for which

$$
\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty \text { fulfills }\left\|L-\sum_{k=1}^{N} x_{k}\right\| \rightarrow 0
$$

for some vector L

standard basis

$$
e_{x}(y)= \begin{cases}1 & x=y \\ 0 & \text { otw }\end{cases}
$$

Then, $f(x)=\sum_{x} \alpha_{x} e_{x}$ where $\alpha_{x}=f(x)$, this means the functions e_{x} form a basis. This basis is orthonormal.

fourier basis

For $\alpha \subseteq[n]$ define

$$
\chi_{\alpha}(x)=\prod_{i \in \alpha} x_{i}
$$

Note that

$$
\left\langle\chi_{\alpha}, \chi_{\beta}\right\rangle=E_{x}\left[\chi_{\alpha}(x) \chi_{\beta}(x)\right]=E_{x}\left[\chi_{\alpha \triangle \beta}(x)\right]= \begin{cases}1 & \alpha=\beta \\ 0 & \text { otw. }\end{cases}
$$

This means the χ_{α} 's also define an orthonormal basis. (since we have 2^{n} orthonormal vectors...)

A function χ_{α} multiplies a set of x_{i} 's. Back in the GF(2)-world this means summing a set of z_{i} 's where $x_{i}=(-1)^{z_{i}}$.

This means the function χ_{α} correspond to linear functions in the $\mathrm{GF}(2)$ world.

Linearity Test

GF (2)

We want to show that if $\operatorname{Pr}_{x, y}[f(x)+f(y)=f(x+y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that $f:\{+1,-1\}^{n} \rightarrow\{-1,1\}$ satisfies
$\operatorname{Pr}_{x, y}[f(x) f(y)=f(x y)] \geq \frac{1}{2}+\epsilon$. Then there is some $\alpha \subseteq[n]$, s.t. $\hat{f}_{\alpha} \geq 2 \epsilon$.

For Boolean functions $\langle f, g\rangle$ is the fraction of inputs on which f, g agree minus the fraction of inputs on which they disagree.

$$
2 \epsilon \leq \hat{f}_{\alpha}=\left\langle f, \chi_{\alpha}\right\rangle=\text { agree }- \text { disagree }=\text { 2agree }-1
$$

This gives that the agreement between f and χ_{α} is at least $\frac{1}{2}+\epsilon$.

We can write any function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ as

$$
f=\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}
$$

We call \hat{f}_{α} the $\alpha^{\text {th }}$ Fourier coefficient.

Lemma 8

1. $\langle f, g\rangle=\sum_{\alpha} f_{\alpha} g_{\alpha}$
2. $\langle f, f\rangle=\sum_{\alpha} f_{\alpha}^{2}$

Note that for Boolean functions $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, $\langle f, f\rangle=1$.

Linearity Test

$$
\operatorname{Pr}_{x, y}[f(x y)=f(x) f(y)] \geq \frac{1}{2}+\epsilon
$$

is equivalent to

$$
E_{x, y}[f(x y) f(x) f(y)]=\text { agreement - disagreement } \geq 2 \epsilon
$$

$$
\begin{aligned}
2 \epsilon & \leq E_{x, y}[f(x y) f(x) f(y)] \\
& =E_{x, y}\left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(x y)\right) \cdot\left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x)\right) \cdot\left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y)\right)\right] \\
& =E_{x, y}\left[\sum_{\alpha, \beta, \gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y)\right] \\
& =\sum_{\alpha, \beta, \gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x}\left[\chi_{\alpha}(x) \chi_{\beta}(x)\right] E_{y}\left[\chi_{\alpha}(y) \chi_{\gamma}(y)\right] \\
& =\sum_{\alpha} \hat{f}_{\alpha}^{3} \\
& \leq \max _{\alpha} \hat{f}_{\alpha} \cdot \sum_{\alpha} \hat{f}_{\alpha}^{2}=\max _{\alpha} \hat{f}_{\alpha}
\end{aligned}
$$

Probabilistic proof for Graph Nonlsomorphism

Verifier:

- choose $b \in\{0,1\}$ at random
- take graph G_{b} and apply a random permutation to obtain a labeled graph H
- check whether $P[H]=b$

If $G_{0} \not \equiv G_{1}$ then by using the obvious proof the verifier will always accept.

If $G_{0} \not \equiv G_{1}$ a proof only accepts with probability $1 / 2$.

- suppose $\pi\left(G_{0}\right)=G_{1}$
- if we accept for $b=1$ and permutation $\pi_{\text {rand }}$ we reject for permutation $b=0$ and $\pi_{\text {rand }} \circ \pi$

Probabilistic proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs
Verifier gets input (G_{0}, G_{1}) (two graphs with n-nodes)
It expects a proof of the following form:

- For any labeled n-node graph H the H 's bit $P[H]$ of the proof fulfills

$$
\begin{aligned}
G_{0} \equiv H & \Rightarrow P[H]=0 \\
G_{1} \equiv H & \Rightarrow P[H]=1 \\
G_{0}, G_{1} \not \equiv H & \Rightarrow P[H]=\text { arbitrary }
\end{aligned}
$$

How to show Harndess of Approximation?

Decision version of optimization problems:

Suppose we have some maximization problem.
The corresponding decision problem equips each instance with a parameter k and asks whether we can obtain a solution value of at least k. (where infeasible solutions are assumed to have value $-\infty)$
(Analogous for minimization problems.)

This is the standard way to show that some optimization problem is e.g. NP-hard.

How to show Harndess of Approximation?

Gap version of optimization problems:

Suppose we have some maximization problem.
The corresponding (α, β)-gap problem asks the following:
Suppose we are given an instance I and a promise that either $\operatorname{opt}(I) \geq \beta$ or $\operatorname{opt}(I) \leq \alpha$. Can we differentiate between these two cases?

An algorithm A has to output

- $A(I)=1$ if opt $(I) \geq \beta$
- $A(I)=0$ if opt $(I) \leq \alpha$
- $A(I)=$ arbitrary, otw

Note that this is not a decision problem

Constraint Satisfaction Problem

A q CSP ϕ consists of $m n$-ary Boolean functions $\phi_{1}, \ldots, \phi_{m}$ (constraints), where each function only depends on q inputs. The goal is to maximize the number of satisifed constraints.

- $u \in\{0,1\}^{n}$ satsifies constraint ϕ_{i} if $\phi_{i}(u)=1$
- $r(u):=\sum_{i} \phi_{i}(u) / m$ is fraction of satisfied constraints
- value $(\phi)=\max _{u} r(u)$
- ϕ is satisfiable if value $(\phi)=1$.

3SAT is a constraint satsifaction problem with $q=3$.

An approximation algorithm with approximation guarantee $c \leq \beta / \alpha$ can solve an (α, β)-gap problem.

Constraint Satisfaction Problem

GAP version:

A $\rho \mathrm{GAPq} \operatorname{CSP} \phi$ consists of $m n$-ary Boolean functions
$\phi_{1}, \ldots, \phi_{m}$ (constraints), where each function only depends on q inputs. We know that either ϕ is satisfiable or value $(\phi)<\rho$, and want to differentiate between these cases.
ρ GAPqCSP is NP-hard if for any $L \in$ NP there is a polytime computable function f mapping strings to instances of q CSP s.t.

- $x \in L \Rightarrow$ value $(f(x))=1$
- $x \notin L \Rightarrow \operatorname{value}(f(x))<\rho$

Theorem 9
There exists constants q, ρ such that $\rho G A P q C S P$ is NP-hard.

This means that $\rho \mathrm{GAPqCSP}$ is NP-hard.

We know that NP $\subseteq \operatorname{PCP}(\log n, 1)$

We reduce 3SAT to ρ GAPqCSP.

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in\{0,1\}^{c \log n}$ define

- $V_{x, r}$ as function that maps a proof π to the result ($0 / 1$) computed by the verifier when using proof π, instance x and random coins r.
- $V_{x, r}$ only depends on q bits of the proof

For any x the collection ϕ of the $V_{x, r}$'s over all r is polynomial size q CSP.
ϕ can be computed in polynomial time.

Suppose that ρ GAPqCSP is NP-hard for some constants q, ρ ($\rho<1$).

Suppose you get an input x, and have to decide whether $x \in L$.
We get a verifier as follows.
We use the reduction to map an input x into an instance ϕ of q CSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_{i} by making q queries. If $x \in L$ the verifier accepts with probability 1 .

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ.

Hence, $L \in \mathrm{PCP}_{1, \rho}\left(\log _{2} m, q\right)$, where m is the number of constraints.

Theorem 10
For any positive constants $\epsilon, \delta>0$, it is the case that $\mathrm{NP} \subseteq \mathrm{PCP}_{1-\epsilon, 1 / 2+\delta}(\log n, 3)$, and the verifier is restricted to use only the functions odd and even.

It is NP-hard to approximate an ODD/EVEN constraint satisfaction problem by a factor better than $1 / 2+\delta$, for any constant δ.

Theorem 11
For any positive constant $\delta>0, \mathrm{NP} \subseteq \mathrm{PCP}_{1,7 / 8+\delta}(\mathcal{O}(\log n), 3)$ and the verifier is restricted to use only functions that check the OR of three bits or their negations.

It is NP-hard to approximate 3SAT better than $7 / 8+\delta$.

Label Cover

Input:

- bipartite graph $G=\left(V_{1}, V_{2}, E\right)$
- label sets L_{1}, L_{2}
- for every edge $(u, v) \in E$ a relation $R_{u, v} \subseteq L_{1} \times L_{2}$ that describe assignments that make the edge happy.
- maximize number of happy edges

The following GAP-problem is NP-hard for any $\epsilon>0$.
Given a graph $G=(V, E)$ composed of m independent sets of size $3(|V|=3 m)$. Distinguish between

- the graph has a CLIQUE of size m
- the largest CLIQUE has size at most $(7 / 8+\epsilon) m$

Label Cover

- an instance of label cover is $\left(d_{1}, d_{2}\right)$-regular if every vertex in L_{1} has degree d_{1} and every vertex in L_{2} has degree d_{2}.
- if every vertex has the same degree d the instance is called d-regular

Minimization version:

- assign a set $L_{x} \subseteq L_{1}$ of labels to every node $x \in L_{1}$ and a set $L_{y} \subseteq L_{2}$ to every node $x \in L_{2}$
- make sure that for every edge (x, y) there is $\ell_{x} \in L_{x}$ and $\ell_{y} \in L_{y}$ s.t. $\left(\ell_{x}, \ell_{y}\right) \in R_{x, y}$
- minimize $\sum_{x \in L_{1}}\left|L_{x}\right|+\sum_{y \in L_{2}}\left|L_{y}\right|$ (total labels used)

MAX E3SAT via Label Cover

instance:
$\Phi(x)=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{4} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{4}\right)$
corresponding graph:

label sets: $L_{1}=\{T, F\}^{3}, L_{2}=\{T, F\}$ ($T=$ true, $F=$ false $)$
relation: $R_{C, x_{i}}=\left\{\left(\left(u_{i}, u_{j}, u_{k}\right), u_{i}\right)\right\}$, where the clause C is over variables x_{i}, x_{j}, x_{k} and assignment (u_{i}, u_{j}, u_{k}) satisfies C

$$
\begin{aligned}
R=\{ & ((F, F, F), F),((F, T, F), F),((F, F, T), T),((F, T, T), T), \\
& ((T, T, T), T),((T, T, F), F),((T, F, F), F)\}
\end{aligned}
$$

MAX E3SAT via Label Cover

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most $3 k+2(m-k)=2 m+k$ edges happy.

Proof:

- the labeling of nodes in V_{2} gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- hence at most $3 m-(m-k)=2 m+k$ edges are happy

MAX E3SAT via Label Cover

Lemma 12
If we can satisfy k out of m clauses in ϕ we can make at least $3 k+2(m-k)$ edges happy.

Proof:

- for V_{2} use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V_{1} use the corresponding assignment to the clause-variables (gives $3 k$ happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives $2(m-k)$ happy edges)

Hardness for Label Cover

We cannot distinguish between the following two cases

- all $3 m$ edges can be made happy
- at most $2 m+(7 / 8+\epsilon) m \approx\left(\frac{23}{8}+\epsilon\right) m$ out of the $3 m$ edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha>\frac{23}{24}$.

Here α is a constant!!! Maybe a guarantee of the form $\frac{23}{8}+\frac{1}{m}$ is possible.

(3,5)-regular instances

Theorem 14

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- the resulting Label Cover instance is $(3,5)$-regular
- it is hard to approximate for a constant $\alpha<1$
- given a label ℓ_{1} for x there is at most one label ℓ_{2} for y that makes edge (x, y) happy (uniqueness property)

Regular instances

Theorem 15
If for a particular constant $\alpha<1$ there is an α-approximation algorithm for Label Cover on 15-regular instances than $P=N P$.

Given a label ℓ_{1} for $x \in V_{1}$ there is at most one label ℓ_{2} for y that makes (x, y) happy. (uniqueness property)

Boosting

Given Label Cover instance I with $G=\left(V_{1}, V_{2}, E\right)$, label sets L_{1} and L_{2} we construct a new instance I^{\prime} :

- $V_{1}^{\prime}=V_{1}^{k}=V_{1} \times \cdots \times V_{1}$
- $V_{2}^{\prime}=V_{2}^{k}=V_{2} \times \cdots \times V_{2}$
- $L_{1}^{\prime}=L_{1}^{k}=L_{1} \times \cdots \times L_{1}$
- $L_{2}^{\prime}=L_{2}^{k}=L_{2} \times \cdots \times L_{2}$
- $E^{\prime}=E^{k}=E \times \cdots \times E$

An edge $\left(\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right)$ whose end-points are labelled by $\left(\ell_{1}^{x}, \ldots, \ell_{k}^{x}\right)$ and $\left(\ell_{1}^{y}, \ldots, \ell_{k}^{y}\right)$ is happy if $\left(\ell_{i}^{x}, \ell_{i}^{y}\right) \in R_{x_{i}, y_{i}}$ for all i.

Boosting

If I is regular than also I^{\prime}.
If I has the uniqueness property than also I^{\prime}.

Theorem 16
There is a constant $c>0$ such if $\mathrm{OPT}(I)=|E|(1-\delta)$ then $\mathrm{OPT}\left(I^{\prime}\right) \leq\left|E^{\prime}\right|(1-\delta)^{\frac{c k}{\log L}}$, where $L=\left|L_{1}\right|+\left|L_{2}\right|$ denotes total number of labels in I.
proof is highly non-trivial

Set Cover

Theorem 19

There exist regular Label Cover instances s.t. we cannot distinguish whether

- all edges are satisfiable, or
- at most a $1 / \log ^{2}\left(\left|L_{2}\right||E|\right)$-fraction is satisfiable
unless NP-problems have algorithms with running time $\mathcal{O}\left(n^{\mathcal{O}(\log \log n)}\right)$.
choose $k=\frac{2 \log 10}{c} \log _{1 /(1-\delta)}\left(\log \left(\left|L_{2}\right||E|\right)\right)=\mathcal{O}(\log \log n)$.

Theorem 17

There are constants $c>0, \delta<1$ s.t. for any k we cannot distinguish regular instances for Label Cover in which either

- $\operatorname{OPT}(I)=|E|$, or
- OPT $(I)=|E|(1-\delta)^{\frac{c k}{\log 10}}$
unless each problem in NP has an algorithm running in time $\mathcal{O}\left(n^{\mathcal{O}(k)}\right)$.

Corollary 18

There is no α-approximation for Label Cover for any constant α.
TH EADS II 21 Probabilistically Checkable Proofs

Set Cover

Partition System ($\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{h}$)

- universe U of size s
- t pairs of sets $\left(A_{1}, \bar{A}_{1}\right), \ldots,\left(A_{t}, \bar{A}_{t}\right)$; $A_{i} \subseteq U, \bar{A}_{i}=U \backslash A_{i}$
- choosing from any h pairs only one of A_{i}, \bar{A}_{i} we do not cover the whole set U

For any h, t with $h \leq t$ there exist systems with $s=|U| \leq 2^{2 h+2} t^{2}$.

Set Cover

Given a Label Cover instance we construct a Set Cover instance;
The universe is $E \times U$, where U is the universe of some partition system; $\left(t=\left|L_{2}\right|, h=\left(\log |E|\left|L_{2}\right|\right)\right)$
for all $v \in V_{2}, j \in L_{2}$

$$
S_{v, j}=\left\{((u, v), a) \mid(u, v) \in E, a \in A_{j}\right\}
$$

for all $u \in V_{1}, i \in L_{1}$

$$
S_{u, i}=\left\{((u, v), a) \mid(u, v) \in E, a \in \bar{A}_{j}, \text { where }(i, j) \in R_{(u, v)}\right\}
$$

note that $S_{u, i}$ is well-defined because of the uniqueness property
7 Eads ॥
© Harald Räcke
21 Probabilistically Checkable Proofs

Suppose that we can make all edges happy.
Choose sets $S_{u, i}$'s and $S_{v, j}$'s, where i is the label we assigned to u, and j the label for $v .\left(\left|V_{1}\right|+\left|V_{2}\right|\right.$ sets $)$

For an edge $(u, v), S_{v, j}$ contains $\{(u, v)\} \times A_{j}$. For a happy edge $S_{u, i}$ contains $\{(u, v)\} \times \bar{A}_{j}$.

Since all edges are happy we have covered the whole universe.
TH EADS II 21 Probabilistically Checkable Proofs

- n_{u} : number of $S_{u, i}$'s in cover
- n_{v} : number of $S_{v, j}$'s in cover
- at most $1 / 4$ of the vertices can have $n_{u}, n_{v} \geq h / 2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- for such an edge (u, v) we must have chosen $S_{u, i}$ and a corresponding $S_{v, j}$, s.t. $(i, j) \in R_{u, v}$ (making (u, v) happy)
- we choose a random label for u from the (at most $h / 2$) chosen $S_{u, i}$-sets and a random label for v from the (at most $h / 2) S_{v, j}$-sets
- (u, v) gets happy with probability at least $4 / h^{2}$
- hence we make an $2 / h^{2}$-fraction of edges happy

Set Cover

Theorem 21
There is no $\frac{1}{32} \log N$-approximation for the unweighted Set Cover problem unless problems in NP can be solved in time $\mathcal{O}\left(n^{\mathcal{O}(\log \log n)}\right)$.

Partition Systems

Lemma 22

Given h and t there is a partition system of size
$s=2^{h} h \ln (4 t) \leq 2^{2 h+2} t^{2}$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.
Fix a choice of h of these sets, and a choice of h bits (whether we choose A_{i} or $\left.\bar{A}_{i}\right)$. There are $2^{h} \cdot\binom{t}{h}$ such choices.

Given label cover instance $\left(V_{1}, V_{2}, E\right)$, label sets L_{1} and L_{2};
Set $h=\log \left(|E|\left|L_{2}\right|\right)$ and $t=\left|L_{2}\right|$; Size of partition system is

$$
s=|U|=2^{2 h+2} t^{2}=4\left(|E|\left|L_{2}\right|\right)^{2}\left|L_{2}\right|^{2}=4|E|^{2}\left|L_{2}\right|^{4}
$$

The size of the ground set is then

$$
N=|E||U|=4|E|^{3}\left|L_{2}\right|^{4} \leq\left(|E|\left|L_{2}\right|\right)^{4}
$$

for sufficiently large $|E|$. Then $h \geq \frac{1}{4} \log N$.
If we get an instance where all edges are satisfiable there exists a cover of size only $\left|V_{1}\right|+\left|V_{2}\right|$.

If we find a cover of size at most $\frac{h}{8}\left(\left|V_{1}\right|+\left|V_{2}\right|\right)$ we can use this to satisfy at least a fraction of $2 / h^{2} \geq 1 / \log ^{2}\left(|E|\left|L_{2}\right|\right)$ of the edges. this is not possible...

What is the probability that a given choice covers U ?
The probability that an element $u \in A_{i}$ is $1 / 2$ (same for \bar{A}_{i}).
The probability that u is covered is $1-\frac{1}{2^{h}}$.
The probability that all u are covered is $\left(1-\frac{1}{2^{h}}\right)^{s}$
The probability that there exists a choice such that all u are covered is at most

$$
\binom{t}{h} 2^{h}\left(1-\frac{1}{2^{h}}\right)^{s} \leq(2 t)^{h} e^{-s / 2^{h}}=(2 t)^{h} \cdot e^{-h \ln (4 t)} \leq \frac{1}{2^{h}}
$$

