- Suppose we want to solve $\min\{c^t x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- If d is much smaller than m one can do a lot better.
- In the following we develop an algorithm with running time $\mathcal{O}(d! \cdot m)$, i.e., linear in m.

Setting:

We assume an LP of the form

$$\begin{array}{cccc}
\min & c^t x \\
\text{s.t.} & Ax & \geq & b \\
& & x & \geq & 0
\end{array}$$

We assume that the LP is bounded.

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^t x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

Compute a lower bound on $c^t x$ for any basic feasible solution.

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A} .

If B is an optimal basis then x_B with $\bar{A}_B x_B = b$, gives an optimal assignment to the basis variables (non-basic variables are 0).

Theorem 2 (Cramers Rule)

Let M be a matrix with $det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_j = \frac{\det(M_j)}{\det(M)} ,$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

Proof:

Define

$$X_{j} = \begin{pmatrix} | & | & | & | \\ e_{1} \cdots e_{j-1} & x & e_{j+1} \cdots e_{n} \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the *j*-th column gives that $det(X_j) = x_j$.

Further, we have

Hence,

$$x_j = \det(X_j) = \frac{\det(M_j)}{\det(M)}$$

Bounding the Determinant

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} .

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \prod_{1 \le i \le m} \operatorname{sgn}(\pi) C_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

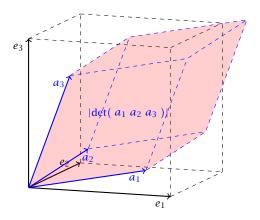
$$\leq m! \cdot Z^m.$$

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$\begin{aligned} |\det(C)| &\leq \prod_{i=1}^m \|C_{*i}\| \leq \prod_{i=1}^m (\sqrt{m}Z) \\ &\leq m^{m/2}Z^m \ . \end{aligned}$$

Hadamards Inequality



Hadamards inequality says that the volume of the red parallelepiped (Spat) is smaller than the volume in the black cube (if $\|e_1\| = \|a_1\|$, $\|e_2\| = \|a_2\|$, $\|e_3\| = \|a_3\|$).

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^t x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

Compute a lower bound on $c^t x$ for any basic feasible solution. Add the constraint $c^t x \ge -mZ(m! \cdot Z^m) - 1$. Note that this constraint is superfluous unless the LP is unbounded.

Ensuring Conditions

Compute an optimum basis for the new LP.

- ▶ If the cost is $c^t x = -(mZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- Otw. we have an optimum basis.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^t x \ge -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^tx over all feasible points.

In addition it obeys the implicit constraint $c^t x \ge -(mZ)(m! \cdot Z^m) - 1$.

Algorithm 1 SeidelLP(\mathcal{H}, d)

1: if d = 1 then solve 1-dimensional problem and return;

2: **if** $\mathcal{H} = \emptyset$ **then** return x on implicit constraint hyperplane 3: choose random constraint $h \in \mathcal{H}$

4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$

5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$ 6: if \hat{x}^* = infeasible then return infeasible

7: **if** \hat{x}^* fulfills h then return \hat{x}^*

8: // optimal solution fulfills h with equality, i.e., $A_h x = b_h$ 9: solve $A_h x = b_h$ for some variable x_ℓ ;

10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;

11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$ 12: **if** \hat{x}^* = infeasible **then** return infeasible

14: **else**

add the value of x_{ℓ} to \hat{x}^* and return the solution

- If d = 1 we can solve the 1-dimensional problem in time $\mathcal{O}(m)$.
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- ▶ The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

This gives the recurrence

$$T(m,d) = \begin{cases} \mathcal{O}(m) & \text{if } d=1\\ \mathcal{O}(d) & \text{if } d>1 \text{ and } m=0\\ \mathcal{O}(d) + T(m-1,d) + \\ \frac{d}{m}(\mathcal{O}(dm) + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} Cm & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

Let C be the largest constant in the \mathcal{O} -notations.

We show
$$T(m, d) \le Cf(d) \max\{1, m\}$$
.

$$T(m,1) \le Cm \le Cf(1) \max\{1,m\} \text{ for } f(1) \ge 1$$

$$d > 1; m = 0$$
:

d=1:

$$T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$$

$$d > 1; m = 1$$
:

$$T(1,d) = \mathcal{O}(d) + T(0,d) + d(\mathcal{O}(d) + T(0,d-1))$$

$$\leq Cd + Cd + Cd^2 + dCf(d-1)$$

$$\leq Cf(d) \max\{1, m\} \text{ for } f(d) \geq 3d^2 + df(d-1)$$

(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$\begin{split} T(m,d) &= \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big) \\ &\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m} Cf(d-1)(m-1) \\ &\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1) \\ &\leq Cf(d)m \end{split}$$

if
$$f(d) \ge df(d-1) + 2d^2$$
.

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 1^{2}$$

$$= 3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

$$= \mathcal{O}(d!)$$

since $\sum_{i>1} \frac{i^2}{i!}$ is a constant.