Definition 2 (NP)

A language $L \in NP$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

 $[x \in L]$ There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = "accept".

[*x* ∉ *L*] For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (why?).

Definition 2 (NP)

A language $L \in NP$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

 $[x \in L]$ There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = "accept".

 $[x \notin L]$ For any proof string γ , $V(x, \gamma) =$ "reject". Note that requiring $|\gamma| = poly(|x|)$ for $x \notin L$ does not make a difference (why?).

Probabilistic Proof Verification

Definition 3 (IP)

In an interactive proof system a randomized polynomial-time verifier V (with private coin tosses) interacts with an all powerful prover P in polynomially many rounds. $L \in IP$ if

- $[x \in L]$ There exists a strategy for *P* s.t. *V* accepts with probability 1.
- $[x \notin L]$ Regardless of *P*'s strategy *V* accepts with probability at most 1/2.

Probabilistic Checkable Proofs

Definition 4 (PCP)

A language $L \in PCP_{c(n),s(n)}(r(n),q(n))$ if there exists a polynomial time, non-adaptive, randomized verifier V (an Oracle Turing Machine), s.t.

- $[x \in L]$ There exists a proof string y, s.t. $V^{\pi_y}(x) =$ "accept" with proability $\ge c(n)$.
- $[x \notin L]$ For any proof string y, $V^{\pi_y}(x) =$ "accept" with probability $\leq s(n)$.

The verifier uses at most r(n) random bits and makes at most q(n) oracle queries.

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle π_{TSP} would allow M to write a TSP-instance x on a special oracle tape and obtain the answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query complexity, i.e., how often the machine queries the oracle.

For a proof string y, π_y is an oracle that upon given an index i returns the *i*-th character y_i of y.

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

 $IP \subseteq PCP_{1,1/2}(poly(n), poly(n))$

We can view non-adadpative $PCP_{1,1/2}(poly(n), poly(n))$ as the version of IP in which the prover has written down his answers to all possible queries (beforehand).

This makes it harder for the prover to cheat.

The non-cheating prover does not loose power.

Note that the above is not a proof!

$\blacktriangleright PCP(0,0) = P$

- $\blacktriangleright \text{ PCP}(\mathcal{O}(\log n), 0) = P$
- ▶ $PCP(0, O(\log n)) = P$
- ▶ $PCP(0, \mathcal{O}(poly(n))) = NP$
- $PCP(O(\log n), O(\operatorname{poly}(n))) = NP$
- PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- $PCP(O(\log n), O(1)) = NP$ (the PCP theorem)

- $\blacktriangleright PCP(0,0) = P$
- $\blacktriangleright \text{ PCP}(\mathcal{O}(\log n), 0) = P$
- $\blacktriangleright PCP(0, \mathcal{O}(\log n)) = P$
- $PCP(0, \mathcal{O}(poly(n))) = NP$
- $PCP(O(\log n), O(\operatorname{poly}(n))) = NP$
- PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- ▶ $PCP(O(\log n), O(1)) = NP$ (the PCP theorem)

- ▶ PCP(0,0) = P
- $\blacktriangleright \text{ PCP}(\mathcal{O}(\log n), 0) = P$
- $\blacktriangleright \text{ PCP}(0, \mathcal{O}(\log n)) = P$
- $PCP(0, \mathcal{O}(poly(n))) = NP$
- $PCP(O(\log n), O(\operatorname{poly}(n))) = NP$
- PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- ▶ $PCP(O(\log n), O(1)) = NP$ (the PCP theorem)

- $\blacktriangleright PCP(0,0) = P$
- $\blacktriangleright PCP(\mathcal{O}(\log n), 0) = P$
- $\blacktriangleright \text{ PCP}(0, \mathcal{O}(\log n)) = P$
- $PCP(0, \mathcal{O}(poly(n))) = NP$
- $PCP(O(\log n), O(\operatorname{poly}(n))) = NP$
- PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- ▶ $PCP(O(\log n), O(1)) = NP$ (the PCP theorem)

- $\blacktriangleright PCP(0,0) = P$
- $\blacktriangleright \text{PCP}(\mathcal{O}(\log n), 0) = P$
- $\blacktriangleright \text{ PCP}(0, \mathcal{O}(\log n)) = P$
- $PCP(0, \mathcal{O}(poly(n))) = NP$
- $PCP(\mathcal{O}(\log n), \mathcal{O}(\operatorname{poly}(n))) = NP$
- $PCP(\mathcal{O}(poly(n)), 0) = coRP$

randomized polynomial time with one sided error (positive probability of accepting a false statement)

• $PCP(O(\log n), O(1)) = NP$ (the PCP theorem)

- $\blacktriangleright PCP(0,0) = P$
- $\blacktriangleright PCP(\mathcal{O}(\log n), 0) = P$
- $\blacktriangleright PCP(0, \mathcal{O}(\log n)) = P$
- $PCP(0, \mathcal{O}(poly(n))) = NP$
- $PCP(O(\log n), O(\operatorname{poly}(n))) = NP$
- PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- $PCP(O(\log n), O(1)) = NP$ (the PCP theorem)

- $\blacktriangleright PCP(0,0) = P$
- $\blacktriangleright PCP(\mathcal{O}(\log n), 0) = P$
- $\blacktriangleright PCP(0, \mathcal{O}(\log n)) = P$
- $PCP(0, \mathcal{O}(poly(n))) = NP$
- $PCP(O(\log n), O(\operatorname{poly}(n))) = NP$
- PCP(O(poly(n)), 0) = coRP randomized polynomial time with one sided error (positive probability of accepting a false statement)
- $PCP(\mathcal{O}(\log n), \mathcal{O}(1)) = NP$ (the PCP theorem)

$NP \subseteq PCP(poly(n), 1)$

PCP(poly(n), 1) means that we have a potentially exponentially long proof but we only read a constant number of bits from the proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions.

$NP \subseteq PCP(poly(n), 1)$

PCP(poly(n), 1) means that we have a potentially exponentially long proof but we only read a constant number of bits from the proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions.

NP \subseteq PCP(poly(*n*), 1)

PCP(poly(n), 1) means that we have a potentially exponentially long proof but we only read a constant number of bits from the proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions.

 $u \in \{0,1\}^n$ (satisfying assignment)

Walsh-Hadamard Code: WH_u : $\{0,1\}^n \rightarrow \{0,1\}, x \mapsto x^T u$ (over GF(2))

The code-word for u is WH_u . We identify this function by a bit-vector of length 2^n .

Lemma 5 If $u \neq u'$ then WH_u and $WH_{u'}$ differ in at least 2^{n-1} bits.

Suppose that $u - u' \neq 0$. Then

 $\mathrm{WH}_u(x) \neq \mathrm{WH}_{u'}(x) \Longleftrightarrow (u-u')^T x \neq 0$

This holds for 2^{n-1} different vectors x.

21 Probabilistically Checkable Proofs

Lemma 5

If $u \neq u'$ then WH_u and $WH_{u'}$ differ in at least 2^{n-1} bits.

Suppose that $u - u' \neq 0$. Then

$$WH_u(x) \neq WH_{u'}(x) \iff (u - u')^T x \neq 0$$

This holds for 2^{n-1} different vectors x.

Suppose we are given access to a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions $\{0,1\}^n$ to $\{0,1\}$ we can check

$$f(x + y) = f(x) + f(y)$$

for all 2^{2n} pairs x, y. But that's not very efficient.

Suppose we are given access to a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions $\{0,1\}^n$ to $\{0,1\}$ we can check

$$f(x + y) = f(x) + f(y)$$

for all 2^{2n} pairs x, y. But that's not very efficient.

Can we just check a constant number of positions?

Definition 6 Let $\rho \in [0,1]$. We say that $f, g : \{0,1\}^n \to \{0,1\}$ are ρ -close if

$$\Pr_{x \in \{0,1\}^n} [f(x) = g(x)] \ge \rho \ .$$

Theorem 7
Let
$$f : \{0,1\}^n \to \{0,1\}$$
 with
$$\Pr_{x \to x^{-(0,1)n}} \left[f(x) + f(y) = f(x+y) \right]$$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

21 Probabilistically Checkable Proofs

Definition 6 Let $\rho \in [0,1]$. We say that $f, g : \{0,1\}^n \to \{0,1\}$ are ρ -close if

$$\Pr_{x \in \{0,1\}^n} [f(x) = g(x)] \ge \rho \; \; .$$

Theorem 7 Let $f : \{0,1\}^n \to \{0,1\}$ with $\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2} .$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

We need $\mathcal{O}(1/\delta)$ trials to be sure that f is $(1 - \delta)$ -close to a linear function with (arbitrary) constant probability.

Suppose for $\delta < 1/4 f$ is $(1 - \delta)$ -close to some linear function \tilde{f} .

 \widetilde{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

21 Probabilistically Checkable Proofs

Suppose for $\delta < 1/4 f$ is $(1 - \delta)$ -close to some linear function \tilde{f} .

 \tilde{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0, 1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

Suppose for $\delta < 1/4 f$ is $(1 - \delta)$ -close to some linear function \tilde{f} .

 \tilde{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0, 1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

Suppose we are given $x \in \{0, 1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

1. Choose
$$x' \in \{0, 1\}^n$$
 u.a.r.

2. Set
$$x'' := x + x'$$
.

3. Let
$$y' = f(x')$$
 and $y'' = f(x'')$.

4. Output y' + y''.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1 - 2\delta$ we have $f(x') = \tilde{f}(x')$ and $f(x'') = \tilde{f}(x'')$.

Then we can compute f(x).

This technique is known as local decoding of the Walsh-Hadamard code.

Suppose we are given $x \in \{0, 1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

1. Choose
$$x' \in \{0, 1\}^n$$
 u.a.r.

2. Set
$$x'' := x + x'$$
.

3. Let
$$y' = f(x')$$
 and $y'' = f(x'')$.

4. Output y' + y''.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1 - 2\delta$ we have $f(x') = \tilde{f}(x')$ and $f(x'') = \tilde{f}(x'')$.

Then we can compute f(x).

This technique is known as local decoding of the Walsh-Hadamard code. Suppose we are given $x \in \{0, 1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

1. Choose
$$x' \in \{0, 1\}^n$$
 u.a.r.

2. Set
$$x'' := x + x'$$
.

3. Let
$$y' = f(x')$$
 and $y'' = f(x'')$.

4. Output y' + y''.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1 - 2\delta$ we have $f(x') = \tilde{f}(x')$ and $f(x'') = \tilde{f}(x'')$.

Then we can compute $\tilde{f}(x)$.

This technique is known as local decoding of the Walsh-Hadamard code.

We show that $QUADEQ \in PCP(poly(n), 1)$. The theorem follows since any PCP-class is closed under polynomial time reductions.

introduce QUADEQ...

prove NP-completeness...

Let A, b be an instance of QUADEQ. Let u be a satisfying assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u and $u \otimes u$. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not correspond to codewords for vectors of the form u, and $u \otimes u$.

We also have to reject proofs that correspond to codewords for vectors of the form z, and $z \otimes z$, where z is not a satisfying assignment.

Step 1. Linearity Test. The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0, 1\}^n \to \{0, 1\}$ and $g: \{0, 1\}^{n^2} \to \{0, 1\}$.

We do a 0.99-linearity test for both functions (requires a constant number of queries).

We also assume that the remaining constant number of (random) accesses only hit points where $f(x) = \tilde{f}(x)$.

Hence, our proof will only see \tilde{f} and therefore we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

Step 1. Linearity Test.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.99-linearity test for both functions (requires a constant number of queries).

We also assume that the remaining constant number of (random) accesses only hit points where $f(x) = \tilde{f}(x)$.

Hence, our proof will only see \tilde{f} and therefore we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

Step 1. Linearity Test.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$ and $g : \{0, 1\}^{n^2} \rightarrow \{0, 1\}$.

We do a 0.99-linearity test for both functions (requires a constant number of queries).

We also assume that the remaining constant number of (random) accesses only hit points where $f(x) = \tilde{f}(x)$.

Hence, our proof will only see $ilde{f}$ and therefore we use f for $ilde{f}$, in the following (similar for g , $ilde{g}$).

Step 1. Linearity Test.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.99-linearity test for both functions (requires a constant number of queries).

We also assume that the remaining constant number of (random) accesses only hit points where $f(x) = \tilde{f}(x)$.

Hence, our proof will only see \tilde{f} and therefore we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

$$f(r) = u^T r$$
 and $g(z) = w^T z$ since f, g are linear.

- choose r, r' independently, u.a.r. from $\{0, 1\}^n$
- if $f(r)f(r') \neq g(r \otimes r')$ reject
- repeat 3 times

$$f(\mathbf{r}) \cdot f(\mathbf{r}')$$

$$f(\mathbf{r}) \cdot f(\mathbf{r}') = u^T \mathbf{r} \cdot u^T \mathbf{r}'$$

$$f(\mathbf{r}) \cdot f(\mathbf{r}') = \mathbf{u}^T \mathbf{r} \cdot \mathbf{u}^T \mathbf{r}' = \left(\sum_i u_i \mathbf{r}_i\right) \cdot \left(\sum_j u_j \mathbf{r}_j'\right)$$

$$f(\mathbf{r}) \cdot f(\mathbf{r}') = \mathbf{u}^T \mathbf{r} \cdot \mathbf{u}^T \mathbf{r}' = \left(\sum_i u_i r_i\right) \cdot \left(\sum_j u_j r_j'\right)$$
$$= \sum_{ij} u_i u_j r_i r_j'$$

$$f(\mathbf{r}) \cdot f(\mathbf{r}') = \mathbf{u}^T \mathbf{r} \cdot \mathbf{u}^T \mathbf{r}' = \left(\sum_i u_i r_i\right) \cdot \left(\sum_j u_j r'_j\right)$$
$$= \sum_{ij} u_i u_j r_i r'_j = (\mathbf{u} \otimes \mathbf{u})^T (\mathbf{r} \otimes \mathbf{r}')$$

$$f(r) \cdot f(r') = u^{T}r \cdot u^{T}r' = \left(\sum_{i} u_{i}r_{i}\right) \cdot \left(\sum_{j} u_{j}r'_{j}\right)$$
$$= \sum_{ij} u_{i}u_{j}r_{i}r'_{j} = (u \otimes u)^{T}(r \otimes r') = g(r \otimes r')$$

Let *W* be $n \times n$ -matrix with entries from *w*. Let *U* be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

 $g(r\otimes r')$

$$g(r \otimes r') = w^T(r \otimes r')$$

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j$$

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^T W r'$$

Let *W* be $n \times n$ -matrix with entries from *w*. Let *U* be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(\mathbf{r} \otimes \mathbf{r}') = w^T(\mathbf{r} \otimes \mathbf{r}') = \sum_{ij} w_{ij} \mathbf{r}_i \mathbf{r}'_j = \mathbf{r}^T W \mathbf{r}'$$

f(r)f(r')

$$g(\boldsymbol{r}\otimes\boldsymbol{r}')=\boldsymbol{w}^T(\boldsymbol{r}\otimes\boldsymbol{r}')=\sum_{ij}w_{ij}r_ir_j'=\boldsymbol{r}^TW\boldsymbol{r}'$$

$$f(\mathbf{r})f(\mathbf{r}') = \mathbf{u}^T\mathbf{r}\cdot\mathbf{u}^T\mathbf{r}'$$

$$g(\mathbf{r} \otimes \mathbf{r}') = w^T(\mathbf{r} \otimes \mathbf{r}') = \sum_{ij} w_{ij} \mathbf{r}_i \mathbf{r}'_j = \mathbf{r}^T W \mathbf{r}'$$

$$f(r)f(r') = u^T r \cdot u^T r' = r^T U r'$$

Let *W* be $n \times n$ -matrix with entries from *w*. Let *U* be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(\mathbf{r} \otimes \mathbf{r}') = w^T(\mathbf{r} \otimes \mathbf{r}') = \sum_{ij} w_{ij} \mathbf{r}_i \mathbf{r}'_j = \mathbf{r}^T W \mathbf{r}'$$

$$f(r)f(r') = u^T r \cdot u^T r' = r^T U r'$$

If $U \neq W$ then $Wr' \neq Ur'$ with probability at least 1/2. Then $r^TWr' \neq r^TUr'$ with probability at least 1/4.

We need to check

 $A_k(u \otimes u) = b_k$

where A_k is the *k*-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute rA, where $r \in_R \{0, 1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraint.

We need to check

$$A_k(u \otimes u) = b_k$$

where A_k is the *k*-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute rA, where $r \in_R \{0,1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraint.

We need to check

$$A_k(u \otimes u) = b_k$$

where A_k is the *k*-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute rA, where $r \in_R \{0, 1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraint.

We need to check

$$A_k(u \otimes u) = b_k$$

where A_k is the *k*-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take $\mathcal{O}(m)$ steps.

We compute rA, where $r \in_R \{0, 1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraint.

Theorem 7
Let
$$f: \{0,1\}^n \to \{0,1\}$$
 with

$$\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2} .$$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

Fourier Transform over GF(2)

In the following we use $\{-1,1\}$ instead of $\{0,1\}$. We map $b \in \{0,1\}$ to $(-1)^b$.

This turns summation into multiplication.

The set of function $f : \{-1, 1\} \rightarrow \mathbb{R}$ form a 2^n -dimensional Hilbert space.

Hilbert space

- addition (f + g)(x) = f(x) + g(x)
- scalar multiplication $(\alpha f)(x) = \alpha f(x)$
- ▶ inner product $\langle f, g \rangle = E_{x \in \{0,1\}^n}[f(x)g(x)]$ (bilinear, $\langle f, f \rangle \ge 0$, and $\langle f, f \rangle = 0 \Rightarrow f = 0$)
- completeness: any sequence x_k of vectors for which

$$\sum_{k=1}^{\infty} \|x_k\| < \infty \text{ fulfills } \left\| L - \sum_{k=1}^{N} x_k \right\| \to 0$$

for some vector L.

standard basis

$$e_{X}(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$$

Then, $f(x) = \sum_{x} \alpha_{x} e_{x}$ where $\alpha_{x} = f(x)$, this means the functions e_{x} form a basis. This basis is orthonormal.

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

 $\langle \chi_{\alpha}, \chi_{\beta} \rangle$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_x \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big]$$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{x} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_{x} \Big[\chi_{\alpha \bigtriangleup \beta}(x) \Big]$$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{x} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_{x} \Big[\chi_{\alpha \bigtriangleup \beta}(x) \Big] = \begin{cases} 1 & \alpha = \beta \\ 0 & \text{otw.} \end{cases}$$

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_{x} \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_{x} \Big[\chi_{\alpha \bigtriangleup \beta}(x) \Big] = \begin{cases} 1 & \alpha = \beta \\ 0 & \text{otw.} \end{cases}$$

This means the χ_{α} 's also define an orthonormal basis. (since we have 2^n orthonormal vectors...)

A function χ_{α} multiplies a set of x_i 's. Back in the GF(2)-world this means summing a set of z_i 's where $x_i = (-1)^{z_i}$.

This means the function χ_{α} correspond to linear functions in the GF(2) world.

We can write any function $f: \{-1, 1\}^n \to \mathbb{R}$ as

$$f=\sum_{\alpha}\hat{f}_{\alpha}\chi_{\alpha}$$

We call \hat{f}_{α} the α^{th} Fourier coefficient.

Lemma 8

1.
$$\langle f, g \rangle = \sum_{\alpha} f_{\alpha} g_{\alpha}$$

2. $\langle f, f \rangle = \sum_{\alpha} f_{\alpha}^2$

Note that for Boolean functions $f : \{-1, 1\}^n \to \{-1, 1\}, \langle f, f \rangle = 1.$

Linearity Test

GF(2)

We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

GF(2)

We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove) Suppose that $f : \{+1, -1\}^n \to \{-1, 1\}$ satisfies $\Pr_{x,y}[f(x)f(y) = f(xy)] \ge \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

GF(2)

We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove) Suppose that $f : \{+1, -1\}^n \to \{-1, 1\}$ satisfies $\Pr_{x,y}[f(x)f(y) = f(xy)] \ge \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

GF(2)

We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove) Suppose that $f : \{+1, -1\}^n \to \{-1, 1\}$ satisfies $\Pr_{x,y}[f(x)f(y) = f(xy)] \ge \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

$$2\epsilon \leq \hat{f}_{\alpha}$$

GF(2)

We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove) Suppose that $f : \{+1, -1\}^n \to \{-1, 1\}$ satisfies $\Pr_{x,y}[f(x)f(y) = f(xy)] \ge \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

$$2\epsilon \leq \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle$$

GF(2)

We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove) Suppose that $f : \{+1, -1\}^n \to \{-1, 1\}$ satisfies $\Pr_{x,y}[f(x)f(y) = f(xy)] \ge \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

$$2\epsilon \leq \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree}$$

GF(2)

We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove) Suppose that $f : \{+1, -1\}^n \to \{-1, 1\}$ satisfies $\Pr_{x,y}[f(x)f(y) = f(xy)] \ge \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

$$2\epsilon \leq \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree} = 2\text{agree} - 1$$

GF(2)

We want to show that if $Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

Hilbert space (we prove) Suppose that $f : \{+1, -1\}^n \to \{-1, 1\}$ satisfies $\Pr_{x,y}[f(x)f(y) = f(xy)] \ge \frac{1}{2} + \epsilon$. Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

For Boolean functions $\langle f, g \rangle$ is the fraction of inputs on which f, g agree **minus** the fraction of inputs on which they disagree.

$$2\epsilon \leq \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = agree - disagree = 2agree - 1$$

This gives that the agreement between f and χ_{α} is at least $\frac{1}{2} + \epsilon$.

$$\Pr_{x,y}[f(xy) = f(x)f(y)] \ge \frac{1}{2} + \epsilon$$

is equivalent to

 $E_{x,y}[f(xy)f(x)f(y)] = \text{agreement} - \text{disagreement} \ge 2\epsilon$

21 Probabilistically Checkable Proofs

$$2\epsilon \leq E_{x,y}\left[f(xy)f(x)f(y)\right]$$

$$\begin{aligned} 2\epsilon &\leq E_{x,y} \left[f(xy) f(x) f(y) \right] \\ &= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right] \end{aligned}$$

21 Probabilistically Checkable Proofs

▲ ● ◆ ● ◆ ● ◆
 ▲ 486/521

$$\begin{aligned} 2\epsilon &\leq E_{x,y} \left[f(xy) f(x) f(y) \right] \\ &= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right] \\ &= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right] \end{aligned}$$

21 Probabilistically Checkable Proofs

▲ ● ◆ ● ◆ ● ◆
 ▲ 486/521

$$\begin{aligned} 2\epsilon &\leq E_{x,y} \left[f(xy) f(x) f(y) \right] \\ &= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right] \\ &= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right] \\ &= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right] \end{aligned}$$

$$\begin{aligned} 2\epsilon &\leq E_{x,y} \left[f(xy) f(x) f(y) \right] \\ &= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right] \\ &= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right] \\ &= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right] \\ &= \sum_{\alpha} \hat{f}_{\alpha}^{3} \end{aligned}$$

$$\begin{aligned} 2\epsilon &\leq E_{x,y} \left[f(xy) f(x) f(y) \right] \\ &= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(xy) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right] \\ &= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right] \\ &= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right] \\ &= \sum_{\alpha} \hat{f}_{\alpha}^{3} \\ &\leq \max_{\alpha} \hat{f}_{\alpha} \cdot \sum_{\alpha} \hat{f}_{\alpha}^{2} = \max_{\alpha} \hat{f}_{\alpha} \end{aligned}$$

GNI is the language of pairs of non-isomorphic graphs

21 Probabilistically Checkable Proofs

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with *n*-nodes)

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with *n*-nodes)

It expects a proof of the following form:

► For any labeled *n*-node graph *H* the *H*'s bit *P*[*H*] of the proof fulfills

$$G_0 \equiv H \implies P[H] = 0$$

$$G_1 \equiv H \implies P[H] = 1$$

$$G_0, G_1 \equiv H \implies P[H] = \text{arbitrary}$$

Verifier:

- choose $b \in \{0, 1\}$ at random
- take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

Verifier:

- choose $b \in \{0, 1\}$ at random
- take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If $G_0 \neq G_1$ then by using the obvious proof the verifier will always accept.

Verifier:

- choose $b \in \{0, 1\}$ at random
- take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If $G_0 \neq G_1$ then by using the obvious proof the verifier will always accept.

If $G_0 \neq G_1$ a proof only accepts with probability 1/2.

- suppose $\pi(G_0) = G_1$
- ► if we accept for b = 1 and permutation π_{rand} we reject for permutation b = 0 and $\pi_{rand} \circ \pi$

Decision version of optimization problems: Suppose we have some maximization problem.

Decision version of optimization problems: Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a parameter k and asks whether we can obtain a solution value of at least k. (where infeasible solutions are assumed to have value $-\infty$)

Decision version of optimization problems: Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a parameter k and asks whether we can obtain a solution value of at least k. (where infeasible solutions are assumed to have value $-\infty$)

(Analogous for minimization problems.)

Decision version of optimization problems: Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a parameter k and asks whether we can obtain a solution value of at least k. (where infeasible solutions are assumed to have value $-\infty$)

(Analogous for minimization problems.)

This is the standard way to show that some optimization problem is e.g. NP-hard.

Gap version of optimization problems:

Suppose we have some maximization problem.

21 Probabilistically Checkable Proofs

Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α, β) -gap problem asks the following:

21 Probabilistically Checkable Proofs

Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α, β) -gap problem asks the following:

Suppose we are given an instance *I* and a promise that either opt(*I*) $\geq \beta$ or opt(*I*) $\leq \alpha$. Can we differentiate between these two cases?

Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α, β) -gap problem asks the following:

Suppose we are given an instance *I* and a promise that either $opt(I) \ge \beta$ or $opt(I) \le \alpha$. Can we differentiate between these two cases?

An algorithm A has to output

- A(I) = 1 if $opt(I) \ge \beta$
- A(I) = 0 if $opt(I) \le \alpha$
- A(I) =arbitrary, otw

Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α, β) -gap problem asks the following:

Suppose we are given an instance *I* and a promise that either $opt(I) \ge \beta$ or $opt(I) \le \alpha$. Can we differentiate between these two cases?

An algorithm A has to output

- A(I) = 1 if $opt(I) \ge \beta$
- A(I) = 0 if $opt(I) \le \alpha$
- A(I) =arbitrary, otw

Note that this is not a decision problem

An approximation algorithm with approximation guarantee $c \le \beta/\alpha$ can solve an (α, β) -gap problem.

Constraint Satisfaction Problem

A *q*CSP ϕ consists of *m n*-ary Boolean functions ϕ_1, \ldots, ϕ_m (constraints), where each function only depends on *q* inputs. The goal is to maximize the number of satisifed constraints.

- $u \in \{0,1\}^n$ satsifies constraint ϕ_i if $\phi_i(u) = 1$
- $r(u) := \sum_i \phi_i(u) / m$ is fraction of satisfied constraints
- value(ϕ) = max_u r(u)
- ϕ is satisfiable if value(ϕ) = 1.

3SAT is a constraint satsifaction problem with q = 3.

Constraint Satisfaction Problem

GAP version:

A ρ GAPqCSP ϕ consists of m n-ary Boolean functions ϕ_1, \ldots, ϕ_m (constraints), where each function only depends on q inputs. We know that either ϕ is satisfiable or value(ϕ) < ρ , and want to differentiate between these cases.

 ρ GAPqCSP is NP-hard if for any $L \in NP$ there is a polytime computable function f mapping strings to instances of qCSP s.t.

•
$$x \in L \Rightarrow \text{value}(f(x)) = 1$$

•
$$x \notin L \Longrightarrow \operatorname{value}(f(x)) < \rho$$

Theorem 9

There exists constants q, ρ such that ρ GAPqCSP is NP-hard.

21 Probabilistically Checkable Proofs

We know that NP \subseteq PCP(log n, 1).

We reduce 3SAT to ρ GAPqCSP.

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses c log n random bits (for some c).

For input x and $r \in \{0,1\}^{c \log n}$ define

• $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.

• $V_{x,r}$ only depends on q bits of the proof For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

 ϕ can be computed in polynomial time.

We know that NP \subseteq PCP(log *n*, 1).

We reduce 3SAT to ρ GAPqCSP.

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses c log n random bits (for some c).

For input x and $r \in \{0,1\}^{c \log n}$ define

- $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- $V_{x,r}$ only depends on q bits of the proof For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

 ϕ can be computed in polynomial time.

We know that NP \subseteq PCP(log *n*, 1).

We reduce 3SAT to ρ GAPqCSP.

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0,1\}^{c \log n}$ define

• $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.

• $V_{x,r}$ only depends on q bits of the proof For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

 ϕ can be computed in polynomial time.

We know that NP \subseteq PCP(log *n*, 1).

```
We reduce 3SAT to \rhoGAPqCSP.
```

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0, 1\}^{c \log n}$ define

- ► $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- $V_{x,r}$ only depends on q bits of the proof

For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

 ϕ can be computed in polynomial time.

We know that NP \subseteq PCP(log *n*, 1).

```
We reduce 3SAT to \rhoGAPqCSP.
```

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0, 1\}^{c \log n}$ define

- ► $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- $V_{X,r}$ only depends on q bits of the proof

For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

We know that NP \subseteq PCP(log *n*, 1).

```
We reduce 3SAT to \rhoGAPqCSP.
```

3SAT has a PCP system in which the verifier makes a constant number of queries (q), and uses $c \log n$ random bits (for some c).

For input x and $r \in \{0, 1\}^{c \log n}$ define

- ► $V_{x,r}$ as function that maps a proof π to the result (0/1) computed by the verifier when using proof π , instance x and random coins r.
- $V_{x,r}$ only depends on q bits of the proof

For any x the collection ϕ of the $V_{x,r}$'s over all r is polynomial size qCSP.

 ϕ can be computed in polynomial time.

$x \in 3$ SAT $\Rightarrow \phi$ is satisfiable $x \notin 3$ SAT \Rightarrow value $(\phi) \le \frac{1}{2}$

This means that hoGAPqCSP is NP-hard.

$$x \in 3$$
SAT $\Rightarrow \phi$ is satisfiable
 $x \notin 3$ SAT \Rightarrow value $(\phi) \le \frac{1}{2}$

This means that ρ GAP*q*CSP is NP-hard.

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Suppose you get an input x, and have to decide whether $x \in L$.

We get a verifier as follows.

We use the reduction to map an input x into an instance ϕ of qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint ϕ_i by making q queries. If $x \in L$ the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the proof, and the verifier accepts with probability at most ρ .

Theorem 10

For any positive constants $\epsilon, \delta > 0$, it is the case that $NP \subseteq PCP_{1-\epsilon,1/2+\delta}(\log n, 3)$, and the verifier is restricted to use only the functions odd and even.

It is NP-hard to approximate an ODD/EVEN constraint satisfaction problem by a factor better than $1/2 + \delta$, for any constant δ .

Theorem 11

For any positive constant $\delta > 0$, NP \subseteq PCP_{1,7/8+ δ}($\mathcal{O}(\log n), 3$) and the verifier is restricted to use only functions that check the OR of three bits or their negations.

It is NP-hard to approximate 3SAT better than $7/8 + \delta$.

The following GAP-problem is NP-hard for any $\epsilon > 0$.

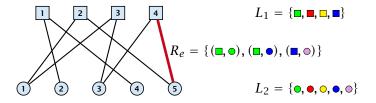
Given a graph G = (V, E) composed of m independent sets of size 3 (|V| = 3m). Distinguish between

- the graph has a CLIQUE of size m
- the largest CLIQUE has size at most $(7/8 + \epsilon)m$

Label Cover

Input:

- bipartite graph $G = (V_1, V_2, E)$
- label sets L_1, L_2
- ► for every edge $(u, v) \in E$ a relation $R_{u,v} \subseteq L_1 \times L_2$ that describe assignments that make the edge *happy*.
- maximize number of happy edges



▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 500/521

Label Cover

- ► an instance of label cover is (d₁, d₂)-regular if every vertex in L₁ has degree d₁ and every vertex in L₂ has degree d₂.
- if every vertex has the same degree d the instance is called d-regular

Minimization version:

- assign a set L_x ⊆ L₁ of labels to every node x ∈ L₁ and a set L_y ⊆ L₂ to every node x ∈ L₂
- make sure that for every edge (x, y) there is $\ell_x \in L_x$ and $\ell_y \in L_y$ s.t. $(\ell_x, \ell_y) \in R_{x,y}$
- minimize $\sum_{x \in L_1} |L_x| + \sum_{y \in L_2} |L_y|$ (total labels used)

instance:

 $\Phi(\boldsymbol{x}) = (\boldsymbol{x}_1 \vee \bar{\boldsymbol{x}}_2 \vee \boldsymbol{x}_3) \land (\boldsymbol{x}_4 \vee \boldsymbol{x}_2 \vee \bar{\boldsymbol{x}}_3) \land (\bar{\boldsymbol{x}}_1 \vee \boldsymbol{x}_2 \vee \bar{\boldsymbol{x}}_4)$

corresponding graph:

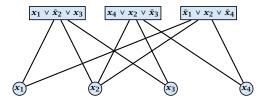
label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (T=true, F=false)

relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

instance:

 $\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \land (x_4 \vee x_2 \vee \bar{x}_3) \land (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$

corresponding graph:



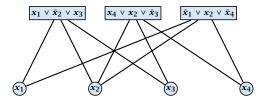
label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (T=true, F=false)

relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

instance:

 $\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \land (x_4 \vee x_2 \vee \bar{x}_3) \land (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$

corresponding graph:



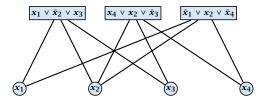
label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

instance:

 $\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \land (x_4 \vee x_2 \vee \bar{x}_3) \land (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$

corresponding graph:



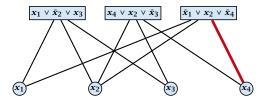
label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause *C* is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies *C*

instance:

 $\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \land (x_4 \vee x_2 \vee \bar{x}_3) \land (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$

corresponding graph:



label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause *C* is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies *C*

$$R = \{((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), ((T,T,T),T), ((T,T,F),F), ((T,F,F),F)\}$$

Lemma 12

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

- for V₂ use the setting of the assignment that satisfies k clauses
- for satisfied clauses in ½, use the corresponding assignment to the clause-variables (gives 3.6 happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m = 4) happy edges)

Lemma 12

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

- for V₂ use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V₁ use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m - k) happy edges)

Lemma 12

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

- for V₂ use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V₁ use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m - k) happy edges)

Lemma 12

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

- for V₂ use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V₁ use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m k) happy edges)

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in ½ gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- hence at most $\Im m = (m-k) = 2m + k$ edges are happy

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- hence at most 3m (m k) = 2m + k edges are happy

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in V₂ gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- hence at most 3m (m k) = 2m + k edges are happy

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in V₂ gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- hence at most 3m (m k) = 2m + k edges are happy

Hardness for Label Cover

We cannot distinguish between the following two cases

- all 3m edges can be made happy
- ► at most $2m + (7/8 + \epsilon)m \approx (\frac{23}{8} + \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{23}{24}$.

Here α is a constant!!! Maybe a guarantee of the form $\frac{23}{8} + \frac{1}{m}$ is possible.

21 Probabilistically Checkable Proofs

Hardness for Label Cover

We cannot distinguish between the following two cases

- all 3m edges can be made happy
- ► at most $2m + (7/8 + \epsilon)m \approx (\frac{23}{8} + \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{23}{24}$.

Here α is a constant!!! Maybe a guarantee of the form $\frac{23}{8} + \frac{1}{m}$ is possible.

21 Probabilistically Checkable Proofs

Hardness for Label Cover

We cannot distinguish between the following two cases

- all 3m edges can be made happy
- ► at most $2m + (7/8 + \epsilon)m \approx (\frac{23}{8} + \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{23}{24}$.

Here α is a constant!!! Maybe a guarantee of the form $\frac{23}{8} + \frac{1}{m}$ is possible.

(3, 5)-regular instances

Theorem 14

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- the resulting Label Cover instance is (3, 5)-regular
- it is hard to approximate for a constant $\alpha < 1$
- given a label ℓ_1 for x there is at most one label ℓ_2 for y that makes edge (x, y) happy (uniqueness property)

(3, 5)-regular instances

Theorem 14

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- ▶ the resulting Label Cover instance is (3, 5)-regular
- it is hard to approximate for a constant $\alpha < 1$
- ► given a label ℓ₁ for x there is at most one label ℓ₂ for y that makes edge (x, y) happy (uniqueness property)

Regular instances

Theorem 15

If for a particular constant $\alpha < 1$ there is an α -approximation algorithm for Label Cover on 15-regular instances than P=NP.

Given a label ℓ_1 for $x \in V_1$ there is at most one label ℓ_2 for y that makes (x, y) happy. (uniqueness property)

Regular instances

proof...

21 Probabilistically Checkable Proofs

◆ @ ▶ ◆ 注 ▶ ◆ 注 ▶ 508/521

Given Label Cover instance *I* with $G = (V_1, V_2, E)$, label sets L_1 and L_2 we construct a new instance *I*':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$E' = E^k = E \times \cdots \times E$$

An edge $((x_1, \ldots, x_k), (y_1, \ldots, y_k))$ whose end-points are labelled by $(\ell_1^x, \ldots, \ell_k^x)$ and $(\ell_1^y, \ldots, \ell_k^y)$ is happy if $(\ell_i^x, \ell_i^y) \in R_{x_i, y_i}$ for all *i*.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 16

There is a constant c > 0 such if $OPT(I) = |E|(1 - \delta)$ then $OPT(I') \le |E'|(1 - \delta)^{\frac{ck}{\log L}}$, where $L = |L_1| + |L_2|$ denotes total number of labels in I.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 16

There is a constant c > 0 such if $OPT(I) = |E|(1 - \delta)$ then $OPT(I') \le |E'|(1 - \delta)^{\frac{ck}{\log L}}$, where $L = |L_1| + |L_2|$ denotes total number of labels in I.

If *I* is regular than also *I*'.

If I has the uniqueness property than also I'.

Theorem 16

There is a constant c > 0 such if $OPT(I) = |E|(1 - \delta)$ then $OPT(I') \le |E'|(1 - \delta)^{\frac{ck}{\log L}}$, where $L = |L_1| + |L_2|$ denotes total number of labels in *I*.

If *I* is regular than also *I*'.

If I has the uniqueness property than also I'.

Theorem 16

There is a constant c > 0 such if $OPT(I) = |E|(1 - \delta)$ then $OPT(I') \le |E'|(1 - \delta)^{\frac{ck}{\log L}}$, where $L = |L_1| + |L_2|$ denotes total number of labels in *I*.

If I is regular than also I'.

If I has the uniqueness property than also I'.

Theorem 16

There is a constant c > 0 such if $OPT(I) = |E|(1 - \delta)$ then $OPT(I') \le |E'|(1 - \delta)^{\frac{ck}{\log L}}$, where $L = |L_1| + |L_2|$ denotes total number of labels in I.

Theorem 17

There are constants c > 0, $\delta < 1$ s.t. for any k we cannot distinguish regular instances for Label Cover in which either

- OPT(I) = |E|, or
- OPT(*I*) = $|E|(1 \delta)^{\frac{ck}{\log 10}}$

unless each problem in NP has an algorithm running in time $\mathcal{O}(n^{\mathcal{O}(k)})$.

Corollary 18

There is no α -approximation for Label Cover for any constant α .

Theorem 19

There exist regular Label Cover instances s.t. we cannot distinguish whether

- all edges are satisfiable, or
- at most a $1/\log^2(|L_2||E|)$ -fraction is satisfiable

unless NP-problems have algorithms with running time $O(n^{O(\log \log n)})$.

choose
$$k = \frac{2\log 10}{c} \log_{1/(1-\delta)} (\log(|L_2||E|)) = \mathcal{O}(\log \log n).$$

Partition System (s, t, h)

- universe U of size s
- ► t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t);$ $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any *h* pairs only one of *A_i*, *Ā_i* we do not cover the whole set *U*

For any *h*, *t* with $h \le t$ there exist systems with $s = |U| \le 2^{2h+2}t^2$.

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; ($t = |L_2|$, $h = (\log |E||L_2|)$)

```
for all v \in V_2, j \in L_2
```

 $S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$

for all $u \in V_1$, $i \in L_1$

 $S_{u,i} = \{((u, v), a) \mid (u, v) \in E, a \in \bar{A}_j, \text{ where } (i, j) \in R_{(u,v)}\}$

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; ($t = |L_2|$, $h = (\log |E||L_2|)$)

for all $v \in V_2, j \in L_2$

 $S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$

for all $u \in V_1$, $i \in L_1$

 $S_{u,i} = \{((u, v), a) \mid (u, v) \in E, a \in \bar{A}_j, \text{ where } (i, j) \in R_{(u,v)}\}$

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; ($t = |L_2|$, $h = (\log |E||L_2|)$)

```
for all v \in V_2, j \in L_2
```

 $S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$

for all $u \in V_1$, $i \in L_1$

 $S_{u,i} = \{((u, v), a) \mid (u, v) \in E, a \in \bar{A}_j, \text{ where } (i, j) \in R_{(u,v)}\}$

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; ($t = |L_2|$, $h = (\log |E||L_2|)$)

for all $v \in V_2$, $j \in L_2$

 $S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$

for all $u \in V_1, i \in L_1$

 $S_{u,i} = \{((u, v), a) \mid (u, v) \in E, a \in \bar{A}_j, \text{ where } (i, j) \in R_{(u,v)}\}$

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; ($t = |L_2|$, $h = (\log |E||L_2|)$)

for all $v \in V_2$, $j \in L_2$

 $S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$

for all $u \in V_1$, $i \in L_1$

 $S_{u,i} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_j, \text{ where } (i,j) \in R_{(u,v)}\}$

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; ($t = |L_2|$, $h = (\log |E||L_2|)$)

for all $v \in V_2$, $j \in L_2$

 $S_{v,j} = \{((u,v),a) \mid (u,v) \in E, a \in A_j\}$

for all $u \in V_1$, $i \in L_1$

 $S_{u,i} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_j, \text{ where } (i,j) \in R_{(u,v)}\}$

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where *i* is the label we assigned to u, and *j* the label for v. ($|V_1| + |V_2|$ sets)

For an edge (u, v), $S_{v,j}$ contains $\{(u, v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u, v)\} \times \overline{A_j}$.

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where *i* is the label we assigned to u, and *j* the label for v. ($|V_1| + |V_2|$ sets)

For an edge (u, v), $S_{v,j}$ contains $\{(u, v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u, v)\} \times \overline{A_j}$.

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where *i* is the label we assigned to *u*, and *j* the label for *v*. ($|V_1| + |V_2|$ sets)

For an edge (u, v), $S_{v,j}$ contains $\{(u, v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u, v)\} \times \overline{A}_j$.

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where *i* is the label we assigned to *u*, and *j* the label for *v*. ($|V_1| + |V_2|$ sets)

For an edge (u, v), $S_{v,j}$ contains $\{(u, v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u, v)\} \times \overline{A_j}$.

Choose sets $S_{u,i}$'s and $S_{v,j}$'s, where *i* is the label we assigned to *u*, and *j* the label for *v*. ($|V_1| + |V_2|$ sets)

For an edge (u, v), $S_{v,j}$ contains $\{(u, v)\} \times A_j$. For a happy edge $S_{u,i}$ contains $\{(u, v)\} \times \overline{A_j}$.

Lemma 20

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1| + |V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

• n_u : number of $S_{u,i}$'s in cover

- n_v : number of $S_{v,j}$'s in cover
- ► at most 1/4 of the vertices can have n_u, n_v ≥ h/2; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen S_{u,i}-sets and a random label for v from the (at most h/2) S_{v,j}-sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make an 2/h²-fraction of edges happy

- n_u : number of $S_{u,i}$'s in cover
- n_v : number of $S_{v,j}$'s in cover
- ► at most 1/4 of the vertices can have n_u, n_v ≥ h/2; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen S_{u,i}-sets and a random label for v from the (at most h/2) S_{v,j}-sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make an 2/h²-fraction of edges happy

- n_u : number of $S_{u,i}$'s in cover
- n_v : number of $S_{v,j}$'s in cover
- ► at most 1/4 of the vertices can have n_u, n_v ≥ h/2; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen S_{u,i}-sets and a random label for v from the (at most h/2) S_{v,j}-sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make an 2/h²-fraction of edges happy

- n_u : number of $S_{u,i}$'s in cover
- n_v : number of $S_{v,j}$'s in cover
- ► at most 1/4 of the vertices can have n_u, n_v ≥ h/2; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ▶ for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2)
 chosen S_{u,i}-sets and a random label for v from the (at most h/2) S_{v,j}-sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make an 2/h²-fraction of edges happy

- n_u : number of $S_{u,i}$'s in cover
- n_v : number of $S_{v,j}$'s in cover
- ► at most 1/4 of the vertices can have n_u, n_v ≥ h/2; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ► for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen S_{u,i}-sets and a random label for v from the (at most h/2) S_{v,j}-sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make an 2/h²-fraction of edges happy

- n_u : number of $S_{u,i}$'s in cover
- n_v : number of $S_{v,j}$'s in cover
- ► at most 1/4 of the vertices can have n_u, n_v ≥ h/2; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ► for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen S_{u,i}-sets and a random label for v from the (at most h/2) S_{v,j}-sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make an $2/h^2$ -fraction of edges happy

- n_u : number of $S_{u,i}$'s in cover
- n_v : number of $S_{v,j}$'s in cover
- ► at most 1/4 of the vertices can have n_u, n_v ≥ h/2; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ► for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen S_{u,i}-sets and a random label for v from the (at most h/2) S_{v,j}-sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make an $2/h^2$ -fraction of edges happy

- n_u : number of $S_{u,i}$'s in cover
- n_v : number of $S_{v,j}$'s in cover
- ► at most 1/4 of the vertices can have n_u, n_v ≥ h/2; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ► for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for *u* from the (at most *h*/2) chosen S_{u,i}-sets and a random label for *v* from the (at most *h*/2) S_{v,j}-sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make an $2/h^2$ -fraction of edges happy

Theorem 21

There is no $\frac{1}{32} \log N$ -approximation for the unweighted Set Cover problem unless problems in NP can be solved in time $\mathcal{O}(n^{\mathcal{O}(\log \log n)})$.

Set $h = \log(|E||L_2|)$ and $t = |L_2|$; Size of partition system is $s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$

The size of the ground set is then

 $N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

Set $h = \log(|E||L_2|)$ and $t = |L_2|$; Size of partition system is

 $s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$

The size of the ground set is then

 $N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

Set $h = \log(|E||L_2|)$ and $t = |L_2|$; Size of partition system is

 $s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$

The size of the ground set is then

 $N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

Set $h = \log(|E||L_2|)$ and $t = |L_2|$; Size of partition system is

 $s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$

The size of the ground set is then

 $N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

Set $h = \log(|E||L_2|)$ and $t = |L_2|$; Size of partition system is

 $s = |U| = 2^{2h+2}t^2 = 4(|E||L_2|)^2|L_2|^2 = 4|E|^2|L_2|^4$

The size of the ground set is then

 $N = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log N$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

Partition Systems

Lemma 22 Given h and t there is a partition system of size $s = 2^{h}h \ln(4t) \le 2^{2h+2}t^{2}$.

We pick t sets at random from the possible $2^{|U|}$ subsets of U.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

Partition Systems

Lemma 22 Given h and t there is a partition system of size $s = 2^{h}h \ln(4t) \le 2^{2h+2}t^{2}$.

We pick *t* sets at random from the possible $2^{|U|}$ subsets of *U*.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

Partition Systems

Lemma 22 Given h and t there is a partition system of size $s = 2^{h}h \ln(4t) \le 2^{2h+2}t^{2}$.

We pick *t* sets at random from the possible $2^{|U|}$ subsets of *U*.

Fix a choice of h of these sets, and a choice of h bits (whether we choose A_i or \bar{A}_i). There are $2^h \cdot {t \choose h}$ such choices.

The probability that an element $u\in A_i$ is 1/2 (same for $ar{A}_i$).

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all u are covered is $(1 - \frac{1}{2h})^s$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} \le \frac{1}{2^h}$$

The probability that an element $oldsymbol{u}\in A_i$ is 1/2 (same for $ar{A}_i$).

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all $oldsymbol{u}$ are covered is $(1-rac{1}{2\hbar})^s$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} \le \frac{1}{2^h}$$

The probability that an element $u \in A_i$ is 1/2 (same for \overline{A}_i).

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all $oldsymbol{u}$ are covered is $(1-rac{1}{2\hbar})^s$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} \le \frac{1}{2^h}$$

The probability that an element $u \in A_i$ is 1/2 (same for \overline{A}_i).

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all $oldsymbol{u}$ are covered is $(1-rac{1}{2h})^s$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} \le \frac{1}{2^h}$$

The probability that an element $u \in A_i$ is 1/2 (same for \overline{A}_i).

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all u are covered is $(1 - \frac{1}{2^h})^s$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h\ln(4t)} \le \frac{1}{2^h}$$

The probability that an element $u \in A_i$ is 1/2 (same for \overline{A}_i).

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all u are covered is $(1 - \frac{1}{2h})^s$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} \le \frac{1}{2^h}$$

