Definition 2 (NP)
A language L € NP if there exists a polynomial time,
deterministic verifier V (a Turing machine), s.t.

[x € L] There exists a proof string y, |y| = poly(|x]),
s.t. V(x,y) = “accept”.

[x ¢ L] For any proof string v, V(x,y) = “reject’.
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Definition 2 (NP)
A language L € NP if there exists a polynomial time,
deterministic verifier V (a Turing machine), s.t.

[x € L] There exists a proof string y, |y| = poly(|x]),
s.t. V(x,y) = “accept”.

[x ¢ L] For any proof string v, V(x,y) = “reject’.

Note that requiring |y| = poly(|x|) for x ¢ L does not make a
difference (why?).

‘m EADS Il 21 Probabilistically Checkable Proofs =
©Harald Racke



Probabilistic Proof Verification

Definition 3 (IP)

In an interactive proof system a randomized polynomial-time
verifier V (with private coin tosses) interacts with an all powerful
prover P in polynomially many rounds. L € IP if

[x € L] There exists a strategy for P s.t. V accepts with
probability 1.

[x ¢ L] Regardless of P’s strategy V accepts with prob-
ability at most 1/2.
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Probabilistic Checkable Proofs

Definition 4 (PCP)

A language L € PCP;(y) s(n) (r(n),q(n)) if there exists a
polynomial time, non-adaptive, randomized verifier V (an Oracle
Turing Machine), s.t.

[x € L1 There exists a proof string y, s.t. V™™ (x) = “ac-
cept” with proability > c(n).

[x ¢ L] For any proof string y, VT (x) = “accept” with
probability < s(n).

The verifier uses at most v (n) random bits and makes at most
q(n) oracle queries.
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Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access
to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle 1t7sp would allow M
to write a TSP-instance x on a special oracle tape and obtain the
answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query
complexity, i.e., how often the machine queries the oracle.
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For a proof string y, 11, is an oracle that upon given an index i
returns the i-th character y; of y.

c(n) is called the completeness. If not specified otw. c(n) = 1.
Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.
s(n) = 1/2. Probability of accepting a wrong proof.

r(m) is called the randomness complexity, i.e., how many
random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.
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IP < PCPy 1,2 (poly(n), poly(n))

We can view non-adadpative PCPj 1,2 (poly(n), poly(n)) as the
version of IP in which the prover has written down his answers to
all possible queries (beforehand).

This makes it harder for the prover to cheat.
The non-cheating prover does not loose power.

Note that the above is not a proof!
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» PCP(0,0) =P
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» PCP(0,0) =P

» PCP(O(logn),0) =P
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» PCP(0,0) =P

» PCP(O(logn),0) =P
» PCP(0,0(logn)) =P
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v

PCP(0,0) =P

v

v

v

PCP(O(logn),0) =P
PCP(0,0(logn)) =P
PCP(0, O(poly(n))) = NP
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v

PCP(0,0) =P

PCP(O(logn),0) =P
PCP(0,0(logn)) =P

PCP(0, O(poly(n))) = NP
PCP(O(logn), O(poly(n))) = NP

v

v

v

\4

T
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» PCP(0,0) =P

» PCP(O(logn),0) =P

» PCP(0,0(logn)) =P

» PCP(0,0O(poly(n))) = NP

» PCP(O(logn), O(poly(n))) = NP

» PCP(O(poly(n)),0) = coRP
randomized polynomial time with one sided error (positive
probability of accepting a false statement)

T
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» PCP(0,0) =P

» PCP(O(logn),0) =P

» PCP(0,0(logn)) =P

» PCP(0,0O(poly(n))) = NP

» PCP(O(logn), O(poly(n))) = NP

» PCP(O(poly(n)),0) = coRP
randomized polynomial time with one sided error (positive
probability of accepting a false statement)

» PCP(O(logn),O(1)) = NP (the PCP theorem)

T
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NP < PCP(poly(n), 1)

PCP(poly(n),1) means that we have a potentially exponentially
long proof but we only read a constant number of bits from the
proof.
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NP < PCP(poly(n), 1)

PCP(poly(n),1) means that we have a potentially exponentially
long proof but we only read a constant number of bits from the
proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying
assignment (say n bits)) by a code whose code-words have 2"
bits.
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NP < PCP(poly(n), 1)

PCP(poly(n), 1) means that we have a potentially exponentially
long proof but we only read a constant number of bits from the
proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying
assignment (say n bits)) by a code whose code-words have 2"
bits.

A wrong proof is either
» a code-word whose pre-image does not correspond to a
satisfying assignment
» or, a sequence of bits that does not correspond to a
code-word

We can detect both cases by querying a few positions.
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The Code

u € {0,1}" (satisfying assignment)

Walsh-Hadamard Code:
WH,, : {0,1}" — {0,1},x — xTu (over GF(2))

The code-word for u is WH,,. We identify this function by a
bit-vector of length 2".
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The Code

Lemma 5
Ifu = u then WHy, and WHy differ in at least 2"~1 bits.
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The Code

Lemma 5
Ifu = u then WHy, and WHy differ in at least 2"~1 bits.

Suppose that u — u’" + 0. Then
WHy, (x) # WHy (x) <= (u—u")Ix#0

This holds for 2"~ different vectors x.
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The Code

Suppose we are given access to a function f: {0,1}" — {0,1}
and want to check whether it is a codeword.
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The Code

Suppose we are given access to a function f: {0,1}" — {0,1}
and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions
{0,1}" to {0, 1} we can check

fix+y)=fx)+f(»)

for all 22" pairs x, . But that’s not very efficient.
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Can we just check a constant number of positions?
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Definition 6
Let p € [0,1]. We say that f,g:{0,1}" — {0,1} are p-close if

Xegfl}n[f(x) =gx)]=p.

m EADS II 21 Probabilistically Checkable Proofs =
©Harald Racke



Definition 6
Let p € [0,1]. We say that f,g:{0,1}" — {0,1} are p-close if

el f () =g(x)] =

Theorem 7
Let f:{0,1}" — {0,1} with

N\r—l

Pr [fx)+f fx+y)]

x,y€{0,1}m

Then there is a linear function f such that f and f are p-close.
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We need O(1/9) trials to be sure that f is (1 — §)-close to a
linear function with (arbitrary) constant probability.
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Suppose for § < 1/4 f is (1 — 8)-close to some linear function f.
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Suppose for § < 1/4 f is (1 — 8)-close to some linear function f.

£ is uniquely defined by f, since linear functions differ on at
least half their inputs.
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Suppose for § < 1/4 f is (1 — 8)-close to some linear function f.

£ is uniquely defined by f, since linear functions differ on at
least half their inputs.

Suppose we are given x € {0,1}" and access to f. Can we
compute f(x) using only constant number of queries?
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Suppose we are given x € {0,1}" and access to f. Can we
compute f(x) using only constant number of queries?

1. Choose x" € {0,1}" u.a.r.

Set x" :=x+ x'.

Let y' = f(x’) and ¥ = f(x").
Output y" + p".

> W N



Suppose we are given x € {0,1}" and access to f. Can we
compute f(x) using only constant number of queries?

1. Choose x" € {0,1}" u.a.r.

Set x" :=x+ x'.

Let y' = f(x’) and ¥ = f(x").
Output y" + p".

> W N

x" and x'" are uniformly distributed (albeit dependent). With
probability at least 1 — 26 we have f(x’) = f(x’) and
f(x//) — f(x”).



Suppose we are given x € {0,1}"™ and access to f. Can we
compute f(x) using only constant number of queries?
1. Choose x" € {0,1}" u.a.r.
Set x" :=x+ x'.
Let y' = f(x’) and ¥ = f(x").
Output y" + p".

> W N

x" and x'" are uniformly distributed (albeit dependent). With
probability at least 1 — 26 we have f(x’) = f(x’) and
f(x//) — f(x”).

Then we can compute f(x).

This technique is known as local decoding of the
Walsh-Hadamard code.



NP < PCP(poly(n),1)

We show that QUADEQ € PCP(poly(n), 1). The theorem follows
since any PCP-class is closed under polynomial time reductions.

introduce QUADEQ...

prove NP-completeness...



Let A, b be an instance of QUADEQ. Let u be a satisfying
assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of
u and u ® u. The verifier will accept such a proof with
probability 1.

We have to make sure that we reject proofs that do not
correspond to codewords for vectors of the form u, and u ® u.

We also have to reject proofs that correspond to codewords for
vectors of the form z, and z ® z, where z is not a satisfying
assignment.



Step 1. Linearity Test.
The proof contains 2™ + 2"* bits. This is interpreted as a pair of
functions f:{0,1}" — {0,1} and g : {0, 1}"Z - {0,1}.
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We do a 0.99-linearity test for both functions (requires a
constant number of queries).
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functions f:{0,1}" — {0,1} and g : {0, 1}"Z - {0,1}.

We do a 0.99-linearity test for both functions (requires a
constant number of queries).

We also assume that the remaining constant number of (random)

accesses only hit points where f(x) = f(x).



Step 1. Linearity Test.
The proof contains 2™ + 2"* bits. This is interpreted as a pair of
functions f:{0,1}" — {0,1} and g : {0, 1}"Z - {0,1}.

We do a 0.99-linearity test for both functions (requires a
constant number of queries).

We also assume that the remaining constant number of (random)

accesses only hit points where f(x) = f(x).

Hence, our proof will only see f and therefore we use f for f, in
the following (similar for g, g).



Step 2. Verify that g encodes u ® u where u is string
encoded by f.
fr)=uTr and g(z) = wTz since f, g are linear.

» choose 7,7’ independently, u.a.r. from {0,1}"

» if f()f(r') = g(r ® ') reject

> repeat 3 times
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A correct proof survives the test

Foy - foy =ur-ulr’ = (Yumi) - (Y ur))
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Suppose that the proof is not correct and w + u ® u.

Let W be n X n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u ® u).

grer)=wlrer)= zwijrirf =rTwy’
ij

S fr’)



Suppose that the proof is not correct and w + u ® u.

Let W be n X n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u ® u).

grer)=wlrer)= zwijrirf =rTwy’
ij
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Suppose that the proof is not correct and w + u ® u.

Let W be n X n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u ® u).

grer)=wlrer)= zwijrirf =rTwy’
ij
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Suppose that the proof is not correct and w + u ® u.

Let W be n X n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u ® u).

grer)=wlrer)= zwijrirf =rTwy’
ij

FOOF@) =ulr-ulv’ =+TUr

If U = W then Wv’ = Ur’ with probability at least 1/2. Then
rITWyr’ = ¥TUr’ with probability at least 1/4.



Step 3. Verify that f encodes satisfying assignment.
We need to check
Ar(ue®u) = by
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hand side is just g(A]).
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We need to check
Ar(ue®u) = by

where Ay is the k-th row of the constraint matrix. But the left
hand side is just g(A]).

We can handle this by a single query but checking all constraints
would take @ (m) steps.

We compute v A, where ¥ €g {0,1}™. If u is not a satisfying
assignment then with probability 1/2 the vector v will hit an odd
number of violated constraint.



Step 3. Verify that f encodes satisfying assignment.

We need to check
Ar(ue®u) = by

where Ay is the k-th row of the constraint matrix. But the left
hand side is just g(A]).

We can handle this by a single query but checking all constraints
would take @ (m) steps.

We compute v A, where ¥ €g {0,1}™. If u is not a satisfying
assignment then with probability 1/2 the vector v will hit an odd
number of violated constraint.

In this case *YA(u ® u) + vby. The left hand side is equal to
gATyT),



Theorem 7
Let f:{0,1}" — {0,1} with

Sl e fon = fee ]z p >

N~

Then there is a linear function f such that f and f are p-close.
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Fourier Transform over GF(2)

In the following we use {—1,1} instead of {0,1}. We map
b e {0,1} to (—1)b.

This turns summation into multiplication.

The set of function f: {—1,1} — R form a 2"-dimensional
Hilbert space.

‘m EADS Il 21 Probabilistically Checkable Proofs
©Harald Racke



Hilbert space
» addition (f + g)(x) = f(x) + g(x)
» scalar multiplication (xf)(x) = «f(x)

» inner product (f,g) = Excio1n[f(x)g(x)]
(bilinear, {(f,f)=0,and (f,f)=0=> f =0)

» completeness: any sequence xj of vectors for which

N

L—Zxk

k=1

Z Ixxll < oo fulfills -0

k=1

for some vector L.
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standard basis

1 x=
ex(y) Z{ 0 otwy

Then, f(x) = >, dxex where oty = f(x), this means the
functions e, form a basis. This basis is orthonormal.
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fourier basis

For @ c [n] define

Xa(x) = 1_[ Xi

iex

©Harald Racke
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fourier basis

For < [n] define
Xa(x) = 1_[ Xi

iex

Note that

(Xot» XB)
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fourier basis
For @ c [n] define

Xa(x) = 1_[ Xi

iex

Note that

{(Xo» Xg) = Ex [Xa(X)XB(X)]
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fourier basis

For < [n] define
Xa(x) = 1_[ Xi

iex

Note that

{(Xo» Xg) = Ex [Xa(X)XB(X)] = Ex [xfmg(x)]
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fourier basis

For < [n] define
Xa(x) = 1_[ Xi

iex

Note that

{(Xo» Xg) = Ex [Xo((X)XB(X)] = Ex [xfmg(x)]

{

1 =8
0 otw.
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fourier basis

For @ c [n] define

Xa(x) = 1_[ Xi
IEx
Note that
1 =
(X XB) = Ex[Xa )X () | = Ex[Xanp(x)] = { 0 :tW.B

This means the x4's also define an orthonormal basis. (since we
have 2™ orthonormal vectors...)
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A function x« multiplies a set of x;’s. Back in the GF(2)-world
this means summing a set of z;’s where x; = (—1)%.

This means the function x correspond to linear functions in the
GF(2) world.
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We can write any function f: {-1,1}" — R as
f= zfach
64
We call fo( the o™ Fourier coefficient.

Lemma 8

1. (f,9) = Xa fadu
2. (f, ) =2af’

Note that for Boolean functions f: {-1,1}" — {-1,1},

<f’f>=1
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Linearity Test

GF(2)
We want to show that if Pry [ f(x) + f(») = f(x + )] is large
than f has a large agreement with a linear function.
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Linearity Test

GF(2)
We want to show that if Pry [ f(x) + f(») = f(x + )] is large
than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f: {+1,—1}" — {—1, 1} satisfies

Pryy[f () f(y) = f(xy)] = % + €. Then there is some « < [n],
s.t. fo = 2€.
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Linearity Test

GF(2)
We want to show that if Pry [ f(x) + f(y) = f(x + y)]is large
than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f: {+1,—1}" — {—1, 1} satisfies

Prx,yA[f(x)f(y) =fxy)] = % + €. Then there is some «x c [n],
s.t. fo = 2€.

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.
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Linearity Test

GF(2)
We want to show that if Pry [ f(x) + f(y) = f(x + y)]is large
than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f: {+1,—1}" — {—1, 1} satisfies

Prx,yA[f(x)f(y) =fxy)] = % + €. Then there is some «x c [n],
s.t. fo = 2€.

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

2€ < f«
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Linearity Test

GF(2)
We want to show that if Pry [ f(x) + f(y) = f(x + y)]is large
than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f: {+1,—1}" — {—1, 1} satisfies

Prx,yA[f(x)f(y) =fxy)] = % + €. Then there is some «x c [n],
s.t. fo = 2€.

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

263]30( ={(f,Xa)
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Linearity Test

GF(2)
We want to show that if Pry [ f(x) + f(y) = f(x + y)]is large
than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f: {+1,—1}" — {—1, 1} satisfies

Prx,yA[f(x)f(y) =fxy)] = % + €. Then there is some «x c [n],
s.t. fo = 2€.

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

2€ < fo = (f, X«) = agree — disagree
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Linearity Test

GF(2)
We want to show that if Pry [ f(x) + f(y) = f(x + y)]is large
than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f: {+1,—1}" — {—1, 1} satisfies

Prx,yA[f(x)f(y) =fxy)] = % + €. Then there is some «x c [n],
s.t. fo = 2€.

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

2€ < fx = (f, X«) = agree — disagree = 2agree — 1
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Linearity Test

GF(2)
We want to show that if Pry [ f(x) + f(y) = f(x + y)]is large
than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f: {+1,—1}" — {—1, 1} satisfies

Prx,yA[f(x)f(y) =fxy)] = % + €. Then there is some «x c [n],
s.t. fo = 2€.

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

2€ < fx = (f, X«) = agree — disagree = 2agree — 1

This gives that the agreement between f and x is at least % + €.
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Linearity Test

I\J\i—l

f(xy) S f(y)] =

is equivalent to

Exy[f(xy)f(x)f(y)] = agreement — disagreement > 2¢
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2€ <Exy [f(xy)f(x)f(y)]
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2€ < Ex,y [f(xy)f(x)f(y)]

- Ex,y[(zafaxa(xy)) (D Fexs0)) - (nyyXy(y)>]
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2€ < Ex,y f(xy)f(x)f(y)]

= Exy _(Z“faxa(xy)) (D Fexs0)) - (nyyXy(y))]

= Ex,y Za,B,y fafoyXa(X)Xa(y)XB(X)Xy(y)]
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2€ < Exy

= Ex,y

= Ex’y

f(xy)f(x)f(y)]

(S o) (S inst) - (5, Fos )

Za,g,y f“foYXa(X)XO((_)’)XB(X)xy(y)]

= Za,,;,), fofpfy - Ex [Xa(X)XB(X)] E, [xa(y)xy(y)]

T
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2€ < Exy

= Ex,y

= Ex’y

f(xy)f(x)f(y)]

(S o) (S inst) - (5, Fos )

Za,g,y f“foYXa(X)XO((_)’)XB(X)xy(y):|

= Za,,;,), fofpfy - Ex [Xa(X)XB(X)] E, [xa(y)xy(y)]
=2 f

T
©Harald Racke
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2€ < Exy

= Ex,y

= Ex,y

f(xy)f(x)f(y)]

(S o) (S inst) - (5, Fos )

Za,g,y f“foYXa(X)XO((_)’)XB(X)xy(y):|

= Za,,;,), fofpfy - Ex [Xa(X)XB(X)] E, [Xo((y)xy(y)]
=2 f

Smoe(leo‘ ' Zfoz( =m£xfo(
o

T
©Harald Racke
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Probabilistic proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs
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Probabilistic proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (Gg, G1) (two graphs with n-nodes)
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Probabilistic proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs
Verifier gets input (Gg, G1) (two graphs with n-nodes)

It expects a proof of the following form:
» For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills
GO =H = P[H] =0
Gi=H = P[H]=1
Go,G1 # H = P[H] = arbitrary
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Probabilistic proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

» take graph Gp and apply a random permutation to obtain a
labeled graph H

» check whether P[H] =b
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Probabilistic proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

» take graph Gp and apply a random permutation to obtain a
labeled graph H

» check whether P[H] =b

If Go # G1 then by using the obvious proof the verifier will
always accept.
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Probabilistic proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

» take graph Gp and apply a random permutation to obtain a
labeled graph H

» check whether P[H] =b

If Go # G1 then by using the obvious proof the verifier will
always accept.

If Go # G1 a proof only accepts with probability 1/2.
» suppose M(Gg) = Gy

> if we accept for b = 1 and permutation 130 We reject for
permutation b = 0 and Trang o T
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How to show Harndess of Approximation?

Decision version of optimization problems:
Suppose we have some maximization problem.
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How to show Harndess of Approximation?

Decision version of optimization problems:
Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a
parameter k and asks whether we can obtain a solution value of
at least k. (where infeasible solutions are assumed to have value

— )
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How to show Harndess of Approximation?

Decision version of optimization problems:
Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a
parameter k and asks whether we can obtain a solution value of
at least k. (where infeasible solutions are assumed to have value

— )

(Analogous for minimization problems.)
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How to show Harndess of Approximation?

Decision version of optimization problems:
Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a
parameter k and asks whether we can obtain a solution value of
at least k. (where infeasible solutions are assumed to have value

—OO)
(Analogous for minimization problems.)

This is the standard way to show that some optimization
problem is e.g. NP-hard.
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How to show Harndess of Approximation?

Gap version of optimization problems:
Suppose we have some maximization problem.
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How to show Harndess of Approximation?

Gap version of optimization problems:
Suppose we have some maximization problem.

The corresponding («, B)-gap problem asks the following:
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How to show Harndess of Approximation?

Gap version of optimization problems:
Suppose we have some maximization problem.

The corresponding («, B)-gap problem asks the following:

Suppose we are given an instance I and a promise that either
opt(I) > B or opt(I) < . Can we differentiate between these
two cases?
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How to show Harndess of Approximation?

Gap version of optimization problems:
Suppose we have some maximization problem.

The corresponding («, B)-gap problem asks the following:

Suppose we are given an instance I and a promise that either
opt(I) > B or opt(I) < . Can we differentiate between these
two cases?

An algorithm A has to output
» A(I) =1 if opt(I) = B
» A(I) =0 if opt(I) < x
» A(I) = arbitrary, otw
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How to show Harndess of Approximation?

Gap version of optimization problems:
Suppose we have some maximization problem.

The corresponding («, B)-gap problem asks the following:

Suppose we are given an instance I and a promise that either
opt(I) > B or opt(I) < . Can we differentiate between these
two cases?

An algorithm A has to output
» A(I) =1 if opt(I) = B
» A(I) =0 if opt(I) < x
» A(I) = arbitrary, otw

Note that this is not a decision problem
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An approximation algorithm with approximation guarantee
¢ < B/« can solve an (&, )-gap problem.
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Constraint Satisfaction Problem

A qCSP ¢ consists of m n-ary Boolean functions ¢q,...,pm

(constraints), where each function only depends on g inputs.
The goal is to maximize the number of satisifed constraints.

» u € {0,1}" satsifies constraint ¢; if p;(u) =1
» v(u):=>,; ¢i(u)/mis fraction of satisfied constraints

> value(¢) = maxy, ¥ (u)
» ¢ is satisfiable if value(¢) = 1.

3SAT is a constraint satsifaction problem with g = 3.
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Constraint Satisfaction Problem

GAP version:

A pGAPgCSP ¢ consists of m n-ary Boolean functions
¢1,...,¢Pm (constraints), where each function only depends on g
inputs. We know that either ¢ is satisfiable or value(¢) < p, and
want to differentiate between these cases.

pGAPqCSP is NP-hard if for any L € NP there is a polytime
computable function f mapping strings to instances of gCSP s.t.

» x € L = value(f(x)) =1
» x ¢ L = value(f(x)) <p
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Theorem 9
There exists constants q, p such that p GAPqCSP is NP-hard.
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We reduce 3SAT to pGAPgCSP.

3SAT has a PCP system in which the verifier makes a constant
number of queries (q), and uses clogn random bits (for some c).



We know that NP < PCP(logn, 1).
We reduce 3SAT to pGAPqCSP.

3SAT has a PCP system in which the verifier makes a constant
number of queries (q), and uses clogn random bits (for some c).

For input x and r € {0, 1}€108" define

» Vx, as function that maps a proof 1t to the result (0/1)
computed by the verifier when using proof 1, instance x
and random coins 7.

» Vx. only depends on g bits of the proof



We know that NP < PCP(logn, 1).
We reduce 3SAT to pGAPqCSP.

3SAT has a PCP system in which the verifier makes a constant
number of queries (q), and uses clogn random bits (for some c).

For input x and r € {0, 1}€108" define

» Vx, as function that maps a proof 1t to the result (0/1)
computed by the verifier when using proof 1, instance x
and random coins 7.

» Vx. only depends on g bits of the proof

For any x the collection ¢ of the Vi ,’s over all v is polynomial
size qCSP.



We know that NP < PCP(logn, 1).
We reduce 3SAT to pGAPqCSP.

3SAT has a PCP system in which the verifier makes a constant
number of queries (q), and uses clogn random bits (for some c).

For input x and r € {0, 1}€108" define

» Vx, as function that maps a proof 1t to the result (0/1)
computed by the verifier when using proof 1, instance x
and random coins 7.

» Vx. only depends on g bits of the proof

For any x the collection ¢ of the Vi ,’s over all v is polynomial
size qCSP.

¢ can be computed in polynomial time.



x € 3SAT = ¢ is satisfiable

x ¢ 3SAT = value(¢) <

N | =



x € 3SAT = ¢ is satisfiable

x ¢ 3SAT = value(¢) <

N | =

This means that pGAPqCSP is NP-hard.



Suppose that pGAPqCSP is NP-hard for some constants g, p
(p <1).
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Suppose that pGAPqCSP is NP-hard for some constants g, p
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Suppose you get an input x, and have to decide whether x € L.
We get a verifier as follows.

We use the reduction to map an input x into an instance ¢ of
qCSP.



Suppose that pGAPqCSP is NP-hard for some constants g, p
(p <1).

Suppose you get an input x, and have to decide whether x € L.
We get a verifier as follows.

We use the reduction to map an input x into an instance ¢ of
qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ¢»; by making g queries. If
x € L the verifier accepts with probability 1.



Suppose that pGAPqCSP is NP-hard for some constants g, p
(p <1).

Suppose you get an input x, and have to decide whether x € L.
We get a verifier as follows.

We use the reduction to map an input x into an instance ¢ of
qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ¢»; by making g queries. If
x € L the verifier accepts with probability 1.

Otw. at most a p fraction of constraints are satisfied by the
proof, and the verifier accepts with probability at most p.



Suppose that pGAPqCSP is NP-hard for some constants g, p
(p <1).

Suppose you get an input x, and have to decide whether x € L.
We get a verifier as follows.

We use the reduction to map an input x into an instance ¢ of
qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ¢»; by making g queries. If
x € L the verifier accepts with probability 1.

Otw. at most a p fraction of constraints are satisfied by the
proof, and the verifier accepts with probability at most p.

Hence, L € PCP; ,(log, m, q), where m is the number of
constraints.



Theorem 10

For any positive constants €,8 > 0, it is the case that

NP € PCPy_¢1,2+5(l0gn, 3), and the verifier is restricted to use
only the functions odd and even.

It is NP-hard to approximate an ODD/EVEN constraint
satisfaction problem by a factor better than 1/2 + §, for any
constant o.

Theorem 11

For any positive constant 6 > 0, NP < PCP; 7/58.s5(O(logn), 3)
and the verifier is restricted to use only functions that check the
OR of three bits or their negations.

It is NP-hard to approximate 3SAT better than 7/8 + 6.
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The following GAP-problem is NP-hard for any € > 0.

Given a graph G = (V,E) composed of m independent sets of
size 3 (|]V| = 3m). Distinguish between

» the graph has a CLIQUE of size m
> the largest CLIQUE has size at most (7/8 + €)m
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Label Cover

Input:
» bipartite graph G = (V1, V>, E)
> label sets L1, L>

» for every edge (u,v) € E arelation Ry, < L1 X Ly that
describe assignments that make the edge happy.

» maximize number of happy edges

Ly = {m,m0O,m}

R, = {(m,0), (m0), (m,0)}

Ly = {o,0,0,0,0}
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Label Cover

» an instance of label cover is (d,d>)-regular if every vertex
in L1 has degree d; and every vertex in Ly has degree d».

> if every vertex has the same degree d the instance is called
d-regular

Minimization version:

» assign a set Ly < L; of labels to every node x € Ly and a
set L, < L to every node x € Lp

» make sure that for every edge (x,y) thereis £, € Ly and

» minimize > vcr, [Lx| + Xyer, |Ly| (total labels used)
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MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2V X3)A(XqaV X2V X3)A(X1V X2V Xyg)
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MAX E3SAT via Label Cover

instance:
P(x)=(x1VX2VX3)A(XgaV X2V X3)A(X1V X2V Xyg)

corresponding graph:

|X1V22\/X3| |X4VX2\/)_(3| |5€1 V X2 V X4

label sets: Ly = {T,F}3,L, = {T,F} (T=true, F=false)
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instance:
P(x)=(x1VX2VX3)A(XgaV X2V X3)A(X1V X2V Xyg)

corresponding graph:

|X1V22\/X3| |X4VX2V23| |)_€1 V X2 V X4

label sets: Ly = {T,F}3,L, = {T,F} (T=true, F=false)

relation: Rc x, = {((us, uj, ux), ui)}, where the clause C is over
variables x;, xj, Xy and assignment (u;, uj, uy) satisfies C



MAX E3SAT via Label Cover

instance:
P(x)=(x1VX2VX3)A(XgaV X2V X3)A(X1V X2V Xyg)

corresponding graph:

|X1V22\/X3| |X4VX2V23| |)_€1 V X2 V X4

label sets: Ly = {T,F}3,L, = {T,F} (T=true, F=false)
relation: Rc x, = {((us, uj, ux), ui)}, where the clause C is over
variables x;, xj, Xy and assignment (u;, uj, uy) satisfies C

R ={((F,F,F),F),((F,T,F),F),((F,F,T),T),((F,T,T), T),
«r,7,7),7), (T, T,F),F), (T,F,F),F)}



MAX E3SAT via Label Cover

Lemma 12
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.
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MAX E3SAT via Label Cover

Lemma 12
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

Proof:

» for Vo use the setting of the assignment that satisfies k
clauses
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MAX E3SAT via Label Cover

Lemma 12
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

Proof:

» for Vo use the setting of the assignment that satisfies k
clauses

» for satisfied clauses in V] use the corresponding
assignment to the clause-variables (gives 3k happy edges)
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MAX E3SAT via Label Cover

Lemma 12
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

Proof:

» for Vo use the setting of the assignment that satisfies k
clauses

» for satisfied clauses in V] use the corresponding
assignment to the clause-variables (gives 3k happy edges)

» for unsatisfied clauses flip assignment of one of the
variables; this makes one incident edge unhappy (gives
2(m — k) happy edges)
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MAX E3SAT via Label Cover

Lemma 13
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.

m EADS II 21 Probabilistically Checkable Proofs =
©Harald Racke



MAX E3SAT via Label Cover

Lemma 13
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.

Proof:
> the labeling of nodes in V, gives an assignment
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MAX E3SAT via Label Cover

Lemma 13
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.

Proof:
> the labeling of nodes in V, gives an assignment

» every unsatisfied clause in this assignment cannot be
assigned a label that satisfies all 3 incident edges
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MAX E3SAT via Label Cover

Lemma 13
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.

Proof:
> the labeling of nodes in V, gives an assignment

» every unsatisfied clause in this assignment cannot be
assigned a label that satisfies all 3 incident edges

» hence at most 3m — (m — k) = 2m + k edges are happy
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Hardness for Label Cover

We cannot distinguish between the following two cases
» all 3m edges can be made happy

» at most 2m + (7/8 + e)m = (% + €)m out of the 3m edges
can be made happy
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Hardness for Label Cover

We cannot distinguish between the following two cases
» all 3m edges can be made happy

» at most 2m + (7/8 + e)m = (% + €)m out of the 3m edges
can be made happy

Hence, we cannot obtain an approximation constant « > %.
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Hardness for Label Cover

We cannot distinguish between the following two cases
» all 3m edges can be made happy
» at most2m + (7/s +e)m ~ (% + €)m out of the 3m edges

can be made happy

Hence, we cannot obtain an approximation constant « > %.

Here « is a constant!!! Maybe a guarantee of the form % + % is

possible.
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(3,5)-regular instances

Theorem 14

There is a constant p s.t. MAXE3SAT is hard to approximate with
a factor of p even if restricted to instances where a variable
appears in exactly 5 clauses.
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(3,5)-regular instances

Theorem 14

There is a constant p s.t. MAXE3SAT is hard to approximate with
a factor of p even if restricted to instances where a variable
appears in exactly 5 clauses.

Then our reduction has the following properties:
> the resulting Label Cover instance is (3, 5)-regular
» it is hard to approximate for a constant «x < 1

» given a label £; for x there is at most one label £, for v
that makes edge (x, y) happy (uniqueness property)
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Regular instances

Theorem 15
If for a particular constant x < 1 there is an x-approximation
algorithm for Label Cover on 15-regular instances than P=NP.

Given a label 1 for x € V; there is at most one label £» for y
that makes (x, y) happy. (uniqueness property)
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Regular instances

proof...
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Boosting

Given Label Cover instance I with G = (V, Vo, E), label sets L
and L, we construct a new instance I’:

» Vi =VE=Vix- o xV;

> Vi=VE=Vax - x W

» L =LF=L; x---xIL

» Ly=Lk=Lox. - xL

» EE=Ef=Ex..--XE
An edge ((x1,...,xk), (V1,...,Yk)) whose end-points are

labelled by (¢5,...,¢%) and (£7,...,67) is happy if
(03, 47) € Ry, y, for all i.
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Boosting

[T
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Boosting

If I is regular than also I'.
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Boosting

If I is regular than also I'.

If I has the uniqueness property than also I'.

m EADS II 21 Probabilistically Checkable Proofs
©Harald Racke



Boosting

If I'is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 16

There is a constant ¢ > 0 such if OPT(I) = |E|(1 — §) then
OPT(I') < |E'|(1 — 6)%, where L = |L1| + |L»| denotes total
number of labels in I.
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Boosting

If I'is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 16
There is a constant ¢ > 0 such if OPT(I) = |E|(1 — §) then

k
OPT(I') < |E'|(1 - 6)10%, where L = |L1| + |L2| denotes total
number of labels in I.

proof is highly non-trivial
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Theorem 17
There are constants ¢ > 0, 6 < 1 s.t. for any k we cannot
distinguish regular instances for Label Cover in which either

» OPT(I) = |E|, or
ck
» OPT(I) = |E|(1 — ) ToeT0

unless each problem in NP has an algorithm running in time
O(RO(M)-

Corollary 18
There is no x-approximation for Label Cover for any constant .
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Set Cover

Theorem 19
There exist regular Label Cover instances s.t. we cannot
distinguish whether

> all edges are satisfiable, or
» at mostal/ log2(|L2 ||E|)-fraction is satisfiable

unless NP-problems have algorithms with running time
O(nO(loglogn))_

choose k = 21°

219108, (1_s) (log(|L2||E])) = O(loglogn).
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Set Cover

Partition System (s, t, h)
» universe U of size s
» t pairs of sets (A1,A1),..., (A, Ap);
Ai < U,Ai = U\Ai
» choosing from any h pairs only one of A;, A; we do not
cover the whole set U

For any h, t with h < t there exist systems with
s =|U| < 22h+2¢2,
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Set Cover
Given a Label Cover instance we construct a Set Cover instance;
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Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E X U, where U is the universe of some partition
system; (t = [Lz[, h = (log [E[|L2]))
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Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E X U, where U is the universe of some partition
system; (t = [Lz[, h = (log [E[|L2]))

forallve Vs, jel,

Sv,j={((u,v),a) | (u,v) € E,a € Aj}
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Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E X U, where U is the universe of some partition
system; (t = [Lz[, h = (log [E[|L2]))

forallve Vs, jel,

Sv,j={((u,v),a) | (u,v) € E,a € Aj}

forallu e Vi,i e Ly

Sui={((u,v),a) | (u,v) € E,a € Aj, where (i, j) € Ru,v)}
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Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E X U, where U is the universe of some partition
system; (t = [Lz[, h = (log [E[|L2]))

forallve Vs, jeL

Sv,j={((u,v),a) | (u,v) € E,a € Aj}

forallu e Vi,i e Ly

Sui={((u,v),a) | (u,v) € E,a € Aj, where (i, j) € Ru,v)}

note that Sy, ; is well-defined because of the uniqueness property
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Suppose that we can make all edges happy.

m EADS I 21 Probabilistically Checkable Proofs
©Harald Racke



Suppose that we can make all edges happy.

Choose sets Sy,;’s and Sy j’s, where i is the label we assigned to
u, and j the label for v. (|V1|+|V2]| sets)
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Suppose that we can make all edges happy.

Choose sets Sy,;’s and Sy j’s, where i is the label we assigned to
u, and j the label for v. (|V1|+|V2]| sets)

For an edge (u,v), Sy,j contains {(u,v)} X A;. For a happy edge
Su,i contains {(u,v)} X Aj.
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Suppose that we can make all edges happy.

Choose sets Sy,;’s and Sy j’s, where i is the label we assigned to
u, and j the label for v. (|V1|+|V2]| sets)

For an edge (u,v), Sy,j contains {(u,v)} X A;. For a happy edge
Su,i contains {(u,v)} X Aj.

Since all edges are happy we have covered the whole universe.
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Lemma 20

Given a solution to the set cover instance using at most
%(|v1| + |V2|) sets we can find a solution to the Label Cover
instance satisfying at least % |E| edges.

‘m EADS Il 21 Probabilistically Checkable Proofs =
©Harald Racke



» ny: number of Sy, ;’s in cover
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» ny: number of Sy, ;’s in cover
> Nny: number of Sy, ;’s in cover

» at most 1/4 of the vertices can have ny,ny = h/2; mark
these vertices
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T

EADS I 21 Probabilistically Checkable Proofs =)
©Harald Racke



» ny: number of Sy, ;’s in cover
> Nny: number of Sy, ;’s in cover

» at most 1/4 of the vertices can have ny,ny = h/2; mark
these vertices

> at least half of the edges have both end-points unmarked,
as the graph is regular

» for such an edge (u,v) we must have chosen S, ; and a
corresponding Sy j, s.t. (i,) € Ry, (making (u,v) happy)
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» ny: number of Sy, ;’s in cover
> Nny: number of Sy, ;’s in cover

» at most 1/4 of the vertices can have ny,ny = h/2; mark
these vertices

> at least half of the edges have both end-points unmarked,
as the graph is regular

» for such an edge (u,v) we must have chosen S, ; and a
corresponding Sy j, s.t. (i,) € Ry, (making (u,v) happy)

» we choose a random label for u from the (at most h/2)
chosen Sy, ;-sets and a random label for v from the (at most
h/2) Sy j-sets
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Ny number of Sy, ;’s in cover
ny: number of Sy ;’s in cover

at most 1/4 of the vertices can have ny,ny = h/2; mark
these vertices

at least half of the edges have both end-points unmarked,
as the graph is regular

for such an edge (u,v) we must have chosen S;,; and a
corresponding Sy j, s.t. (i,) € Ry, (making (u,v) happy)

we choose a random label for u from the (at most h/2)
chosen Sy, ;-sets and a random label for v from the (at most
h/2) Sy j-sets

(u,v) gets happy with probability at least 4/h?
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Ny number of Sy, ;’s in cover
ny: number of Sy ;’s in cover

at most 1/4 of the vertices can have ny,ny = h/2; mark
these vertices

at least half of the edges have both end-points unmarked,
as the graph is regular

for such an edge (u,v) we must have chosen S;,; and a
corresponding Sy j, s.t. (i,) € Ry, (making (u,v) happy)

we choose a random label for u from the (at most h/2)
chosen Sy, ;-sets and a random label for v from the (at most
h/2) Sy j-sets

(u,v) gets happy with probability at least 4/h?
hence we make an 2/h?-fraction of edges happy
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Set Cover

Theorem 21

There is no % log N-approximation for the unweighted Set Cover

problem unless problems in NP can be solved in time
O(nO(loglogn)).
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Given label cover instance (V1, V>, E), label sets L1 and L»;



Given label cover instance (Vi, Vo, E), label sets L1 and Lo;
Set h =1log(|E||L2|) and t = |L»|; Size of partition system is

s = |U| = 2222 = 4(|E||L21)?|L2|? = 4]E|?|Lo|*
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Set h =1log(|E||L2|) and t = |L»|; Size of partition system is

s = |U| = 2222 = 4(|E||L21)?|L2|? = 4]E|?|Lo|*

The size of the ground set is then
N = |E||U| = 4|E|?|L2|* < (|E||L2])*

for sufficiently large |E|. Then h > %logN.



Given label cover instance (Vi, Vo, E), label sets L1 and Lo;
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for sufficiently large |E|. Then h > %logN.

If we get an instance where all edges are satisfiable there exists
a cover of size only |V1| + |V2].



Given label cover instance (Vi, Vo, E), label sets L1 and Lo;
Set h =1log(|E||L2|) and t = |L»|; Size of partition system is

s = |U| = 2222 = 4(|E||L21)?|L2|? = 4]E|?|Lo|*

The size of the ground set is then
N = |E||U| = 4|E|’|L2|* < (IE||L2])*
for sufficiently large |E|. Then h > %logN.

If we get an instance where all edges are satisfiable there exists
a cover of size only |V1| + |V2].

If we find a cover of size at most %(|V1| + |V>|) we can use this
to satisfy at least a fraction of 2/h? > 1/ log2(|E| |L2|) of the
edges. this is not possible...



Partition Systems

Lemma 22
Given h and t there is a partition system of size
s =2"nIn(4t) < 22h+2¢2,
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Partition Systems

Lemma 22
Given h and t there is a partition system of size
s =2"nIn(4t) < 22h+2¢2,

We pick t sets at random from the possible 2!Vl subsets of U.
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Partition Systems

Lemma 22
Given h and t there is a partition system of size
s =2"hin(4t) < 22h+2¢2,

We pick t sets at random from the possible 2!U! subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether
we choose A; or A;). There are 2" . (fl) such choices.
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What is the probability that a given choice covers U?

m EADS II 21 Probabilistically Checkable Proofs
©Harald Racke



What is the probability that a given choice covers U?

The probability that an element u € A; is 1/2 (same for A;).
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What is the probability that a given choice covers U?

The probability that an element u € A; is 1/2 (same for A;).

The probability that u is covered is 1 — Zih
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What is the probability that a given choice covers U?

The probability that an element u € A; is 1/2 (same for A;).

The probability that u is covered is 1 — Zih

The probability that all u are covered is (1 — 2%1)3
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What is the probability that a given choice covers U?
The probability that an element u € A; is 1/2 (same for A;).
The probability that u is covered is 1 — Zih

The probability that all u are covered is (1 — 2%)5

The probability that there exists a choice such that all u are
covered is at most

h 2h

S
(t>2h (1 B L) < (2 re—512" = (2p)h . p-hIn(D) - Zih
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