List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively

Consider processes in some order. Assign the i-th process to the least loaded machine.

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively

Consider processes in some order. Assign the \emph{i} -th process to the least loaded machine.

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

Lemma 2

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* .$$

$$> C_{\max}^*/3$$
.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$
.

Hence, $p_n > C_{\text{max}}^*/3$.

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* .$$

Hence, $p_n > C_{\text{max}}^* / 3$.

- ► This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- ► For such instances Longest-Processing-Time-First is optimal

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3}C_{\max}^*.$$

Hence, $p_n > C_{\text{max}}^* / 3$.

- ► This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- ► For such instances Longest-Processing-Time-First is optimal

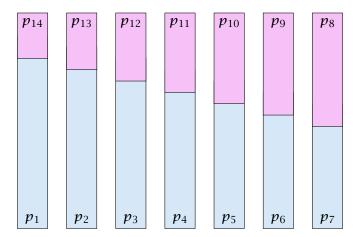
- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^* .$$

Hence, $p_n > C_{\text{max}}^* / 3$.

- ► This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- ► For such instances Longest-Processing-Time-First is optimal.

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.



- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- ▶ Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog, that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

