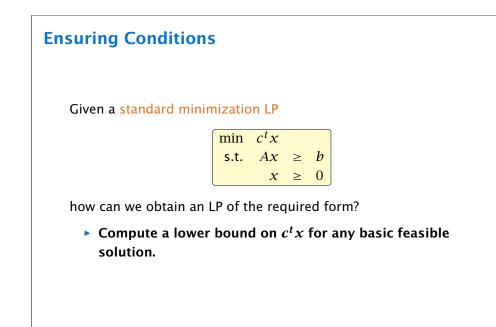
8 Seidels LP-algorithm

- Suppose we want to solve $\min\{c^t x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have *m* constraints.
- ▶ In the worst-case Simplex runs in time roughly $O(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- In the following we develop an algorithm with running time $O(d! \cdot m)$, i.e., linear in m.

הם (הר	EADS II
	© Harald Räcke



8 Seidels LP-algorithm

Setting:

We assume an LP of the form

min	$c^t x$		
s.t.	Ax	\geq	b
	x	\geq	0

• We assume that the LP is **bounded**.

רח EADS II	8 Seidels LP-algorithm	
UUU©Harald Räcke		137

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \overline{A} .

If *B* is an optimal basis then x_B with $\bar{A}_B x_B = b$, gives an optimal assignment to the basis variables (non-basic variables are 0).

136

Theorem 2 (Cramers Rule) Let M be a matrix with $det(M) \neq 0$. Then the solution to the system Mx = b is given by $x_j = \frac{det(M_j)}{det(M)}$, where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

EADS II © Harald Räcke

8 Seidels LP-algorithm

Bounding the Determinant

Let Z be the maximum absolute entry occuring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the *j*-th column with vector \bar{b} .

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \prod_{1 \le i \le m} \operatorname{sgn}(\pi) C_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

$$\leq m! \cdot Z^m .$$

EADS II © Harald Räcke 8 Seidels LP-algorithm

142

140

Proof:

Define

$$X_{j} = \begin{pmatrix} | & | & | & | & | \\ e_{1} \cdots e_{j-1} x e_{j+1} \cdots e_{n} \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the *j*-th column gives that $det(X_j) = x_j$.

Further, we have

$$MX_{j} = \begin{pmatrix} | & | & | & | & | \\ Me_{1} \cdots Me_{j-1} & Mx & Me_{j+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{j}$$

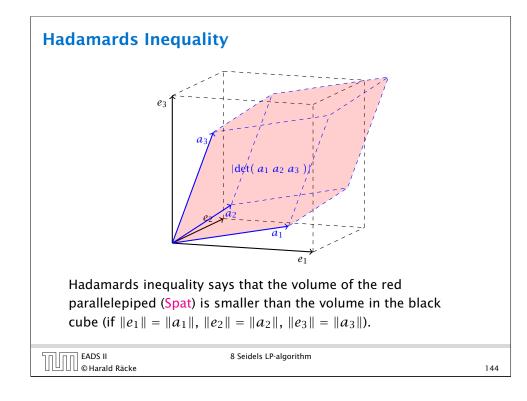
Hence,

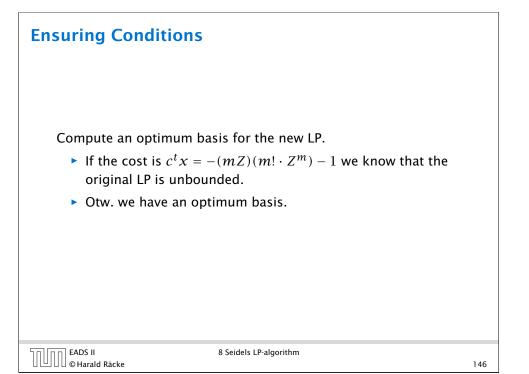
$$x_j = \det(X_j) = \frac{\det(M_j)}{\det(M)}$$

141

8 Seidels LP-algorithm

Bounding the Determinant Alternatively, Hadamards inequality gives $|\det(C)| \leq \prod_{i=1}^{m} ||C_{*i}|| \leq \prod_{i=1}^{m} (\sqrt{m}Z)$ $\leq m^{m/2}Z^m$





Ensuring Conditions

Given a standard minimization LP

min	$c^t x$		
s.t.	Ax	\geq	b
	x	\geq	0

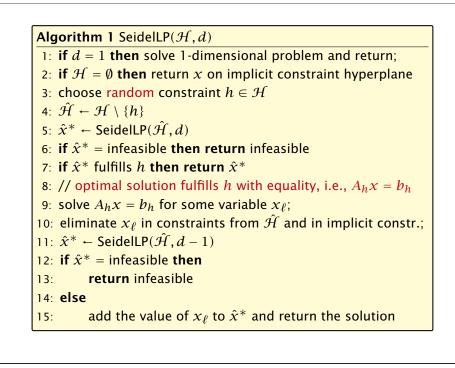
how can we obtain an LP of the required form?

► Compute a lower bound on c^tx for any basic feasible solution. Add the constraint c^tx ≥ -mZ(m! · Z^m) - 1. Note that this constraint is superfluous unless the LP is unbounded.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^t x \ge -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H} , d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^t x$ over all feasible points.

In addition it obeys the implicit constraint $c^t x \ge -(mZ)(m! \cdot Z^m) - 1.$



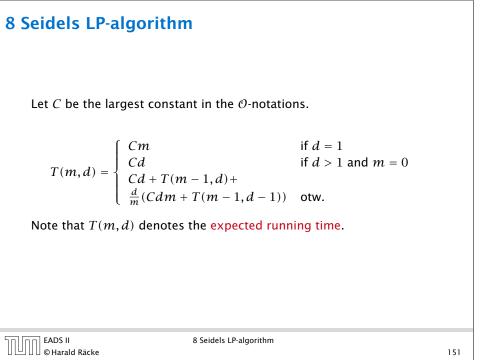
8 Seidels LP-algorithm This gives the recurrence $T(m,d) = \begin{cases} \mathcal{O}(m) & \text{if } d = 1\\ \mathcal{O}(d) & \text{if } d > 1 \text{ and } m = 0\\ \mathcal{O}(d) + T(m-1,d) + \\ \frac{d}{m}(\mathcal{O}(dm) + T(m-1,d-1)) & \text{otw.} \end{cases}$ Note that T(m, d) denotes the expected running time. EADS II 8 Seidels LP-algorithm |||||| © Harald Räcke 150

8 Seidels LP-algorithm

- If d = 1 we can solve the 1-dimensional problem in time $\mathcal{O}(m).$
- If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- The first recursive call takes time T(m-1, d) for the call plus $\mathcal{O}(d)$ for checking whether the solution fulfills *h*.
- If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_{ℓ} . Then we make a recursive call that takes time T(m-1, d-1).
- The probability of being unlucky is at most d/m as there are at most *d* constraints whose removal will decrease the objective function

```
EADS II
© Harald Räcke
```

8 Seidels LP-algorithm



151

149

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.				
We show $T(m, d) \leq Cf(d) \max\{1, m\}$.				
d = 1: $T(m, 1) \le Cm \le Cf(1) \max\{1, m\} \text{ for } f(1) \ge 1$				
d > 1; m = 0: $T(0, d) \le O(d) \le Cd \le Cf(d) \max\{1, m\} \text{ for } f(d) \ge d$				
d > 1; m = 1:				
$T(1,d) = \mathcal{O}(d) + T(0,d) + d\Big(\mathcal{O}(d) + T(0,d-1)\Big)$				
$\leq Cd + Cd + Cd^2 + dCf(d-1)$				
$\leq Cf(d)\max\{1,m\} \text{ for } f(d) \geq 3d^2 + df(d-1)$				

8 Seidels LP-algorithm

d > 1; m > 1: (by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

8 Seidels LP-algorithm

 $\leq Cf(d)m$

if $f(d) \ge df(d-1) + 2d^2$.

EADS II © Harald Räcke

154

153

8 Seidels LP-algorithm

• Define
$$f(1) = 3 \cdot 1^2$$
 and $f(d) = df(d-1) + 3d^2$ for $d > 1$.

Then

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 1^{2}$$

$$= 3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

$$= \mathcal{O}(d!)$$
since $\sum_{i \ge 1} \frac{i^{2}}{i!}$ is a constant.
8 Seidels LP-algorithm
8 Seidels LP-algorithm

