4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

비 브 비 비 © Harald Räcke	
------------------------	--

44

Piv	oting Step		
	max Z		(heate (a a a
	13a + 23b - Z	$\zeta = 0$	basis = { s_c, s_h, s_m a = b = 0
		-	$\begin{array}{l} \mathcal{U} = \mathcal{D} = 0 \\ \mathcal{Z} = 0 \end{array}$
	$5a + 15b + s_c$	= 480	Z = 0
	$4a + 4b + s_h$	= 160	$s_c = 480$
	$35a + 20b + s_m$	= 1190	$s_h = 160$
	a, b, s_c, s_h, s_m	≥ 0	$s_m = 1190$
	α , ν , s_c , s_h , s_m	20	

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

4 Simplex Algorithm

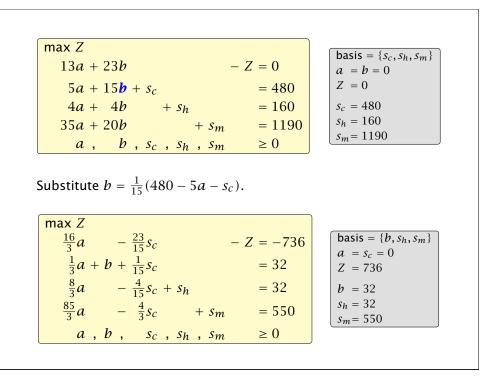
max	13a + 23b
s.t.	$5a+15b+s_c = 480$
	$4a + 4b + s_h = 160$
	$35a + 20b + s_m = 1190$
	a , b , s_c , s_h , $s_m \ge 0$

1	0.001		
_	3a + 23b	-Z = 0	basis = $\{s_c, s_h, s_m\}$ A = B = 0
	$5a + 15b + s_c$	= 480	Z = 0
	$4a + 4b + s_h$	= 160	$s_c = 480$
3	5a + 20b +	$-s_m = 1190$	
	$a, b, s_c, s_h,$	$s_m \ge 0$	$s_m = 1190$

EADS II © Harald Räcke	4 Simplex Algorithm
UUU G Harald Räcke	

max Z		basis = { s_c , s_h , s_m }
13a + 23b -	-Z = 0	a = b = 0
$5a + 15b + s_c$	= 480	Z = 0
$4a + 4b + s_h$	= 160	$s_c = 480$
$35a + 20b + s_m$	= 1190	$s_h = 160$
a , b , s_c , s_h , s_m	≥ 0	$s_m = 1190$

- Choose variable with coefficient ≥ 0 as entering variable.
- If we keep a = 0 and increase b from 0 to θ > 0 s.t. all constraints (Ax = b, x ≥ 0) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- Choosing \(\theta\) = min{480/15, 160/4, 1190/20}\) ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- The basic variable in the row that gives min{480/15, 160/4, 1190/20} becomes the leaving variable.



4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

EADS II

||||||| © Harald Räcke

any feasible solution satisfies all equations in the tableaux

4 Simplex Algorithm

- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- ▶ hence optimum solution value is at most 800
- ▶ the current solution has value 800

max Z			
$\frac{16}{3}a$	$-\frac{23}{15}s_c$	-Z = -736	basis = $\{b, s_h, s_m\}$
5	$b + \frac{1}{15}s_c$	= 32	$a = s_c = 0$ Z = 736
0	$-\frac{4}{15}s_c + s_h$	= 32	b = 32
$\frac{85}{3}a$			$b^{2} = 32$ $s_{h} = 32$
5	$-\frac{4}{3}s_c$ $+s_m$		$s_m = 550$
a ,	b , s_c , s_h , s_m	≥ 0	

Choose variable *a* to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

max Z			
	$- s_c - 2s_h -$	Z = -800	basis = $\{a, b, s_m\}$
	$b + \frac{1}{10}s_c - \frac{1}{8}s_h$	= 28	$s_c = s_h = 0$ Z = 800
а	$-\frac{1}{10}s_c + \frac{3}{8}s_h$	= 12	b = 28
	$\frac{3}{2}s_c - \frac{85}{8}s_h + s_m$	= 210	$a = 12$ $s_m = 210$
a ,	b , s_c , s_h , s_m	≥ 0	

Matrix View

Let our linear program be

 $\begin{array}{rclcrcrc} c_B^t x_B &+& c_N^t x_N &=& Z\\ A_B x_B &+& A_N x_N &=& b\\ x_B &,& x_N &\geq& 0 \end{array}$

The simplex tableaux for basis *B* is

$$(c_{N}^{t} - c_{B}^{t}A_{B}^{-1}A_{N})x_{N} = Z - c_{B}^{t}A_{B}^{-1}b$$

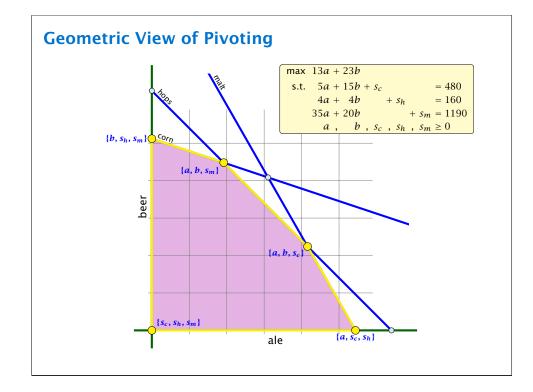
$$Ix_{B} + A_{B}^{-1}A_{N}x_{N} = A_{B}^{-1}b$$

$$x_{B} , \qquad x_{N} \ge 0$$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II © Harald Räcke



Algebraic Definition of Pivoting

Definition 2 (*j*-th basis direction)

Let *B* be a basis, and let $j \notin B$. The vector *d* with $d_i = 1$ and $d_{\ell} = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*i}$ is called the *j*-th basis direction for *B*.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^t d = \theta(c_j - c_B^t A_B^{-1} A_{*j})$$

Algebraic Definition of Pivoting

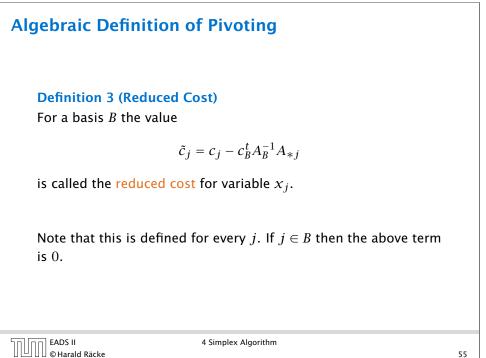
- Given basis B with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

- $d_i = 1$ (normalization)
- ► $d_{\ell} = 0, \ \ell \notin B, \ \ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*i} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*i}$.

```
EADS II
© Harald Räcke
```

4 Simplex Algorithm



EADS II ¦∐||||∐ © Harald Räcke 4 Simplex Algorithm

54

Algebraic Definition of Pivoting

Let our linear program be

$$\begin{array}{rcrcrc} c_B^t x_B &+& c_N^t x_N &=& Z\\ A_B x_B &+& A_N x_N &=& b\\ x_B &,& x_N &\geq& 0 \end{array}$$

The simplex tableaux for basis *B* is

$$\begin{array}{rcl} (c_N^t - c_B^t A_B^{-1} A_N) x_N &=& Z - c_B^t A_B^{-1} b \\ I x_B &+& A_B^{-1} A_N x_N &=& A_B^{-1} b \\ x_B & , & & x_N &\geq & 0 \end{array}$$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II © Harald Räcke	4 Simplex Algorithm	
🛛 💾 🛛 🖉 © Harald Räcke		56

Min Ratio Test

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ► Is there always a basis *B* such that

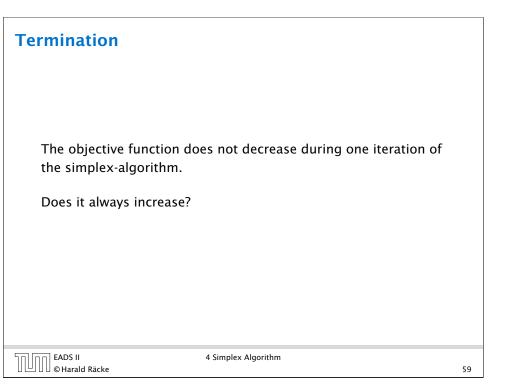
$$(c_N^t - c_B^t A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

57

If yes how do we make sure that we reach such a basis?

EADS II © Harald Räcke 4 Simplex Algorithm



Termination

The objective function may not increase!

Because a variable x_ℓ with $\ell \in B$ is already 0.

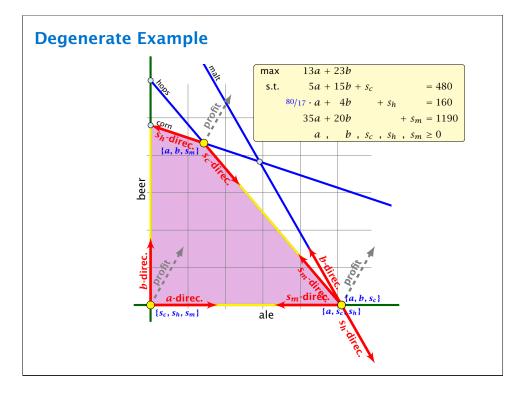
The set of inequalities is degenerate (also the basis is degenerate).

Definition 4 (Degeneracy)

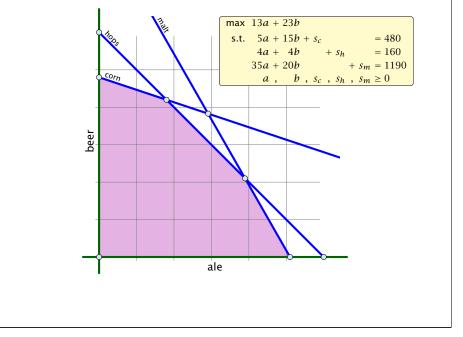
A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

	4 Simplex Algorithm	
UUU©Harald Räcke		60



Non Degenerate Example



Summary: How to choose pivot-elements

- ► We can choose a column *e* as an entering variable if *c̃_e* > 0 (*c̃_e* is reduced cost for *x_e*).
- The standard choice is the column that maximizes \tilde{c}_e .
- If A_{ie} ≤ 0 for all i ∈ {1,..., m} then the maximum is not bounded.
- ► Otw. choose a leaving variable ℓ such that b_ℓ/A_{ℓe} is minimal among all variables *i* with A_{ie} > 0.
- If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- ► Depending on the choice of *l* it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

Termination

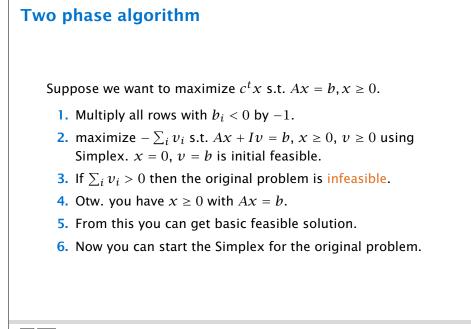
What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is <u>unbounded</u>, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an <u>optimum solution</u>.

EADS II © Harald Räcke 4 Simplex Algorithm

64



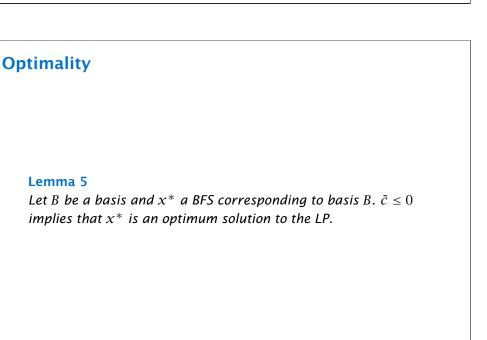
How do we come up with an initial solution?

- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- The standard slack from for this problem is Ax + Is = b, x ≥ 0, s ≥ 0, where s denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

EADS II © Harald Räcke

EADS II © Harald Räcke 4 Simplex Algorithm



66