
Definition 2 (NP)

A language L ∈ NP if there exists a polynomial time,

deterministic verifier V (a Turing machine), s.t.

[x ∈ L] There exists a proof string y, |y| = poly(|x|),
s.t. V(x,y) = “accept”.

[x ∉ L] For any proof string y, V(x,y) = “reject”.

Note that requiring |y| = poly(|x|) for x ∉ L does not make a

difference (why?).

EADS II

© Harald Räcke 454/521

Definition 2 (NP)

A language L ∈ NP if there exists a polynomial time,

deterministic verifier V (a Turing machine), s.t.

[x ∈ L] There exists a proof string y, |y| = poly(|x|),
s.t. V(x,y) = “accept”.

[x ∉ L] For any proof string y, V(x,y) = “reject”.

Note that requiring |y| = poly(|x|) for x ∉ L does not make a

difference (why?).

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 454/521

Probabilistic Proof Verification

Definition 3 (IP)

In an interactive proof system a randomized polynomial-time

verifier V (with private coin tosses) interacts with an all powerful

prover P in polynomially many rounds. L ∈ IP if

[x ∈ L] There exists a strategy for P s.t. V accepts with

probability 1.

[x ∉ L] Regardless of P ’s strategy V accepts with prob-

ability at most 1/2.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 455/521

Probabilistic Checkable Proofs

Definition 4 (PCP)

A language L ∈ PCPc(n),s(n)(r(n), q(n)) if there exists a

polynomial time, non-adaptive, randomized verifier V (an Oracle

Turing Machine), s.t.

[x ∈ L] There exists a proof string y, s.t. Vπy (x) = “ac-

cept” with proability ≥ c(n).

[x ∉ L] For any proof string y, Vπy (x) = “accept” with

probability ≤ s(n).

The verifier uses at most r(n) random bits and makes at most

q(n) oracle queries.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 456/521

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access

to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle πTSP would allow M
to write a TSP-instance x on a special oracle tape and obtain the

answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query

complexity, i.e., how often the machine queries the oracle.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 457/521

For a proof string y, πy is an oracle that upon given an index i
returns the i-th character yi of y.

c(n) is called the completeness. If not specified otw. c(n) = 1.

Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.

s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many

random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 458/521

IP ⊆ PCP1,1/2(poly(n),poly(n))

We can view non-adadpative PCP1,1/2(poly(n),poly(n)) as the

version of IP in which the prover has written down his answers to

all possible queries (beforehand).

This makes it harder for the prover to cheat.

The non-cheating prover does not loose power.

Note that the above is not a proof!

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 459/521

ñ PCP(0,0) = P

ñ PCP(O(logn),0) = P

ñ PCP(0,O(logn)) = P

ñ PCP(0,O(poly(n))) = NP

ñ PCP(O(logn),O(poly(n))) = NP

ñ PCP(O(poly(n)),0) = coRP

randomized polynomial time with one sided error (positive

probability of accepting a false statement)

ñ PCP(O(logn),O(1)) = NP (the PCP theorem)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 460/521

ñ PCP(0,0) = P

ñ PCP(O(logn),0) = P

ñ PCP(0,O(logn)) = P

ñ PCP(0,O(poly(n))) = NP

ñ PCP(O(logn),O(poly(n))) = NP

ñ PCP(O(poly(n)),0) = coRP

randomized polynomial time with one sided error (positive

probability of accepting a false statement)

ñ PCP(O(logn),O(1)) = NP (the PCP theorem)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 460/521

ñ PCP(0,0) = P

ñ PCP(O(logn),0) = P

ñ PCP(0,O(logn)) = P

ñ PCP(0,O(poly(n))) = NP

ñ PCP(O(logn),O(poly(n))) = NP

ñ PCP(O(poly(n)),0) = coRP

randomized polynomial time with one sided error (positive

probability of accepting a false statement)

ñ PCP(O(logn),O(1)) = NP (the PCP theorem)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 460/521

ñ PCP(0,0) = P

ñ PCP(O(logn),0) = P

ñ PCP(0,O(logn)) = P

ñ PCP(0,O(poly(n))) = NP

ñ PCP(O(logn),O(poly(n))) = NP

ñ PCP(O(poly(n)),0) = coRP

randomized polynomial time with one sided error (positive

probability of accepting a false statement)

ñ PCP(O(logn),O(1)) = NP (the PCP theorem)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 460/521

ñ PCP(0,0) = P

ñ PCP(O(logn),0) = P

ñ PCP(0,O(logn)) = P

ñ PCP(0,O(poly(n))) = NP

ñ PCP(O(logn),O(poly(n))) = NP

ñ PCP(O(poly(n)),0) = coRP

randomized polynomial time with one sided error (positive

probability of accepting a false statement)

ñ PCP(O(logn),O(1)) = NP (the PCP theorem)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 460/521

ñ PCP(0,0) = P

ñ PCP(O(logn),0) = P

ñ PCP(0,O(logn)) = P

ñ PCP(0,O(poly(n))) = NP

ñ PCP(O(logn),O(poly(n))) = NP

ñ PCP(O(poly(n)),0) = coRP

randomized polynomial time with one sided error (positive

probability of accepting a false statement)

ñ PCP(O(logn),O(1)) = NP (the PCP theorem)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 460/521

ñ PCP(0,0) = P

ñ PCP(O(logn),0) = P

ñ PCP(0,O(logn)) = P

ñ PCP(0,O(poly(n))) = NP

ñ PCP(O(logn),O(poly(n))) = NP

ñ PCP(O(poly(n)),0) = coRP

randomized polynomial time with one sided error (positive

probability of accepting a false statement)

ñ PCP(O(logn),O(1)) = NP (the PCP theorem)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 460/521

NP ⊆ PCP(poly(n),1)

PCP(poly(n),1) means that we have a potentially exponentially

long proof but we only read a constant number of bits from the

proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying

assignment (say n bits)) by a code whose code-words have 2n

bits.

A wrong proof is either

ñ a code-word whose pre-image does not correspond to a

satisfying assignment

ñ or, a sequence of bits that does not correspond to a

code-word

We can detect both cases by querying a few positions.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 461/521

NP ⊆ PCP(poly(n),1)

PCP(poly(n),1) means that we have a potentially exponentially

long proof but we only read a constant number of bits from the

proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying

assignment (say n bits)) by a code whose code-words have 2n

bits.

A wrong proof is either

ñ a code-word whose pre-image does not correspond to a

satisfying assignment

ñ or, a sequence of bits that does not correspond to a

code-word

We can detect both cases by querying a few positions.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 461/521

NP ⊆ PCP(poly(n),1)

PCP(poly(n),1) means that we have a potentially exponentially

long proof but we only read a constant number of bits from the

proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying

assignment (say n bits)) by a code whose code-words have 2n

bits.

A wrong proof is either

ñ a code-word whose pre-image does not correspond to a

satisfying assignment

ñ or, a sequence of bits that does not correspond to a

code-word

We can detect both cases by querying a few positions.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 461/521

The Code

u ∈ {0,1}n (satisfying assignment)

Walsh-Hadamard Code:

WHu : {0,1}n → {0,1}, x , xTu (over GF(2))

The code-word for u is WHu. We identify this function by a

bit-vector of length 2n.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 462/521

The Code

Lemma 5

If u ≠ u′ then WHu and WHu′ differ in at least 2n−1 bits.

Suppose that u−u′ ≠ 0. Then

WHu(x) ≠ WHu′(x)⇐⇒ (u−u′)Tx ≠ 0

This holds for 2n−1 different vectors x.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 463/521

The Code

Lemma 5

If u ≠ u′ then WHu and WHu′ differ in at least 2n−1 bits.

Suppose that u−u′ ≠ 0. Then

WHu(x) ≠ WHu′(x)⇐⇒ (u−u′)Tx ≠ 0

This holds for 2n−1 different vectors x.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 463/521

The Code

Suppose we are given access to a function f : {0,1}n → {0,1}
and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions

{0,1}n to {0,1} we can check

f(x +y) = f(x)+ f(y)

for all 22n pairs x,y. But that’s not very efficient.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 464/521

The Code

Suppose we are given access to a function f : {0,1}n → {0,1}
and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions

{0,1}n to {0,1} we can check

f(x +y) = f(x)+ f(y)

for all 22n pairs x,y. But that’s not very efficient.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 464/521

Can we just check a constant number of positions?

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 465/521

Definition 6

Let ρ ∈ [0,1]. We say that f , g : {0,1}n → {0,1} are ρ-close if

Pr
x∈{0,1}n

[f (x) = g(x)] ≥ ρ .

Theorem 7

Let f : {0,1}n → {0,1} with

Pr
x,y∈{0,1}n

[
f(x)+ f(y) = f(x +y)

]
≥ ρ > 1

2
.

Then there is a linear function f̃ such that f and f̃ are ρ-close.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 466/521

Definition 6

Let ρ ∈ [0,1]. We say that f , g : {0,1}n → {0,1} are ρ-close if

Pr
x∈{0,1}n

[f (x) = g(x)] ≥ ρ .

Theorem 7

Let f : {0,1}n → {0,1} with

Pr
x,y∈{0,1}n

[
f(x)+ f(y) = f(x +y)

]
≥ ρ > 1

2
.

Then there is a linear function f̃ such that f and f̃ are ρ-close.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 466/521

We need O(1/δ) trials to be sure that f is (1− δ)-close to a

linear function with (arbitrary) constant probability.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 467/521

Suppose for δ < 1/4 f is (1− δ)-close to some linear function f̃ .

f̃ is uniquely defined by f , since linear functions differ on at

least half their inputs.

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 468/521

Suppose for δ < 1/4 f is (1− δ)-close to some linear function f̃ .

f̃ is uniquely defined by f , since linear functions differ on at

least half their inputs.

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 468/521

Suppose for δ < 1/4 f is (1− δ)-close to some linear function f̃ .

f̃ is uniquely defined by f , since linear functions differ on at

least half their inputs.

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 468/521

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

1. Choose x′ ∈ {0,1}n u.a.r.

2. Set x′′ := x + x′.
3. Let y′ = f(x′) and y′′ = f(x′′).
4. Output y′ +y′′.

x′ and x′′ are uniformly distributed (albeit dependent). With

probability at least 1− 2δ we have f(x′) = f̃ (x′) and

f(x′′) = f̃ (x′′).

Then we can compute f̃ (x).

This technique is known as local decoding of the

Walsh-Hadamard code.

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

1. Choose x′ ∈ {0,1}n u.a.r.

2. Set x′′ := x + x′.
3. Let y′ = f(x′) and y′′ = f(x′′).
4. Output y′ +y′′.

x′ and x′′ are uniformly distributed (albeit dependent). With

probability at least 1− 2δ we have f(x′) = f̃ (x′) and

f(x′′) = f̃ (x′′).

Then we can compute f̃ (x).

This technique is known as local decoding of the

Walsh-Hadamard code.

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

1. Choose x′ ∈ {0,1}n u.a.r.

2. Set x′′ := x + x′.
3. Let y′ = f(x′) and y′′ = f(x′′).
4. Output y′ +y′′.

x′ and x′′ are uniformly distributed (albeit dependent). With

probability at least 1− 2δ we have f(x′) = f̃ (x′) and

f(x′′) = f̃ (x′′).

Then we can compute f̃ (x).

This technique is known as local decoding of the

Walsh-Hadamard code.

NP ⊆ PCP(poly(n),1)

We show that QUADEQ ∈ PCP(poly(n),1). The theorem follows

since any PCP-class is closed under polynomial time reductions.

introduce QUADEQ...

prove NP-completeness...

Let A, b be an instance of QUADEQ. Let u be a satisfying

assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of

u and u⊗u. The verifier will accept such a proof with

probability 1.

We have to make sure that we reject proofs that do not

correspond to codewords for vectors of the form u, and u⊗u.

We also have to reject proofs that correspond to codewords for

vectors of the form z, and z ⊗ z, where z is not a satisfying

assignment.

Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.99-linearity test for both functions (requires a

constant number of queries).

We also assume that the remaining constant number of (random)

accesses only hit points where f(x) = f̃ (x).

Hence, our proof will only see f̃ and therefore we use f for f̃ , in

the following (similar for g, g̃).

Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.99-linearity test for both functions (requires a

constant number of queries).

We also assume that the remaining constant number of (random)

accesses only hit points where f(x) = f̃ (x).

Hence, our proof will only see f̃ and therefore we use f for f̃ , in

the following (similar for g, g̃).

Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.99-linearity test for both functions (requires a

constant number of queries).

We also assume that the remaining constant number of (random)

accesses only hit points where f(x) = f̃ (x).

Hence, our proof will only see f̃ and therefore we use f for f̃ , in

the following (similar for g, g̃).

Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.99-linearity test for both functions (requires a

constant number of queries).

We also assume that the remaining constant number of (random)

accesses only hit points where f(x) = f̃ (x).

Hence, our proof will only see f̃ and therefore we use f for f̃ , in

the following (similar for g, g̃).

Step 2. Verify that g encodes u ⊗ u where u is string

encoded by f .

f(r) = uTr and g(z) = wTz since f , g are linear.

ñ choose r , r ′ independently, u.a.r. from {0,1}n

ñ if f(r)f (r ′) ≠ g(r ⊗ r ′) reject

ñ repeat 3 times

A correct proof survives the test

f(r) · f(r ′)

= uTr ·uTr ′ =
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j = (u⊗u)T (r ⊗ r ′) = g(r ⊗ r ′)

A correct proof survives the test

f(r) · f(r ′) = uTr ·uTr ′

=
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j = (u⊗u)T (r ⊗ r ′) = g(r ⊗ r ′)

A correct proof survives the test

f(r) · f(r ′) = uTr ·uTr ′ =
(∑
i
uiri

)
·
(∑
j
ujr ′j

)

=
∑
ij
uiujrir ′j = (u⊗u)T (r ⊗ r ′) = g(r ⊗ r ′)

A correct proof survives the test

f(r) · f(r ′) = uTr ·uTr ′ =
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j

= (u⊗u)T (r ⊗ r ′) = g(r ⊗ r ′)

A correct proof survives the test

f(r) · f(r ′) = uTr ·uTr ′ =
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j = (u⊗u)T (r ⊗ r ′)

= g(r ⊗ r ′)

A correct proof survives the test

f(r) · f(r ′) = uTr ·uTr ′ =
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j = (u⊗u)T (r ⊗ r ′) = g(r ⊗ r ′)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′)

= wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′)

=
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j

= rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′)

= uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′

= rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2. Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

Step 3. Verify that f encodes satisfying assignment.

We need to check

Ak(u⊗u) = bk

where Ak is the k-th row of the constraint matrix. But the left

hand side is just g(ATk).

We can handle this by a single query but checking all constraints

would take O(m) steps.

We compute rA, where r ∈R {0,1}m. If u is not a satisfying

assignment then with probability 1/2 the vector r will hit an odd

number of violated constraint.

In this case rA(u⊗u) ≠ rbk. The left hand side is equal to

g(ATrT).

Step 3. Verify that f encodes satisfying assignment.

We need to check

Ak(u⊗u) = bk

where Ak is the k-th row of the constraint matrix. But the left

hand side is just g(ATk).

We can handle this by a single query but checking all constraints

would take O(m) steps.

We compute rA, where r ∈R {0,1}m. If u is not a satisfying

assignment then with probability 1/2 the vector r will hit an odd

number of violated constraint.

In this case rA(u⊗u) ≠ rbk. The left hand side is equal to

g(ATrT).

Step 3. Verify that f encodes satisfying assignment.

We need to check

Ak(u⊗u) = bk

where Ak is the k-th row of the constraint matrix. But the left

hand side is just g(ATk).

We can handle this by a single query but checking all constraints

would take O(m) steps.

We compute rA, where r ∈R {0,1}m. If u is not a satisfying

assignment then with probability 1/2 the vector r will hit an odd

number of violated constraint.

In this case rA(u⊗u) ≠ rbk. The left hand side is equal to

g(ATrT).

Step 3. Verify that f encodes satisfying assignment.

We need to check

Ak(u⊗u) = bk

where Ak is the k-th row of the constraint matrix. But the left

hand side is just g(ATk).

We can handle this by a single query but checking all constraints

would take O(m) steps.

We compute rA, where r ∈R {0,1}m. If u is not a satisfying

assignment then with probability 1/2 the vector r will hit an odd

number of violated constraint.

In this case rA(u⊗u) ≠ rbk. The left hand side is equal to

g(ATrT).

Theorem 7

Let f : {0,1}n → {0,1} with

Pr
x,y∈{0,1}n

[
f(x)+ f(y) = f(x +y)

]
≥ ρ > 1

2
.

Then there is a linear function f̃ such that f and f̃ are ρ-close.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 477/521

Fourier Transform over GF(2)

In the following we use {−1,1} instead of {0,1}. We map

b ∈ {0,1} to (−1)b.

This turns summation into multiplication.

The set of function f : {−1,1} → R form a 2n-dimensional

Hilbert space.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 478/521

Hilbert space

ñ addition (f + g)(x) = f(x)+ g(x)
ñ scalar multiplication (αf)(x) = αf(x)
ñ inner product 〈f , g〉 = Ex∈{0,1}n[f (x)g(x)]

(bilinear, 〈f , f 〉 ≥ 0, and 〈f , f 〉 = 0⇒ f = 0)

ñ completeness: any sequence xk of vectors for which

∞∑
k=1

‖xk‖ <∞ fulfills

∥∥∥∥∥∥L−
N∑
k=1

xk

∥∥∥∥∥∥→ 0

for some vector L.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 479/521

standard basis

ex(y) =
{

1 x = y
0 otw.

Then, f(x) =
∑
x αxex where αx = f(x), this means the

functions ex form a basis. This basis is orthonormal.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 480/521

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 481/521

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉

= Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 481/521

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]

= Ex
[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 481/521

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]

=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 481/521

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 481/521

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 481/521

A function χα multiplies a set of xi’s. Back in the GF(2)-world

this means summing a set of zi’s where xi = (−1)zi .

This means the function χα correspond to linear functions in the

GF(2) world.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 482/521

We can write any function f : {−1,1}n → R as

f =
∑
α
f̂αχα

We call f̂α the αth Fourier coefficient.

Lemma 8

1. 〈f , g〉 =
∑
α fαgα

2. 〈f , f 〉 =
∑
α f 2

α

Note that for Boolean functions f : {−1,1}n → {−1,1},
〈f , f 〉 = 1.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 483/521

Linearity Test

GF(2)
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f : {+1,−1}n → {−1,1} satisfies

Prx,y[f (x)f(y) = f(xy)] ≥ 1
2 + ε. Then there is some α ⊆ [n],

s.t. f̂α ≥ 2ε.

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 484/521

Linearity Test

GF(2)
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f : {+1,−1}n → {−1,1} satisfies

Prx,y[f (x)f(y) = f(xy)] ≥ 1
2 + ε. Then there is some α ⊆ [n],

s.t. f̂α ≥ 2ε.

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 484/521

Linearity Test

GF(2)
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f : {+1,−1}n → {−1,1} satisfies

Prx,y[f (x)f(y) = f(xy)] ≥ 1
2 + ε. Then there is some α ⊆ [n],

s.t. f̂α ≥ 2ε.

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 484/521

Linearity Test

GF(2)
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f : {+1,−1}n → {−1,1} satisfies

Prx,y[f (x)f(y) = f(xy)] ≥ 1
2 + ε. Then there is some α ⊆ [n],

s.t. f̂α ≥ 2ε.

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α

= 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 484/521

Linearity Test

GF(2)
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f : {+1,−1}n → {−1,1} satisfies

Prx,y[f (x)f(y) = f(xy)] ≥ 1
2 + ε. Then there is some α ⊆ [n],

s.t. f̂α ≥ 2ε.

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉

= agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 484/521

Linearity Test

GF(2)
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f : {+1,−1}n → {−1,1} satisfies

Prx,y[f (x)f(y) = f(xy)] ≥ 1
2 + ε. Then there is some α ⊆ [n],

s.t. f̂α ≥ 2ε.

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree

= 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 484/521

Linearity Test

GF(2)
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f : {+1,−1}n → {−1,1} satisfies

Prx,y[f (x)f(y) = f(xy)] ≥ 1
2 + ε. Then there is some α ⊆ [n],

s.t. f̂α ≥ 2ε.

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 484/521

Linearity Test

GF(2)
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f : {+1,−1}n → {−1,1} satisfies

Prx,y[f (x)f(y) = f(xy)] ≥ 1
2 + ε. Then there is some α ⊆ [n],

s.t. f̂α ≥ 2ε.

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 484/521

Linearity Test

Pr
x,y
[f (xy) = f(x)f(y)] ≥ 1

2
+ ε

is equivalent to

Ex,y[f (xy)f(x)f(y)] = agreement− disagreement ≥ 2ε

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 485/521

2ε ≤ Ex,y
[
f(xy)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(xy)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 486/521

2ε ≤ Ex,y
[
f(xy)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(xy)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 486/521

2ε ≤ Ex,y
[
f(xy)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(xy)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 486/521

2ε ≤ Ex,y
[
f(xy)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(xy)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]

=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 486/521

2ε ≤ Ex,y
[
f(xy)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(xy)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 486/521

2ε ≤ Ex,y
[
f(xy)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(xy)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 486/521

Probabilistic proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G0, G1) (two graphs with n-nodes)

It expects a proof of the following form:

ñ For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills

G0 ≡ H =⇒ P[H] = 0

G1 ≡ H =⇒ P[H] = 1

G0, G1 � H =⇒ P[H] = arbitrary

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 487/521

Probabilistic proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G0, G1) (two graphs with n-nodes)

It expects a proof of the following form:

ñ For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills

G0 ≡ H =⇒ P[H] = 0

G1 ≡ H =⇒ P[H] = 1

G0, G1 � H =⇒ P[H] = arbitrary

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 487/521

Probabilistic proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G0, G1) (two graphs with n-nodes)

It expects a proof of the following form:

ñ For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills

G0 ≡ H =⇒ P[H] = 0

G1 ≡ H =⇒ P[H] = 1

G0, G1 � H =⇒ P[H] = arbitrary

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 487/521

Probabilistic proof for Graph NonIsomorphism

Verifier:

ñ choose b ∈ {0,1} at random

ñ take graph Gb and apply a random permutation to obtain a

labeled graph H
ñ check whether P[H] = b

If G0 � G1 then by using the obvious proof the verifier will

always accept.

If G0 � G1 a proof only accepts with probability 1/2.

ñ suppose π(G0) = G1

ñ if we accept for b = 1 and permutation πrand we reject for

permutation b = 0 and πrand ◦π

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 488/521

Probabilistic proof for Graph NonIsomorphism

Verifier:

ñ choose b ∈ {0,1} at random

ñ take graph Gb and apply a random permutation to obtain a

labeled graph H
ñ check whether P[H] = b

If G0 � G1 then by using the obvious proof the verifier will

always accept.

If G0 � G1 a proof only accepts with probability 1/2.

ñ suppose π(G0) = G1

ñ if we accept for b = 1 and permutation πrand we reject for

permutation b = 0 and πrand ◦π

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 488/521

Probabilistic proof for Graph NonIsomorphism

Verifier:

ñ choose b ∈ {0,1} at random

ñ take graph Gb and apply a random permutation to obtain a

labeled graph H
ñ check whether P[H] = b

If G0 � G1 then by using the obvious proof the verifier will

always accept.

If G0 � G1 a proof only accepts with probability 1/2.

ñ suppose π(G0) = G1

ñ if we accept for b = 1 and permutation πrand we reject for

permutation b = 0 and πrand ◦π

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 488/521

How to show Harndess of Approximation?

Decision version of optimization problems:

Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a

parameter k and asks whether we can obtain a solution value of

at least k. (where infeasible solutions are assumed to have value

−∞)

(Analogous for minimization problems.)

This is the standard way to show that some optimization

problem is e.g. NP-hard.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 489/521

How to show Harndess of Approximation?

Decision version of optimization problems:

Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a

parameter k and asks whether we can obtain a solution value of

at least k. (where infeasible solutions are assumed to have value

−∞)

(Analogous for minimization problems.)

This is the standard way to show that some optimization

problem is e.g. NP-hard.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 489/521

How to show Harndess of Approximation?

Decision version of optimization problems:

Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a

parameter k and asks whether we can obtain a solution value of

at least k. (where infeasible solutions are assumed to have value

−∞)

(Analogous for minimization problems.)

This is the standard way to show that some optimization

problem is e.g. NP-hard.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 489/521

How to show Harndess of Approximation?

Decision version of optimization problems:

Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a

parameter k and asks whether we can obtain a solution value of

at least k. (where infeasible solutions are assumed to have value

−∞)

(Analogous for minimization problems.)

This is the standard way to show that some optimization

problem is e.g. NP-hard.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 489/521

How to show Harndess of Approximation?
Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α,β)-gap problem asks the following:

Suppose we are given an instance I and a promise that either

opt(I) ≥ β or opt(I) ≤ α. Can we differentiate between these

two cases?

An algorithm A has to output

ñ A(I) = 1 if opt(I) ≥ β
ñ A(I) = 0 if opt(I) ≤ α
ñ A(I) = arbitrary, otw

Note that this is not a decision problem

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 490/521

How to show Harndess of Approximation?
Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α,β)-gap problem asks the following:

Suppose we are given an instance I and a promise that either

opt(I) ≥ β or opt(I) ≤ α. Can we differentiate between these

two cases?

An algorithm A has to output

ñ A(I) = 1 if opt(I) ≥ β
ñ A(I) = 0 if opt(I) ≤ α
ñ A(I) = arbitrary, otw

Note that this is not a decision problem

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 490/521

How to show Harndess of Approximation?
Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α,β)-gap problem asks the following:

Suppose we are given an instance I and a promise that either

opt(I) ≥ β or opt(I) ≤ α. Can we differentiate between these

two cases?

An algorithm A has to output

ñ A(I) = 1 if opt(I) ≥ β
ñ A(I) = 0 if opt(I) ≤ α
ñ A(I) = arbitrary, otw

Note that this is not a decision problem

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 490/521

How to show Harndess of Approximation?
Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α,β)-gap problem asks the following:

Suppose we are given an instance I and a promise that either

opt(I) ≥ β or opt(I) ≤ α. Can we differentiate between these

two cases?

An algorithm A has to output

ñ A(I) = 1 if opt(I) ≥ β
ñ A(I) = 0 if opt(I) ≤ α
ñ A(I) = arbitrary, otw

Note that this is not a decision problem

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 490/521

How to show Harndess of Approximation?
Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α,β)-gap problem asks the following:

Suppose we are given an instance I and a promise that either

opt(I) ≥ β or opt(I) ≤ α. Can we differentiate between these

two cases?

An algorithm A has to output

ñ A(I) = 1 if opt(I) ≥ β
ñ A(I) = 0 if opt(I) ≤ α
ñ A(I) = arbitrary, otw

Note that this is not a decision problem

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 490/521

An approximation algorithm with approximation guarantee

c ≤ β/α can solve an (α,β)-gap problem.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 491/521

Constraint Satisfaction Problem

A qCSP φ consists of m n-ary Boolean functions φ1, . . . ,φm
(constraints), where each function only depends on q inputs.

The goal is to maximize the number of satisifed constraints.

ñ u ∈ {0,1}n satsifies constraint φi if φi(u) = 1

ñ r(u) :=
∑
iφi(u)/m is fraction of satisfied constraints

ñ value(φ) =maxu r(u)
ñ φ is satisfiable if value(φ) = 1.

3SAT is a constraint satsifaction problem with q = 3.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 492/521

Constraint Satisfaction Problem

GAP version:

A ρGAPqCSP φ consists of m n-ary Boolean functions

φ1, . . . ,φm (constraints), where each function only depends on q
inputs. We know that either φ is satisfiable or value(φ) < ρ, and

want to differentiate between these cases.

ρGAPqCSP is NP-hard if for any L ∈ NP there is a polytime

computable function f mapping strings to instances of qCSP s.t.

ñ x ∈ L =⇒ value(f (x)) = 1

ñ x ∉ L =⇒ value(f (x)) < ρ

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 493/521

Theorem 9

There exists constants q,ρ such that ρGAPqCSP is NP-hard.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 494/521

We know that NP ⊆ PCP(logn,1).

We reduce 3SAT to ρGAPqCSP.

3SAT has a PCP system in which the verifier makes a constant

number of queries (q), and uses c logn random bits (for some c).

For input x and r ∈ {0,1}c logn define

ñ Vx,r as function that maps a proof π to the result (0/1)

computed by the verifier when using proof π , instance x
and random coins r .

ñ Vx,r only depends on q bits of the proof

For any x the collection φ of the Vx,r ’s over all r is polynomial

size qCSP.

φ can be computed in polynomial time.

We know that NP ⊆ PCP(logn,1).

We reduce 3SAT to ρGAPqCSP.

3SAT has a PCP system in which the verifier makes a constant

number of queries (q), and uses c logn random bits (for some c).

For input x and r ∈ {0,1}c logn define

ñ Vx,r as function that maps a proof π to the result (0/1)

computed by the verifier when using proof π , instance x
and random coins r .

ñ Vx,r only depends on q bits of the proof

For any x the collection φ of the Vx,r ’s over all r is polynomial

size qCSP.

φ can be computed in polynomial time.

We know that NP ⊆ PCP(logn,1).

We reduce 3SAT to ρGAPqCSP.

3SAT has a PCP system in which the verifier makes a constant

number of queries (q), and uses c logn random bits (for some c).

For input x and r ∈ {0,1}c logn define

ñ Vx,r as function that maps a proof π to the result (0/1)

computed by the verifier when using proof π , instance x
and random coins r .

ñ Vx,r only depends on q bits of the proof

For any x the collection φ of the Vx,r ’s over all r is polynomial

size qCSP.

φ can be computed in polynomial time.

We know that NP ⊆ PCP(logn,1).

We reduce 3SAT to ρGAPqCSP.

3SAT has a PCP system in which the verifier makes a constant

number of queries (q), and uses c logn random bits (for some c).

For input x and r ∈ {0,1}c logn define

ñ Vx,r as function that maps a proof π to the result (0/1)

computed by the verifier when using proof π , instance x
and random coins r .

ñ Vx,r only depends on q bits of the proof

For any x the collection φ of the Vx,r ’s over all r is polynomial

size qCSP.

φ can be computed in polynomial time.

We know that NP ⊆ PCP(logn,1).

We reduce 3SAT to ρGAPqCSP.

3SAT has a PCP system in which the verifier makes a constant

number of queries (q), and uses c logn random bits (for some c).

For input x and r ∈ {0,1}c logn define

ñ Vx,r as function that maps a proof π to the result (0/1)

computed by the verifier when using proof π , instance x
and random coins r .

ñ Vx,r only depends on q bits of the proof

For any x the collection φ of the Vx,r ’s over all r is polynomial

size qCSP.

φ can be computed in polynomial time.

We know that NP ⊆ PCP(logn,1).

We reduce 3SAT to ρGAPqCSP.

3SAT has a PCP system in which the verifier makes a constant

number of queries (q), and uses c logn random bits (for some c).

For input x and r ∈ {0,1}c logn define

ñ Vx,r as function that maps a proof π to the result (0/1)

computed by the verifier when using proof π , instance x
and random coins r .

ñ Vx,r only depends on q bits of the proof

For any x the collection φ of the Vx,r ’s over all r is polynomial

size qCSP.

φ can be computed in polynomial time.

x ∈ 3SAT =⇒ φ is satisfiable

x ∉ 3SAT =⇒ value(φ) ≤ 1
2

This means that ρGAPqCSP is NP-hard.

x ∈ 3SAT =⇒ φ is satisfiable

x ∉ 3SAT =⇒ value(φ) ≤ 1
2

This means that ρGAPqCSP is NP-hard.

Suppose that ρGAPqCSP is NP-hard for some constants q,ρ
(ρ < 1).

Suppose you get an input x, and have to decide whether x ∈ L.

We get a verifier as follows.

We use the reduction to map an input x into an instance φ of

qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint φi by making q queries. If

x ∈ L the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the

proof, and the verifier accepts with probability at most ρ.

Hence, L ∈ PCP1,ρ(log2m,q), where m is the number of

constraints.

Suppose that ρGAPqCSP is NP-hard for some constants q,ρ
(ρ < 1).

Suppose you get an input x, and have to decide whether x ∈ L.

We get a verifier as follows.

We use the reduction to map an input x into an instance φ of

qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint φi by making q queries. If

x ∈ L the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the

proof, and the verifier accepts with probability at most ρ.

Hence, L ∈ PCP1,ρ(log2m,q), where m is the number of

constraints.

Suppose that ρGAPqCSP is NP-hard for some constants q,ρ
(ρ < 1).

Suppose you get an input x, and have to decide whether x ∈ L.

We get a verifier as follows.

We use the reduction to map an input x into an instance φ of

qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint φi by making q queries. If

x ∈ L the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the

proof, and the verifier accepts with probability at most ρ.

Hence, L ∈ PCP1,ρ(log2m,q), where m is the number of

constraints.

Suppose that ρGAPqCSP is NP-hard for some constants q,ρ
(ρ < 1).

Suppose you get an input x, and have to decide whether x ∈ L.

We get a verifier as follows.

We use the reduction to map an input x into an instance φ of

qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint φi by making q queries. If

x ∈ L the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the

proof, and the verifier accepts with probability at most ρ.

Hence, L ∈ PCP1,ρ(log2m,q), where m is the number of

constraints.

Suppose that ρGAPqCSP is NP-hard for some constants q,ρ
(ρ < 1).

Suppose you get an input x, and have to decide whether x ∈ L.

We get a verifier as follows.

We use the reduction to map an input x into an instance φ of

qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint φi by making q queries. If

x ∈ L the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the

proof, and the verifier accepts with probability at most ρ.

Hence, L ∈ PCP1,ρ(log2m,q), where m is the number of

constraints.

Suppose that ρGAPqCSP is NP-hard for some constants q,ρ
(ρ < 1).

Suppose you get an input x, and have to decide whether x ∈ L.

We get a verifier as follows.

We use the reduction to map an input x into an instance φ of

qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint φi by making q queries. If

x ∈ L the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the

proof, and the verifier accepts with probability at most ρ.

Hence, L ∈ PCP1,ρ(log2m,q), where m is the number of

constraints.

Suppose that ρGAPqCSP is NP-hard for some constants q,ρ
(ρ < 1).

Suppose you get an input x, and have to decide whether x ∈ L.

We get a verifier as follows.

We use the reduction to map an input x into an instance φ of

qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint φi by making q queries. If

x ∈ L the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the

proof, and the verifier accepts with probability at most ρ.

Hence, L ∈ PCP1,ρ(log2m,q), where m is the number of

constraints.

Theorem 10

For any positive constants ε, δ > 0, it is the case that

NP ⊆ PCP1−ε,1/2+δ(logn,3), and the verifier is restricted to use

only the functions odd and even.

It is NP-hard to approximate an ODD/EVEN constraint

satisfaction problem by a factor better than 1/2+ δ, for any

constant δ.

Theorem 11

For any positive constant δ > 0, NP ⊆ PCP1,7/8+δ(O(logn),3)
and the verifier is restricted to use only functions that check the

OR of three bits or their negations.

It is NP-hard to approximate 3SAT better than 7/8+ δ.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 498/521

The following GAP-problem is NP-hard for any ε > 0.

Given a graph G = (V , E) composed of m independent sets of

size 3 (|V | = 3m). Distinguish between

ñ the graph has a CLIQUE of size m
ñ the largest CLIQUE has size at most (7/8+ ε)m

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 499/521

Label Cover

Input:

ñ bipartite graph G = (V1, V2, E)
ñ label sets L1, L2

ñ for every edge (u,v) ∈ E a relation Ru,v ⊆ L1 × L2 that

describe assignments that make the edge happy.

ñ maximize number of happy edges

1 2 3 4

1 2 3 4 5

L1 = { , , , }

L2 = { , , , , }

Re = {(,), (,), (,)}

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 500/521

Label Cover

ñ an instance of label cover is (d1, d2)-regular if every vertex

in L1 has degree d1 and every vertex in L2 has degree d2.

ñ if every vertex has the same degree d the instance is called

d-regular

Minimization version:

ñ assign a set Lx ⊆ L1 of labels to every node x ∈ L1 and a

set Ly ⊆ L2 to every node x ∈ L2

ñ make sure that for every edge (x,y) there is `x ∈ Lx and

`y ∈ Ly s.t. (`x, `y) ∈ Rx,y
ñ minimize

∑
x∈L1 |Lx| +

∑
y∈L2 |Ly | (total labels used)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 501/521

MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

MAX E3SAT via Label Cover

Lemma 12

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

ñ for V2 use the setting of the assignment that satisfies k
clauses

ñ for satisfied clauses in V1 use the corresponding

assignment to the clause-variables (gives 3k happy edges)

ñ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 503/521

MAX E3SAT via Label Cover

Lemma 12

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

ñ for V2 use the setting of the assignment that satisfies k
clauses

ñ for satisfied clauses in V1 use the corresponding

assignment to the clause-variables (gives 3k happy edges)

ñ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 503/521

MAX E3SAT via Label Cover

Lemma 12

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

ñ for V2 use the setting of the assignment that satisfies k
clauses

ñ for satisfied clauses in V1 use the corresponding

assignment to the clause-variables (gives 3k happy edges)

ñ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 503/521

MAX E3SAT via Label Cover

Lemma 12

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

ñ for V2 use the setting of the assignment that satisfies k
clauses

ñ for satisfied clauses in V1 use the corresponding

assignment to the clause-variables (gives 3k happy edges)

ñ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 503/521

MAX E3SAT via Label Cover

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

ñ the labeling of nodes in V2 gives an assignment

ñ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

ñ hence at most 3m− (m− k) = 2m+ k edges are happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 504/521

MAX E3SAT via Label Cover

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

ñ the labeling of nodes in V2 gives an assignment

ñ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

ñ hence at most 3m− (m− k) = 2m+ k edges are happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 504/521

MAX E3SAT via Label Cover

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

ñ the labeling of nodes in V2 gives an assignment

ñ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

ñ hence at most 3m− (m− k) = 2m+ k edges are happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 504/521

MAX E3SAT via Label Cover

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

ñ the labeling of nodes in V2 gives an assignment

ñ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

ñ hence at most 3m− (m− k) = 2m+ k edges are happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 504/521

Hardness for Label Cover

We cannot distinguish between the following two cases

ñ all 3m edges can be made happy

ñ at most 2m+ (7/8+ ε)m ≈ (23
8 + ε)m out of the 3m edges

can be made happy

Hence, we cannot obtain an approximation constant α > 23
24 .

Here α is a constant!!! Maybe a guarantee of the form 23
8 +

1
m is

possible.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 505/521

Hardness for Label Cover

We cannot distinguish between the following two cases

ñ all 3m edges can be made happy

ñ at most 2m+ (7/8+ ε)m ≈ (23
8 + ε)m out of the 3m edges

can be made happy

Hence, we cannot obtain an approximation constant α > 23
24 .

Here α is a constant!!! Maybe a guarantee of the form 23
8 +

1
m is

possible.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 505/521

Hardness for Label Cover

We cannot distinguish between the following two cases

ñ all 3m edges can be made happy

ñ at most 2m+ (7/8+ ε)m ≈ (23
8 + ε)m out of the 3m edges

can be made happy

Hence, we cannot obtain an approximation constant α > 23
24 .

Here α is a constant!!! Maybe a guarantee of the form 23
8 +

1
m is

possible.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 505/521

(3,5)-regular instances

Theorem 14

There is a constant ρ s.t. MAXE3SAT is hard to approximate with

a factor of ρ even if restricted to instances where a variable

appears in exactly 5 clauses.

Then our reduction has the following properties:

ñ the resulting Label Cover instance is (3,5)-regular

ñ it is hard to approximate for a constant α < 1

ñ given a label `1 for x there is at most one label `2 for y
that makes edge (x,y) happy (uniqueness property)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 506/521

(3,5)-regular instances

Theorem 14

There is a constant ρ s.t. MAXE3SAT is hard to approximate with

a factor of ρ even if restricted to instances where a variable

appears in exactly 5 clauses.

Then our reduction has the following properties:

ñ the resulting Label Cover instance is (3,5)-regular

ñ it is hard to approximate for a constant α < 1

ñ given a label `1 for x there is at most one label `2 for y
that makes edge (x,y) happy (uniqueness property)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 506/521

Regular instances

Theorem 15

If for a particular constant α < 1 there is an α-approximation

algorithm for Label Cover on 15-regular instances than P=NP.

Given a label `1 for x ∈ V1 there is at most one label `2 for y
that makes (x,y) happy. (uniqueness property)

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 507/521

Regular instances

proof...

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 508/521

Boosting

Given Label Cover instance I with G = (V1, V2, E), label sets L1

and L2 we construct a new instance I′:

ñ V ′1 = Vk1 = V1 × · · · × V1

ñ V ′2 = Vk2 = V2 × · · · × V2

ñ L′1 = Lk1 = L1 × · · · × L1

ñ L′2 = Lk2 = L2 × · · · × L2

ñ E′ = Ek = E × · · · × E

An edge ((x1, . . . , xk), (y1, . . . , yk)) whose end-points are

labelled by (`x1 , . . . , `
x
k) and (`y1 , . . . , `

y
k) is happy if

(`xi , `
y
i) ∈ Rxi,yi for all i.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 509/521

Boosting

If I is regular than also I′.

If I has the uniqueness property than also I′.

Theorem 16

There is a constant c > 0 such if OPT(I) = |E|(1− δ) then

OPT(I′) ≤ |E′|(1− δ)
ck

logL , where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 510/521

Boosting

If I is regular than also I′.

If I has the uniqueness property than also I′.

Theorem 16

There is a constant c > 0 such if OPT(I) = |E|(1− δ) then

OPT(I′) ≤ |E′|(1− δ)
ck

logL , where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 510/521

Boosting

If I is regular than also I′.

If I has the uniqueness property than also I′.

Theorem 16

There is a constant c > 0 such if OPT(I) = |E|(1− δ) then

OPT(I′) ≤ |E′|(1− δ)
ck

logL , where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 510/521

Boosting

If I is regular than also I′.

If I has the uniqueness property than also I′.

Theorem 16

There is a constant c > 0 such if OPT(I) = |E|(1− δ) then

OPT(I′) ≤ |E′|(1− δ)
ck

logL , where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 510/521

Boosting

If I is regular than also I′.

If I has the uniqueness property than also I′.

Theorem 16

There is a constant c > 0 such if OPT(I) = |E|(1− δ) then

OPT(I′) ≤ |E′|(1− δ)
ck

logL , where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 510/521

Theorem 17

There are constants c > 0, δ < 1 s.t. for any k we cannot

distinguish regular instances for Label Cover in which either

ñ OPT(I) = |E|, or

ñ OPT(I) = |E|(1− δ)
ck

log 10

unless each problem in NP has an algorithm running in time

O(nO(k)).

Corollary 18

There is no α-approximation for Label Cover for any constant α.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 511/521

Set Cover

Theorem 19

There exist regular Label Cover instances s.t. we cannot

distinguish whether

ñ all edges are satisfiable, or

ñ at most a 1/ log2(|L2||E|)-fraction is satisfiable

unless NP-problems have algorithms with running time

O(nO(log logn)).

choose k = 2 log 10
c log1/(1−δ)(log(|L2||E|)) = O(log logn).

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 512/521

Set Cover

Partition System (s, t, h)
ñ universe U of size s
ñ t pairs of sets (A1, Ā1), . . . , (At , Āt);
Ai ⊆ U, Āi = U \Ai

ñ choosing from any h pairs only one of Ai, Āi we do not

cover the whole set U

For any h, t with h ≤ t there exist systems with

s = |U| ≤ 22h+2t2.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 513/521

Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L2|, h = (log |E||L2|))

for all v ∈ V2, j ∈ L2

Sv,j = {((u,v),a) | (u,v) ∈ E,a ∈ Aj}

for all u ∈ V1, i ∈ L1

Su,i = {((u,v),a) | (u,v) ∈ E,a ∈ Āj, where (i, j) ∈ R(u,v)}

note that Su,i is well-defined because of the uniqueness property

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 514/521

Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L2|, h = (log |E||L2|))

for all v ∈ V2, j ∈ L2

Sv,j = {((u,v),a) | (u,v) ∈ E,a ∈ Aj}

for all u ∈ V1, i ∈ L1

Su,i = {((u,v),a) | (u,v) ∈ E,a ∈ Āj, where (i, j) ∈ R(u,v)}

note that Su,i is well-defined because of the uniqueness property

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 514/521

Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L2|, h = (log |E||L2|))

for all v ∈ V2, j ∈ L2

Sv,j = {((u,v),a) | (u,v) ∈ E,a ∈ Aj}

for all u ∈ V1, i ∈ L1

Su,i = {((u,v),a) | (u,v) ∈ E,a ∈ Āj, where (i, j) ∈ R(u,v)}

note that Su,i is well-defined because of the uniqueness property

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 514/521

Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L2|, h = (log |E||L2|))

for all v ∈ V2, j ∈ L2

Sv,j = {((u,v),a) | (u,v) ∈ E,a ∈ Aj}

for all u ∈ V1, i ∈ L1

Su,i = {((u,v),a) | (u,v) ∈ E,a ∈ Āj, where (i, j) ∈ R(u,v)}

note that Su,i is well-defined because of the uniqueness property

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 514/521

Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L2|, h = (log |E||L2|))

for all v ∈ V2, j ∈ L2

Sv,j = {((u,v),a) | (u,v) ∈ E,a ∈ Aj}

for all u ∈ V1, i ∈ L1

Su,i = {((u,v),a) | (u,v) ∈ E,a ∈ Āj, where (i, j) ∈ R(u,v)}

note that Su,i is well-defined because of the uniqueness property

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 514/521

Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L2|, h = (log |E||L2|))

for all v ∈ V2, j ∈ L2

Sv,j = {((u,v),a) | (u,v) ∈ E,a ∈ Aj}

for all u ∈ V1, i ∈ L1

Su,i = {((u,v),a) | (u,v) ∈ E,a ∈ Āj, where (i, j) ∈ R(u,v)}

note that Su,i is well-defined because of the uniqueness property

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 514/521

Suppose that we can make all edges happy.

Choose sets Su,i’s and Sv,j’s, where i is the label we assigned to

u, and j the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,j contains {(u,v)}×Aj. For a happy edge

Su,i contains {(u,v)} × Āj.

Since all edges are happy we have covered the whole universe.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 515/521

Suppose that we can make all edges happy.

Choose sets Su,i’s and Sv,j’s, where i is the label we assigned to

u, and j the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,j contains {(u,v)}×Aj. For a happy edge

Su,i contains {(u,v)} × Āj.

Since all edges are happy we have covered the whole universe.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 515/521

Suppose that we can make all edges happy.

Choose sets Su,i’s and Sv,j’s, where i is the label we assigned to

u, and j the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,j contains {(u,v)}×Aj. For a happy edge

Su,i contains {(u,v)} × Āj.

Since all edges are happy we have covered the whole universe.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 515/521

Suppose that we can make all edges happy.

Choose sets Su,i’s and Sv,j’s, where i is the label we assigned to

u, and j the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,j contains {(u,v)}×Aj. For a happy edge

Su,i contains {(u,v)} × Āj.

Since all edges are happy we have covered the whole universe.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 515/521

Suppose that we can make all edges happy.

Choose sets Su,i’s and Sv,j’s, where i is the label we assigned to

u, and j the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,j contains {(u,v)}×Aj. For a happy edge

Su,i contains {(u,v)} × Āj.

Since all edges are happy we have covered the whole universe.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 515/521

Lemma 20

Given a solution to the set cover instance using at most
h
8 (|V1| + |V2|) sets we can find a solution to the Label Cover

instance satisfying at least 2
h2 |E| edges.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 516/521

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make an 2/h2-fraction of edges happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 517/521

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make an 2/h2-fraction of edges happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 517/521

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make an 2/h2-fraction of edges happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 517/521

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make an 2/h2-fraction of edges happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 517/521

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make an 2/h2-fraction of edges happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 517/521

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make an 2/h2-fraction of edges happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 517/521

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make an 2/h2-fraction of edges happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 517/521

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make an 2/h2-fraction of edges happy

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 517/521

Set Cover

Theorem 21

There is no 1
32 logN-approximation for the unweighted Set Cover

problem unless problems in NP can be solved in time

O(nO(log logn)).

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 518/521

Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L2|) and t = |L2|; Size of partition system is

s = |U| = 22h+2t2 = 4(|E||L2|)2|L2|2 = 4|E|2|L2|4

The size of the ground set is then

N = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logN.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L2|) of the

edges. this is not possible...

Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L2|) and t = |L2|; Size of partition system is

s = |U| = 22h+2t2 = 4(|E||L2|)2|L2|2 = 4|E|2|L2|4

The size of the ground set is then

N = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logN.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L2|) of the

edges. this is not possible...

Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L2|) and t = |L2|; Size of partition system is

s = |U| = 22h+2t2 = 4(|E||L2|)2|L2|2 = 4|E|2|L2|4

The size of the ground set is then

N = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logN.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L2|) of the

edges. this is not possible...

Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L2|) and t = |L2|; Size of partition system is

s = |U| = 22h+2t2 = 4(|E||L2|)2|L2|2 = 4|E|2|L2|4

The size of the ground set is then

N = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logN.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L2|) of the

edges. this is not possible...

Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L2|) and t = |L2|; Size of partition system is

s = |U| = 22h+2t2 = 4(|E||L2|)2|L2|2 = 4|E|2|L2|4

The size of the ground set is then

N = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logN.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L2|) of the

edges. this is not possible...

Partition Systems

Lemma 22

Given h and t there is a partition system of size

s = 2hh ln(4t) ≤ 22h+2t2.

We pick t sets at random from the possible 2|U| subsets of U .

Fix a choice of h of these sets, and a choice of h bits (whether

we choose Ai or Āi). There are 2h ·
(
t
h

)
such choices.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 520/521

Partition Systems

Lemma 22

Given h and t there is a partition system of size

s = 2hh ln(4t) ≤ 22h+2t2.

We pick t sets at random from the possible 2|U| subsets of U .

Fix a choice of h of these sets, and a choice of h bits (whether

we choose Ai or Āi). There are 2h ·
(
t
h

)
such choices.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 520/521

Partition Systems

Lemma 22

Given h and t there is a partition system of size

s = 2hh ln(4t) ≤ 22h+2t2.

We pick t sets at random from the possible 2|U| subsets of U .

Fix a choice of h of these sets, and a choice of h bits (whether

we choose Ai or Āi). There are 2h ·
(
t
h

)
such choices.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 520/521

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) ≤ 1

2h

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 521/521

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) ≤ 1

2h

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 521/521

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) ≤ 1

2h

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 521/521

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) ≤ 1

2h

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 521/521

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) ≤ 1

2h

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 521/521

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) ≤ 1

2h

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 521/521

	Probabilistically Checkable Proofs

