
Definition 2 (NP)

A language L ∈ NP if there exists a polynomial time,

deterministic verifier V (a Turing machine), s.t.

[x ∈ L] There exists a proof string y, |y| = poly(|x|),
s.t. V(x,y) = “accept”.

[x ∉ L] For any proof string y, V(x,y) = “reject”.

Note that requiring |y| = poly(|x|) for x ∉ L does not make a

difference (why?).
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Probabilistic Proof Verification

Definition 3 (IP)

In an interactive proof system a randomized polynomial-time

verifier V (with private coin tosses) interacts with an all powerful

prover P in polynomially many rounds. L ∈ IP if

[x ∈ L] There exists a strategy for P s.t. V accepts with

probability 1.

[x ∉ L] Regardless of P ’s strategy V accepts with prob-

ability at most 1/2.
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Probabilistic Checkable Proofs

Definition 4 (PCP)

A language L ∈ PCPc(n),s(n)(r(n), q(n)) if there exists a

polynomial time, non-adaptive, randomized verifier V (an Oracle

Turing Machine), s.t.

[x ∈ L] There exists a proof string y, s.t. Vπy (x) = “ac-

cept” with proability ≥ c(n).

[x ∉ L] For any proof string y, Vπy (x) = “accept” with

probability ≤ s(n).

The verifier uses at most r(n) random bits and makes at most

q(n) oracle queries.
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Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access

to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle πTSP would allow M
to write a TSP-instance x on a special oracle tape and obtain the

answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query

complexity, i.e., how often the machine queries the oracle.
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For a proof string y, πy is an oracle that upon given an index i
returns the i-th character yi of y.

c(n) is called the completeness. If not specified otw. c(n) = 1.

Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.

s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many

random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.
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IP ⊆ PCP1,1/2(poly(n),poly(n))

We can view non-adadpative PCP1,1/2(poly(n),poly(n)) as the

version of IP in which the prover has written down his answers to

all possible queries (beforehand).

This makes it harder for the prover to cheat.

The non-cheating prover does not loose power.

Note that the above is not a proof!
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ñ PCP(0,0) = P

ñ PCP(O(logn),0) = P

ñ PCP(0,O(logn)) = P

ñ PCP(0,O(poly(n))) = NP

ñ PCP(O(logn),O(poly(n))) = NP

ñ PCP(O(poly(n)),0) = coRP

randomized polynomial time with one sided error (positive

probability of accepting a false statement)

ñ PCP(O(logn),O(1)) = NP (the PCP theorem)
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NP ⊆ PCP(poly(n),1)

PCP(poly(n),1) means that we have a potentially exponentially

long proof but we only read a constant number of bits from the

proof.

The idea is to encode an NP-witness/proof (e.g. a satisfying

assignment (say n bits)) by a code whose code-words have 2n

bits.

A wrong proof is either

ñ a code-word whose pre-image does not correspond to a

satisfying assignment

ñ or, a sequence of bits that does not correspond to a

code-word

We can detect both cases by querying a few positions.
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The Code

u ∈ {0,1}n (satisfying assignment)

Walsh-Hadamard Code:

WHu : {0,1}n → {0,1}, x , xTu (over GF(2))

The code-word for u is WHu. We identify this function by a

bit-vector of length 2n.
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The Code

Lemma 5

If u ≠ u′ then WHu and WHu′ differ in at least 2n−1 bits.

Suppose that u−u′ ≠ 0. Then

WHu(x) ≠ WHu′(x)⇐⇒ (u−u′)Tx ≠ 0

This holds for 2n−1 different vectors x.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 463/521



The Code

Lemma 5

If u ≠ u′ then WHu and WHu′ differ in at least 2n−1 bits.

Suppose that u−u′ ≠ 0. Then

WHu(x) ≠ WHu′(x)⇐⇒ (u−u′)Tx ≠ 0

This holds for 2n−1 different vectors x.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 463/521



The Code

Suppose we are given access to a function f : {0,1}n → {0,1}
and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions

{0,1}n to {0,1} we can check

f(x +y) = f(x)+ f(y)

for all 22n pairs x,y. But that’s not very efficient.
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Can we just check a constant number of positions?
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Definition 6

Let ρ ∈ [0,1]. We say that f , g : {0,1}n → {0,1} are ρ-close if

Pr
x∈{0,1}n

[f (x) = g(x)] ≥ ρ .

Theorem 7

Let f : {0,1}n → {0,1} with

Pr
x,y∈{0,1}n

[
f(x)+ f(y) = f(x +y)

]
≥ ρ > 1

2
.

Then there is a linear function f̃ such that f and f̃ are ρ-close.
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We need O(1/δ) trials to be sure that f is (1− δ)-close to a

linear function with (arbitrary) constant probability.
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Suppose for δ < 1/4 f is (1− δ)-close to some linear function f̃ .

f̃ is uniquely defined by f , since linear functions differ on at

least half their inputs.

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?
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Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

1. Choose x′ ∈ {0,1}n u.a.r.

2. Set x′′ := x + x′.
3. Let y′ = f(x′) and y′′ = f(x′′).
4. Output y′ +y′′.

x′ and x′′ are uniformly distributed (albeit dependent). With

probability at least 1− 2δ we have f(x′) = f̃ (x′) and

f(x′′) = f̃ (x′′).

Then we can compute f̃ (x).

This technique is known as local decoding of the

Walsh-Hadamard code.
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NP ⊆ PCP(poly(n),1)

We show that QUADEQ ∈ PCP(poly(n),1). The theorem follows

since any PCP-class is closed under polynomial time reductions.

introduce QUADEQ...

prove NP-completeness...



Let A, b be an instance of QUADEQ. Let u be a satisfying

assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of

u and u⊗u. The verifier will accept such a proof with

probability 1.

We have to make sure that we reject proofs that do not

correspond to codewords for vectors of the form u, and u⊗u.

We also have to reject proofs that correspond to codewords for

vectors of the form z, and z ⊗ z, where z is not a satisfying

assignment.



Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.99-linearity test for both functions (requires a

constant number of queries).

We also assume that the remaining constant number of (random)

accesses only hit points where f(x) = f̃ (x).

Hence, our proof will only see f̃ and therefore we use f for f̃ , in

the following (similar for g, g̃).



Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.99-linearity test for both functions (requires a

constant number of queries).

We also assume that the remaining constant number of (random)

accesses only hit points where f(x) = f̃ (x).

Hence, our proof will only see f̃ and therefore we use f for f̃ , in

the following (similar for g, g̃).



Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.99-linearity test for both functions (requires a

constant number of queries).

We also assume that the remaining constant number of (random)

accesses only hit points where f(x) = f̃ (x).

Hence, our proof will only see f̃ and therefore we use f for f̃ , in

the following (similar for g, g̃).



Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.99-linearity test for both functions (requires a

constant number of queries).

We also assume that the remaining constant number of (random)

accesses only hit points where f(x) = f̃ (x).

Hence, our proof will only see f̃ and therefore we use f for f̃ , in

the following (similar for g, g̃).



Step 2. Verify that g encodes u ⊗ u where u is string

encoded by f .

f(r) = uTr and g(z) = wTz since f , g are linear.

ñ choose r , r ′ independently, u.a.r. from {0,1}n

ñ if f(r)f (r ′) ≠ g(r ⊗ r ′) reject

ñ repeat 3 times



A correct proof survives the test

f(r) · f(r ′)

= uTr ·uTr ′ =
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j = (u⊗u)T (r ⊗ r ′) = g(r ⊗ r ′)
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Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.
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∑
ij
wijrir ′j = rTWr ′
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Step 3. Verify that f encodes satisfying assignment.

We need to check

Ak(u⊗u) = bk

where Ak is the k-th row of the constraint matrix. But the left

hand side is just g(ATk ).

We can handle this by a single query but checking all constraints

would take O(m) steps.

We compute rA, where r ∈R {0,1}m. If u is not a satisfying

assignment then with probability 1/2 the vector r will hit an odd

number of violated constraint.

In this case rA(u⊗u) ≠ rbk. The left hand side is equal to

g(ATrT ).
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Theorem 7

Let f : {0,1}n → {0,1} with

Pr
x,y∈{0,1}n

[
f(x)+ f(y) = f(x +y)

]
≥ ρ > 1

2
.

Then there is a linear function f̃ such that f and f̃ are ρ-close.
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Fourier Transform over GF(2)

In the following we use {−1,1} instead of {0,1}. We map

b ∈ {0,1} to (−1)b.

This turns summation into multiplication.

The set of function f : {−1,1} → R form a 2n-dimensional

Hilbert space.
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Hilbert space

ñ addition (f + g)(x) = f(x)+ g(x)
ñ scalar multiplication (αf)(x) = αf(x)
ñ inner product 〈f , g〉 = Ex∈{0,1}n[f (x)g(x)]

(bilinear, 〈f , f 〉 ≥ 0, and 〈f , f 〉 = 0⇒ f = 0)

ñ completeness: any sequence xk of vectors for which

∞∑
k=1

‖xk‖ <∞ fulfills

∥∥∥∥∥∥L−
N∑
k=1

xk

∥∥∥∥∥∥→ 0

for some vector L.
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standard basis

ex(y) =
{

1 x = y
0 otw.

Then, f(x) =
∑
x αxex where αx = f(x), this means the

functions ex form a basis. This basis is orthonormal.
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fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)
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A function χα multiplies a set of xi’s. Back in the GF(2)-world

this means summing a set of zi’s where xi = (−1)zi .

This means the function χα correspond to linear functions in the

GF(2) world.
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We can write any function f : {−1,1}n → R as

f =
∑
α
f̂αχα

We call f̂α the αth Fourier coefficient.

Lemma 8

1. 〈f , g〉 =
∑
α fαgα

2. 〈f , f 〉 =
∑
α f 2

α

Note that for Boolean functions f : {−1,1}n → {−1,1},
〈f , f 〉 = 1.
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Linearity Test

GF(2)
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

Hilbert space (we prove)

Suppose that f : {+1,−1}n → {−1,1} satisfies

Prx,y[f (x)f(y) = f(xy)] ≥ 1
2 + ε. Then there is some α ⊆ [n],

s.t. f̂α ≥ 2ε.

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.
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Linearity Test

Pr
x,y
[f (xy) = f(x)f(y)] ≥ 1

2
+ ε

is equivalent to

Ex,y[f (xy)f(x)f(y)] = agreement− disagreement ≥ 2ε
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2ε ≤ Ex,y
[
f(xy)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(xy)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α
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Probabilistic proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G0, G1) (two graphs with n-nodes)

It expects a proof of the following form:

ñ For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills

G0 ≡ H =⇒ P[H] = 0

G1 ≡ H =⇒ P[H] = 1

G0, G1 � H =⇒ P[H] = arbitrary
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Probabilistic proof for Graph NonIsomorphism

Verifier:

ñ choose b ∈ {0,1} at random

ñ take graph Gb and apply a random permutation to obtain a

labeled graph H
ñ check whether P[H] = b

If G0 � G1 then by using the obvious proof the verifier will

always accept.

If G0 � G1 a proof only accepts with probability 1/2.

ñ suppose π(G0) = G1

ñ if we accept for b = 1 and permutation πrand we reject for

permutation b = 0 and πrand ◦π
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How to show Harndess of Approximation?

Decision version of optimization problems:

Suppose we have some maximization problem.

The corresponding decision problem equips each instance with a

parameter k and asks whether we can obtain a solution value of

at least k. (where infeasible solutions are assumed to have value

−∞)

(Analogous for minimization problems.)

This is the standard way to show that some optimization

problem is e.g. NP-hard.
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How to show Harndess of Approximation?
Gap version of optimization problems:

Suppose we have some maximization problem.

The corresponding (α,β)-gap problem asks the following:

Suppose we are given an instance I and a promise that either

opt(I) ≥ β or opt(I) ≤ α. Can we differentiate between these

two cases?

An algorithm A has to output

ñ A(I) = 1 if opt(I) ≥ β
ñ A(I) = 0 if opt(I) ≤ α
ñ A(I) = arbitrary, otw

Note that this is not a decision problem
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An approximation algorithm with approximation guarantee

c ≤ β/α can solve an (α,β)-gap problem.
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Constraint Satisfaction Problem

A qCSP φ consists of m n-ary Boolean functions φ1, . . . ,φm
(constraints), where each function only depends on q inputs.

The goal is to maximize the number of satisifed constraints.

ñ u ∈ {0,1}n satsifies constraint φi if φi(u) = 1

ñ r(u) :=
∑
iφi(u)/m is fraction of satisfied constraints

ñ value(φ) =maxu r(u)
ñ φ is satisfiable if value(φ) = 1.

3SAT is a constraint satsifaction problem with q = 3.
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Constraint Satisfaction Problem

GAP version:

A ρGAPqCSP φ consists of m n-ary Boolean functions

φ1, . . . ,φm (constraints), where each function only depends on q
inputs. We know that either φ is satisfiable or value(φ) < ρ, and

want to differentiate between these cases.

ρGAPqCSP is NP-hard if for any L ∈ NP there is a polytime

computable function f mapping strings to instances of qCSP s.t.

ñ x ∈ L =⇒ value(f (x)) = 1

ñ x ∉ L =⇒ value(f (x)) < ρ
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Theorem 9

There exists constants q,ρ such that ρGAPqCSP is NP-hard.
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We know that NP ⊆ PCP(logn,1).

We reduce 3SAT to ρGAPqCSP.

3SAT has a PCP system in which the verifier makes a constant

number of queries (q), and uses c logn random bits (for some c).

For input x and r ∈ {0,1}c logn define

ñ Vx,r as function that maps a proof π to the result (0/1)

computed by the verifier when using proof π , instance x
and random coins r .

ñ Vx,r only depends on q bits of the proof

For any x the collection φ of the Vx,r ’s over all r is polynomial

size qCSP.

φ can be computed in polynomial time.
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Suppose that ρGAPqCSP is NP-hard for some constants q,ρ
(ρ < 1).

Suppose you get an input x, and have to decide whether x ∈ L.

We get a verifier as follows.

We use the reduction to map an input x into an instance φ of

qCSP.

The proof is considered to be an assignment to the variables.

We can check a random constraint φi by making q queries. If

x ∈ L the verifier accepts with probability 1.

Otw. at most a ρ fraction of constraints are satisfied by the

proof, and the verifier accepts with probability at most ρ.

Hence, L ∈ PCP1,ρ(log2m,q), where m is the number of

constraints.
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Theorem 10

For any positive constants ε, δ > 0, it is the case that

NP ⊆ PCP1−ε,1/2+δ(logn,3), and the verifier is restricted to use

only the functions odd and even.

It is NP-hard to approximate an ODD/EVEN constraint

satisfaction problem by a factor better than 1/2+ δ, for any

constant δ.

Theorem 11

For any positive constant δ > 0, NP ⊆ PCP1,7/8+δ(O(logn),3)
and the verifier is restricted to use only functions that check the

OR of three bits or their negations.

It is NP-hard to approximate 3SAT better than 7/8+ δ.
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The following GAP-problem is NP-hard for any ε > 0.

Given a graph G = (V , E) composed of m independent sets of

size 3 (|V | = 3m). Distinguish between

ñ the graph has a CLIQUE of size m
ñ the largest CLIQUE has size at most (7/8+ ε)m
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Label Cover

Input:

ñ bipartite graph G = (V1, V2, E)
ñ label sets L1, L2

ñ for every edge (u,v) ∈ E a relation Ru,v ⊆ L1 × L2 that

describe assignments that make the edge happy.

ñ maximize number of happy edges

1 2 3 4

1 2 3 4 5

L1 = { , , , }

L2 = { , , , , }

Re = {( , ), ( , ), ( , )}
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Label Cover

ñ an instance of label cover is (d1, d2)-regular if every vertex

in L1 has degree d1 and every vertex in L2 has degree d2.

ñ if every vertex has the same degree d the instance is called

d-regular

Minimization version:

ñ assign a set Lx ⊆ L1 of labels to every node x ∈ L1 and a

set Ly ⊆ L2 to every node x ∈ L2

ñ make sure that for every edge (x,y) there is `x ∈ Lx and

`y ∈ Ly s.t. (`x, `y) ∈ Rx,y
ñ minimize

∑
x∈L1 |Lx| +

∑
y∈L2 |Ly | (total labels used)
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MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}
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MAX E3SAT via Label Cover

Lemma 12

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

ñ for V2 use the setting of the assignment that satisfies k
clauses

ñ for satisfied clauses in V1 use the corresponding

assignment to the clause-variables (gives 3k happy edges)

ñ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)
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MAX E3SAT via Label Cover

Lemma 13

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

ñ the labeling of nodes in V2 gives an assignment

ñ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

ñ hence at most 3m− (m− k) = 2m+ k edges are happy
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Hardness for Label Cover

We cannot distinguish between the following two cases

ñ all 3m edges can be made happy

ñ at most 2m+ (7/8+ ε)m ≈ (23
8 + ε)m out of the 3m edges

can be made happy

Hence, we cannot obtain an approximation constant α > 23
24 .

Here α is a constant!!! Maybe a guarantee of the form 23
8 +

1
m is

possible.
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(3,5)-regular instances

Theorem 14

There is a constant ρ s.t. MAXE3SAT is hard to approximate with

a factor of ρ even if restricted to instances where a variable

appears in exactly 5 clauses.

Then our reduction has the following properties:

ñ the resulting Label Cover instance is (3,5)-regular

ñ it is hard to approximate for a constant α < 1

ñ given a label `1 for x there is at most one label `2 for y
that makes edge (x,y) happy (uniqueness property)
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Regular instances

Theorem 15

If for a particular constant α < 1 there is an α-approximation

algorithm for Label Cover on 15-regular instances than P=NP.

Given a label `1 for x ∈ V1 there is at most one label `2 for y
that makes (x,y) happy. (uniqueness property)
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Regular instances

proof...
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Boosting

Given Label Cover instance I with G = (V1, V2, E), label sets L1

and L2 we construct a new instance I′:

ñ V ′1 = Vk1 = V1 × · · · × V1

ñ V ′2 = Vk2 = V2 × · · · × V2

ñ L′1 = Lk1 = L1 × · · · × L1

ñ L′2 = Lk2 = L2 × · · · × L2

ñ E′ = Ek = E × · · · × E

An edge ((x1, . . . , xk), (y1, . . . , yk)) whose end-points are

labelled by (`x1 , . . . , `
x
k ) and (`y1 , . . . , `

y
k ) is happy if

(`xi , `
y
i ) ∈ Rxi,yi for all i.
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Boosting

If I is regular than also I′.

If I has the uniqueness property than also I′.

Theorem 16

There is a constant c > 0 such if OPT(I) = |E|(1− δ) then

OPT(I′) ≤ |E′|(1− δ)
ck

logL , where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial
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Theorem 17

There are constants c > 0, δ < 1 s.t. for any k we cannot

distinguish regular instances for Label Cover in which either

ñ OPT(I) = |E|, or

ñ OPT(I) = |E|(1− δ)
ck

log 10

unless each problem in NP has an algorithm running in time

O(nO(k)).

Corollary 18

There is no α-approximation for Label Cover for any constant α.
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Set Cover

Theorem 19

There exist regular Label Cover instances s.t. we cannot

distinguish whether

ñ all edges are satisfiable, or

ñ at most a 1/ log2(|L2||E|)-fraction is satisfiable

unless NP-problems have algorithms with running time

O(nO(log logn)).

choose k = 2 log 10
c log1/(1−δ)(log(|L2||E|)) = O(log logn).
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Set Cover

Partition System (s, t, h)
ñ universe U of size s
ñ t pairs of sets (A1, Ā1), . . . , (At , Āt);
Ai ⊆ U, Āi = U \Ai

ñ choosing from any h pairs only one of Ai, Āi we do not

cover the whole set U

For any h, t with h ≤ t there exist systems with

s = |U| ≤ 22h+2t2.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 513/521



Set Cover
Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L2|, h = (log |E||L2|))

for all v ∈ V2, j ∈ L2

Sv,j = {((u,v),a) | (u,v) ∈ E,a ∈ Aj}

for all u ∈ V1, i ∈ L1

Su,i = {((u,v),a) | (u,v) ∈ E,a ∈ Āj, where (i, j) ∈ R(u,v)}

note that Su,i is well-defined because of the uniqueness property
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Suppose that we can make all edges happy.

Choose sets Su,i’s and Sv,j’s, where i is the label we assigned to

u, and j the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,j contains {(u,v)}×Aj. For a happy edge

Su,i contains {(u,v)} × Āj.

Since all edges are happy we have covered the whole universe.
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Lemma 20

Given a solution to the set cover instance using at most
h
8 (|V1| + |V2|) sets we can find a solution to the Label Cover

instance satisfying at least 2
h2 |E| edges.
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ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make an 2/h2-fraction of edges happy
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Set Cover

Theorem 21

There is no 1
32 logN-approximation for the unweighted Set Cover

problem unless problems in NP can be solved in time

O(nO(log logn)).
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Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L2|) and t = |L2|; Size of partition system is

s = |U| = 22h+2t2 = 4(|E||L2|)2|L2|2 = 4|E|2|L2|4

The size of the ground set is then

N = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logN.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L2|) of the

edges. this is not possible...
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Partition Systems

Lemma 22

Given h and t there is a partition system of size

s = 2hh ln(4t) ≤ 22h+2t2.

We pick t sets at random from the possible 2|U| subsets of U .

Fix a choice of h of these sets, and a choice of h bits (whether

we choose Ai or Āi). There are 2h ·
(
t
h

)
such choices.
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we choose Ai or Āi). There are 2h ·
(
t
h

)
such choices.

EADS II 21 Probabilistically Checkable Proofs

© Harald Räcke 520/521



Partition Systems

Lemma 22

Given h and t there is a partition system of size

s = 2hh ln(4t) ≤ 22h+2t2.

We pick t sets at random from the possible 2|U| subsets of U .

Fix a choice of h of these sets, and a choice of h bits (whether
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What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) ≤ 1

2h
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