Definition 2 (NP)

A language $L \in NP$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

[$x \in L$] There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = ``accept''.

 $[x \notin L]$ For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (**why?**).

EADS II © Harald Räcke

454

Probabilistic Checkable Proofs

Definition 4 (PCP)

A language $L \in PCP_{c(n),s(n)}(r(n),q(n))$ if there exists a polynomial time, non-adaptive, randomized verifier V (an Oracle Turing Machine), s.t.

- [$x \in L$] There exists a proof string y, s.t. $V^{\pi_y}(x) =$ "accept" with proability $\geq c(n)$.
- [$x \notin L$] For any proof string y, $V^{\pi_y}(x) =$ "accept" with probability $\leq s(n)$.

The verifier uses at most r(n) random bits and makes at most q(n) oracle queries.

Probabilistic Proof Verification

Definition 3 (IP)

In an interactive proof system a randomized polynomial-time verifier V (with private coin tosses) interacts with an all powerful prover P in polynomially many rounds. $L \in \mathrm{IP}$ if

- $[x \in L]$ There exists a strategy for P s.t. V accepts with probability 1.
- [$x \notin L$] Regardless of P's strategy V accepts with probability at most 1/2.

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

455

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access to an oracle.

Such an oracle allows ${\cal M}$ to solve some problem in a single step.

For example having access to a TSP-oracle π_{TSP} would allow M to write a TSP-instance x on a special oracle tape and obtain the answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query complexity, i.e., how often the machine queries the oracle.

For a proof string y, π_y is an oracle that upon given an index i returns the i-th character y_i of y.

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

458

460

- PCP(0,0) = P
- $ightharpoonup PCP(\mathcal{O}(\log n), 0) = P$
- $ightharpoonup PCP(0, \mathcal{O}(\log n)) = P$
- ▶ $PCP(0, \mathcal{O}(poly(n))) = NP$
- ▶ $PCP(\mathcal{O}(\log n), \mathcal{O}(\text{poly}(n))) = NP$
- ► PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- ▶ $PCP(O(\log n), O(1)) = NP$ (the PCP theorem)

 $IP \subseteq PCP_{1,1/2}(poly(n), poly(n))$

We can view non-adadpative $PCP_{1,1/2}(poly(n),poly(n))$ as the version of IP in which the prover has written down his answers to all possible queries (beforehand).

This makes it harder for the prover to cheat.

The non-cheating prover does not loose power.

Note that the above is not a proof!

EADS II © Harald Räcke

21 Probabilistically Checkable Proofs

459

$NP \subseteq PCP(poly(n), 1)$

PCP(poly(n), 1) means that we have a potentially long proof but we only read a constant number of bits from the proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions.

The Code

 $u \in \{0,1\}^n$ (satisfying assignment)

Walsh-Hadamard Code:

 $WH_u: \{0,1\}^n \to \{0,1\}, x \mapsto x^T u \text{ (over GF(2))}$

The code-word for u is WH_u . We identify this function by a bit-vector of length 2^n .

EADS II © Harald Räcke EADS II

21 Probabilistically Checkable Proofs

462

464

The Code

EADS II

| igcup | | igcup | igcup | igcup | $igcop_{igcop_{igcop_{igcolor}}} igcolor_{igcolor_{igcolor}} igcolor_{igcolor_{igcolor_{igcolor}}} igcolor_{igcolor_{igcolor_{igcolor}}} igcolor_{igcolor_{igcolor_{igcolor}}} igcolor_{igcolor_{igcolor_{igcolor_{igcolor}}} igcolor_{igco$

Suppose we are given access to a function $f: \{0,1\}^n \to \{0,1\}$ and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions $\{0,1\}^n$ to $\{0,1\}$ we can check

$$f(x + y) = f(x) + f(y)$$

21 Probabilistically Checkable Proofs

for all 2^{2n} pairs x, y. But that's not very efficient.

The Code

Lemma 5

EADS II © Harald Räcke

EADS II © Harald Räcke

Suppose that $u - u' \neq 0$. Then

This holds for 2^{n-1} different vectors x.

If $u \neq u'$ then WH_u and $WH_{u'}$ differ in at least 2^{n-1} bits.

 $WH_{u}(x) \neq WH_{u'}(x) \iff (u - u')^{T}x \neq 0$

21 Probabilistically Checkable Proofs

Can we just check a constant number of positions?

21 Probabilistically Checkable Proofs

Definition 6

Let $\rho \in [0,1]$. We say that $f,g:\{0,1\}^n \to \{0,1\}$ are ρ -close if

$$\Pr_{x \in \{0,1\}^n} [f(x) = g(x)] \ge \rho .$$

Theorem 7

Let $f: \{0,1\}^n \to \{0,1\}$ with

$$\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2}.$$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

466

Suppose for $\delta < 1/4$ f is $(1 - \delta)$ -close to some linear function \tilde{f} .

 \tilde{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

We need $\mathcal{O}(1/\delta)$ trials to be sure that f is $(1-\delta)$ -close to a linear function with (arbitrary) constant probability.

EADS II © Harald Räcke

21 Probabilistically Checkable Proofs

467

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

- 1. Choose $x' \in \{0, 1\}^n$ u.a.r.
- **2.** Set x'' := x + x'.
- **3.** Let y' = f(x') and y'' = f(x'').
- **4.** Output y' + y''.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1-2\delta$ we have $f(x')=\tilde{f}(x')$ and $f(x'')=\tilde{f}(x'')$.

Then we can compute $\tilde{f}(x)$.

This technique is known as local decoding of the Walsh-Hadamard code.

$NP \subseteq PCP(poly(n), 1)$

We show that $QUADEQ \in PCP(poly(n), 1)$. The theorem follows since any PCP-class is closed under polynomial time reductions.

introduce QUADEQ...

prove NP-completeness...

Step 1. Linearity Test.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.99-linearity test for both functions (requires a constant number of queries).

We also assume that the remaining constant number of (random) accesses only hit points where $f(x) = \tilde{f}(x)$.

Hence, our proof will only see \tilde{f} and therefore we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

Let A, b be an instance of QUADEQ. Let u be a satisfying assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u and $u \otimes u$. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not correspond to codewords for vectors of the form u, and $u \otimes u$.

We also have to reject proofs that correspond to codewords for vectors of the form z, and $z \otimes z$, where z is not a satisfying assignment.

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

 $f(r) = u^T r$ and $g(z) = w^T z$ since f, g are linear.

- choose r, r' independently, u.a.r. from $\{0, 1\}^n$
- ▶ if $f(r)f(r') \neq g(r \otimes r')$ reject
- repeat 3 times

A correct proof survives the test

$$f(r) \cdot f(r') = u^T r \cdot u^T r' = \left(\sum_i u_i r_i\right) \cdot \left(\sum_j u_j r'_j\right)$$
$$= \sum_{i,j} u_i u_j r_i r'_j = (u \otimes u)^T (r \otimes r') = g(r \otimes r')$$

Step 3. Verify that f encodes satisfying assignment.

We need to check

$$A_k(u \otimes u) = b_k$$

where A_k is the k-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute rA, where $r \in_R \{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraint.

In this case $rA(u \otimes u) \neq rb_k$. The left hand side is equal to $g(A^Tr^T)$.

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let W be $n \times n$ -matrix with entries from w. Let U be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^T W r'$$

$$f(r)f(r') = u^T r \cdot u^T r' = r^T U r'$$

If $U \neq W$ then $Wr' \neq Ur'$ with probability at least 1/2. Then $r^TWr' \neq r^TUr'$ with probability at least 1/4.

Theorem 7

Let $f: \{0,1\}^n \to \{0,1\}$ with

$$\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2}.$$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

Fourier Transform over GF(2)

In the following we use $\{-1,1\}$ instead of $\{0,1\}$. We map $b \in \{0,1\}$ to $(-1)^b$.

This turns summation into multiplication.

The set of function $f: \{-1,1\} \to \mathbb{R}$ form a 2^n -dimensional Hilbert space.

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

478

480

standard basis

$$e_X(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$$

Then, $f(x) = \sum_{X} \alpha_X e_X$ where $\alpha_X = f(x)$, this means the functions e_X form a basis. This basis is orthonormal.

Hilbert space

- ▶ addition (f + g)(x) = f(x) + g(x)
- scalar multiplication $(\alpha f)(x) = \alpha f(x)$
- inner product $\langle f, g \rangle = E_{x \in \{0,1\}^n}[f(x)g(x)]$ (bilinear, $\langle f, f \rangle \ge 0$, and $\langle f, f \rangle = 0 \Rightarrow f = 0$)
- **completeness**: any sequence x_k of vectors for which

$$\sum_{k=1}^{\infty} \|x_k\| < \infty \text{ fulfills } \left\| L - \sum_{k=1}^{N} x_k \right\| \to 0$$

for some vector *L*.

EADS II © Harald Räcke

21 Probabilistically Checkable Proofs

479

fourier basis

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{\mathcal{X}} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_{\mathcal{X}} \Big[\chi_{\alpha \triangle \beta}(x) \Big] = \begin{cases} 1 & \alpha = \beta \\ 0 & \text{otw.} \end{cases}$$

This means the χ_{α} 's also define an orthonormal basis. (since we have 2^n orthonormal vectors...)

A function χ_{α} multiplies a set of χ_i 's. Back in the GF(2)-world this means summing a set of χ_i 's where $\chi_i = (-1)^{\chi_i}$.

This means the function χ_{α} correspond to linear functions in the GF(2) world.

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

482

484

Linearity Test

GF(2)

We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that $f: \{+1,-1\}^n \to \{-1,1\}$ satisfies $\Pr_{x,y}[f(x)f(y)=f(xy)] \geq \frac{1}{2}+\epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \geq 2\epsilon$.

For Boolean functions $\langle f, g \rangle$ is the fraction of inputs on which f, g agree **minus** the fraction of inputs on which they disagree.

$$2\epsilon \leq \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree} = 2\text{agree} - 1$$

This gives that the agreement between f and χ_{α} is at least $\frac{1}{2} + \epsilon$.

We can write any function $f: \{-1,1\}^n \to \mathbb{R}$ as

$$f = \sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}$$

We call \hat{f}_{α} the α^{th} Fourier coefficient.

Lemma 8

1.
$$\langle f, g \rangle = \sum_{\alpha} f_{\alpha} g_{\alpha}$$

2.
$$\langle f, f \rangle = \sum_{\alpha} f_{\alpha}^2$$

Note that for Boolean functions $f:\{-1,1\}^n \to \{-1,1\}$, $\langle f,f \rangle = 1$.

EADS II © Harald Räcke

21 Probabilistically Checkable Proofs

483

Linearity Test

$$\Pr_{x,y}[f(xy) = f(x)f(y)] \ge \frac{1}{2} + \epsilon$$

is equivalent to

 $E_{x,y}[f(xy)f(x)f(y)] = \text{agreement} - \text{disagreement} \ge 2\epsilon$

$$2\epsilon \leq E_{x,y} \left[f(xy)f(x)f(y) \right]$$

$$= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$$

$$= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha} \hat{f}_{\alpha}^{3}$$

$$\leq \max_{\alpha} \hat{f}_{\alpha} \cdot \sum_{\alpha} \hat{f}_{\alpha}^{2} = \max_{\alpha} \hat{f}_{\alpha}$$

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

486

488

Probabilistic proof for Graph NonIsomorphism

Verifier:

- ▶ choose $b \in \{0,1\}$ at random
- ightharpoonup take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If $G_0 \not\equiv G_1$ then by using the obvious proof the verifier will always accept.

If $G_0 \not\equiv G_1$ a proof only accepts with probability 1/2.

- ▶ suppose $\pi(G_0) = G_1$
- if we accept for b=1 and permutation π_{rand} we reject for permutation b=0 and $\pi_{\mathsf{rand}}\circ\pi$

Probabilistic proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with n-nodes)

It expects a proof of the following form:

► For any labeled *n*-node graph *H* the *H*'s bit *P*[*H*] of the proof fulfills

$$G_0 \equiv H \implies P[H] = 0$$

 $G_1 \equiv H \implies P[H] = 1$
 $G_0, G_1 \not\equiv H \implies P[H] = \text{arbitrary}$

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

487

How to show Harndess of Approximation?

Decision version of optimization problems:

Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a parameter k and asks whether we can obtain a solution value of at least k. (where infeasible solutions are assumed to have value $-\infty$)

(Analogous for minimization problems.)

This is the standard way to show that some optimization problem is e.g. NP-hard.

How to show Harndess of Approximation?

Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α, β) -gap problem asks the following:

Suppose we are given an instance I and a promise that either $opt(I) \ge \beta$ or $opt(I) \le \alpha$. Can we differentiate between these two cases?

An algorithm A has to output

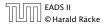
- ► A(I) = 1 if opt $(I) \ge \beta$
- ► A(I) = 0 if opt $(I) \le \alpha$
- ightharpoonup A(I) = arbitrary, otw

Note that this is not a decision problem

21 Probabilistically Checkable Proofs

490

492


Constraint Satisfaction Problem

A qCSP ϕ consists of m n-ary Boolean functions ϕ_1, \ldots, ϕ_m (constraints), where each function only depends on q inputs. The goal is to maximize the number of satisifed constraints.

- $u \in \{0,1\}^n$ satsifies constraint ϕ_i if $\phi_i(u) = 1$
- $ightharpoonup r(u) := \sum_i \phi_i(u)/m$ is fraction of satisfied constraints
- ightharpoonup value(ϕ) = max_u r(u)
- ϕ is satisfiable if value(ϕ) = 1.

3SAT is a constraint satsifaction problem with q = 3.

An approximation algorithm with approximation guarantee $c \le \beta/\alpha$ can solve an (α, β) -gap problem.

21 Probabilistically Checkable Proofs

401

Constraint Satisfaction Problem

GAP version:

A ρ GAPqCSP ϕ consists of m n-ary Boolean functions ϕ_1, \ldots, ϕ_m (constraints), where each function only depends on q inputs. We know that either ϕ is satisfiable or value(ϕ) $< \rho$, and want to differentiate between these cases.

 $\rho {\rm GAP}q{\rm CSP}$ is NP-hard if for any $L\in {\rm NP}$ there is a polytime computable function f mapping strings to instances of $q{\rm CSP}$ s.t.

- $x \in L \Longrightarrow \text{value}(f(x)) = 1$
- $x \notin L \Longrightarrow \text{value}(f(x)) < \rho$

Theorem 9

There exists constants q, ρ such that ρ GAPqCSP is NP-hard.

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

404

 $x \in 3SAT \Rightarrow \phi$ is satisfiable

$$x \notin 3SAT \Longrightarrow value(\phi) \le \frac{1}{2}$$

This means that ρ GAPqCSP is NP-hard.

We know that $NP \subseteq PCP(\log n, 1)$.

We reduce 3SAT to ρ GAPqCSP.

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0,1\}^{c \log n}$ define

- $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- $V_{x,r}$ only depends on q bits of the proof

For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

 ϕ can be computed in polynomial time.

Suppose that ρ GAPqCSP is NP-hard for some constants q, ρ ($\rho < 1$).

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Hence, $L \in PCP_{1,\rho}(\log_2 m, q)$, where m is the number of constraints.

Theorem 10

For any positive constants $\epsilon, \delta > 0$, it is the case that $NP \subseteq PCP_{1-\epsilon,1/2+\delta}(\log n,3)$, and the verifier is restricted to use only the functions odd and even.

It is NP-hard to approximate an ODD/EVEN constraint satisfaction problem by a factor better than $1/2 + \delta$, for any constant δ .

Theorem 11

For any positive constant $\delta > 0$, $NP \subseteq PCP_{1,7/8+\delta}(\mathcal{O}(\log n), 3)$ and the verifier is restricted to use only functions that check the OR of three bits or their negations.

It is NP-hard to approximate 3SAT better than $7/8 + \delta$.

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

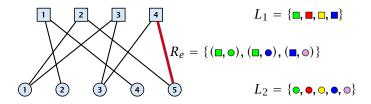
498

500

The following GAP-problem is NP-hard for any $\epsilon > 0$.

Given a graph G = (V, E) composed of m independent sets of size 3 (|V| = 3m). Distinguish between

- the graph has a CLIQUE of size m
- the largest CLIQUE has size at most $(7/8 + \epsilon)m$


EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

499

Label Cover

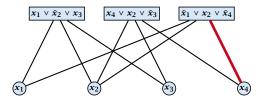
Input:

- bipartite graph $G = (V_1, V_2, E)$
- ▶ label sets L_1, L_2
- ▶ for every edge $(u, v) \in E$ a relation $R_{u,v} \subseteq L_1 \times L_2$ that describe assignments that make the edge *happy*.
- maximize number of happy edges

Label Cover

- ▶ an instance of label cover is (d_1, d_2) -regular if every vertex in L_1 has degree d_1 and every vertex in L_2 has degree d_2 .
- if every vertex has the same degree d the instance is called d-regular

Minimization version:


- ▶ assign a set $L_x \subseteq L_1$ of labels to every node $x \in L_1$ and a set $L_y \subseteq L_2$ to every node $x \in L_2$
- ▶ make sure that for every edge (x, y) there is $\ell_x \in L_x$ and $\ell_y \in L_y$ s.t. $(\ell_x, \ell_y) \in R_{x,y}$
- minimize $\sum_{x \in L_1} |L_x| + \sum_{y \in L_2} |L_y|$ (total labels used)

MAX E3SAT via Label Cover

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:

label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

$$R = \{((F, F, F), F), ((F, T, F), F), ((F, F, T), T), ((F, T, T), T), ((T, T, T), T), ((T, T, F), F), ((T, F, F), F)\}$$

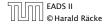
MAX E3SAT via Label Cover

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

Proof:

- ightharpoonup the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- ▶ hence at most 3m (m k) = 2m + k edges are happy


MAX E3SAT via Label Cover

Lemma 12

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

Proof:

- for V_2 use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V_1 use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m-k) happy edges)

21 Probabilistically Checkable Proofs

503

Hardness for Label Cover

We cannot distinguish between the following two cases

- ightharpoonup all 3m edges can be made happy
- ▶ at most $2m + (7/8 + \epsilon)m \approx (\frac{23}{8} + \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{23}{24}$.

Here α is a constant!!! Maybe a guarantee of the form $\frac{23}{8} + \frac{1}{m}$ is possible.

(3, 5)-regular instances

Theorem 14

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- ▶ the resulting Label Cover instance is (3, 5)-regular
- it is hard to approximate for a constant $\alpha < 1$
- given a label ℓ_1 for x there is at most one label ℓ_2 for y that makes edge (x, y) happy (uniqueness property)

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

506

508

Regular instances

proof...

Regular instances

Theorem 15

If for a particular constant $\alpha < 1$ there is an α -approximation algorithm for Label Cover on 15-regular instances than P=NP.

Given a label ℓ_1 for $x \in V_1$ there is at most one label ℓ_2 for y that makes (x, y) happy. (uniqueness property)

EADS II © Harald Räcke

21 Probabilistically Checkable Proofs

507

Boosting

Given Label Cover instance I with $G = (V_1, V_2, E)$, label sets L_1 and L_2 we construct a new instance I':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$\triangleright E' = E^k = E \times \cdots \times E$$

An edge $((x_1,\ldots,x_k),(y_1,\ldots,y_k))$ whose end-points are labelled by $(\ell_1^x,\ldots,\ell_k^x)$ and $(\ell_1^y,\ldots,\ell_k^y)$ is happy if $(\ell_i^x,\ell_i^y) \in R_{x_i,y_i}$ for all i.

Boosting

If I is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 16

There is a constant c>0 such if $\mathrm{OPT}(I)=|E|(1-\delta)$ then $\mathrm{OPT}(I')\leq |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L=|L_1|+|L_2|$ denotes total number of labels in I.

proof is highly non-trivial

21 Probabilistically Checkable Proofs

510

512

Set Cover

Theorem 19

There exist regular Label Cover instances s.t. we cannot distinguish whether

- ► all edges are satisfiable, or
- ▶ at most a $1/\log^2(|L_2||E|)$ -fraction is satisfiable unless NP-problems have algorithms with running time $\mathcal{O}(n^{\mathcal{O}(\log\log n)})$.

choose $k = \frac{2\log 10}{c} \log_{1/(1-\delta)} (\log(|L_2||E|)) = \mathcal{O}(\log\log n)$.

Theorem 17

There are constants c>0, $\delta<1$ s.t. for any k we cannot distinguish regular instances for Label Cover in which either

- ightharpoonup OPT(I) = |E|, or

unless each problem in NP has an algorithm running in time $\mathcal{O}(n^{\mathcal{O}(k)})$.

Corollary 18

There is no α -approximation for Label Cover for any constant α .

EADS II © Harald Räcke

21 Probabilistically Checkable Proofs

511

Set Cover

Partition System (s, t, h)

- ► universe *U* of size *s*
- ▶ t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t)$; $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any h pairs only one of A_i , \bar{A}_i we do not cover the whole set U

For any h, t with $h \le t$ there exist systems with $s = |U| \le 2^{2h+2}t^2$.

Set Cover

Given a Label Cover instance we construct a Set Cover instance:

The universe is $E \times U$, where U is the universe of some partition system; $(t = |L_2|, h = (\log |E||L_2|))$

for all $v \in V_2, j \in L_2$

$$S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$$

for all $u \in V_1, i \in L_1$

$$S_{u,i} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_i, \text{ where } (i,j) \in R_{(u,v)}\}$$

note that $S_{u,i}$ is well-defined because of the uniqueness property

21 Probabilistically Checkable Proofs

514

Lemma 20

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1|+|V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

Suppose that we can make all edges happy.

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where i is the label we assigned to u, and j the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u, v), $S_{v,j}$ contains $\{(u, v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u, v)\} \times \bar{A}_j$.

Since all edges are happy we have covered the whole universe.

EADS II © Harald Räcke

21 Probabilistically Checkable Proofs

515

- ▶ n_u : number of $S_{u,i}$'s in cover
- ▶ n_v : number of $S_{v,j}$'s in cover
- ▶ at most 1/4 of the vertices can have $n_u, n_v \ge h/2$; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ► for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen $S_{u,i}$ -sets and a random label for v from the (at most h/2) $S_{v,i}$ -sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make an $2/h^2$ -fraction of edges happy

Set Cover

Theorem 21

There is no $\frac{1}{32} \log N$ -approximation for the unweighted Set Cover problem unless problems in NP can be solved in time $\mathcal{O}(n^{\mathcal{O}(\log \log n)})$.

EADS II © Harald Räcke 21 Probabilistically Checkable Proofs

518

520

Partition Systems

Lemma 22

Given h and t there is a partition system of size $s = 2^h h \ln(4t) \le 2^{2h+2}t^2$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

Given label cover instance (V_1, V_2, E) , label sets L_1 and L_2 ;

Set $h = \log(|E||L_2|)$ and $t = |L_2|$; Size of partition system is $s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$

The size of the ground set is then

$$N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

If we find a cover of size at most $\frac{h}{8}(|V_1|+|V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_2|)$ of the edges. this is not possible...

What is the probability that a given choice covers U?

The probability that an element $u \in A_i$ is 1/2 (same for \bar{A}_i).

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all u are covered is $(1 - \frac{1}{2^h})^s$

The probability that there exists a choice such that all \boldsymbol{u} are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h}\right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} \le \frac{1}{2^h}$$