4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

4 Simplex Algorithm

 $\begin{array}{ll} \max & 13a + 23b \\ \text{s.t.} & 5a + 15b + s_c & = 480 \\ & 4a + 4b & + s_h & = 160 \\ & 35a + 20b & + s_m = 1190 \\ & a & , & b & , s_c & , s_h & , s_m \ge 0 \end{array}$

max Z		basis = { s_c, s_h, s_m }
13a + 23b -	Z = 0	A = B = 0
$5a + 15b + s_c$	= 480	Z = 0
$4a + 4b + s_h$	= 160	$s_c = 480$
$35a + 20b + s_m$	= 1190	$s_h = 160$
a, b, s _c , s _h , s _m	≥ 0	$s_m = 1190$

Pivoting Step

max Z		basis = { s_c, s_h, s_m }
13a + 23b	-Z = 0	a = b = 0
$5a + 15b + s_c$	= 480	Z = 0
		$s_{c} = 480$
$4a + 4b + s_h$	= 160	$S_c = 480$ $S_h = 160$
$35a + 20b + s_m$	a = 1190	$s_m = 100$ $s_m = 1190$
$[a, b, s_c, s_h, s_m]$	$_{i} \geq 0$	0 1100

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max Z		basis = { s_c, s_h, s_m }
13a + 23b –	Z = 0	a = b = 0
$5a + 15b + s_c$	= 480	Z = 0
$4a + 4b + s_h$	= 160	$s_c = 480$
$35a + 20b + s_m$	= 1190	$s_h = 160$
a , b , s_c , s_h , s_m	≥ 0	$s_m = 1190$

- Choose variable with coefficient ≥ 0 as entering variable.
- ▶ If we keep a = 0 and increase b from 0 to $\theta > 0$ s.t. all constraints ($Ax = b, x \ge 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- Choosing \(\theta\) = min{480/15, 160/4, 1190/20}\) ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- The basic variable in the row that gives min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z	
13a + 23b –	Z = 0
$5a + 15b + s_c$	= 480
$4a + 4b + s_h$	= 160
$35a + 20b + s_m$	= 1190
a, b, s _c , s _h , s _m	≥ 0

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

Substitute
$$b = \frac{1}{15}(480 - 5a - s_c)$$
.

 $\max Z$ $\frac{\frac{16}{3}a}{3} - \frac{23}{15}s_c & -Z = -736 \\ \frac{1}{3}a + b + \frac{1}{15}s_c & = 32 \\ \frac{8}{3}a & -\frac{4}{15}s_c + s_h & = 32 \\ \frac{85}{3}a & -\frac{4}{3}s_c & +s_m & = 550 \\ a, b, s_c, s_h, s_m & \ge 0$

basis = {
$$b, s_h, s_m$$
}
 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

max Z			
$\frac{16}{2}a$	$-\frac{23}{15}s_c$	-Z = -736	basis = $\{b, s_h, s_m\}$
5	15		$a = s_c = 0$
$\frac{1}{3}a +$	$b + \frac{1}{15}s_c$	= 32	Z = 736
$\frac{8}{3}a$	$-\frac{4}{15}s_{c}+s_{h}$	= 32	<i>b</i> = 32
$\frac{85}{3}a$	$-\frac{4}{3}s_{c}$ + s_{m}	= 550	$s_h = 32$
3 ••	350 570		$s_m = 550$
a ,	b , s_c , s_h , s_m	≥ 0	

Choose variable *a* to bring into basis. Computing min{ $3 \cdot 32, 3 \cdot 32/8, 3 \cdot 550/85$ } means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

 $\max Z$

$-s_c-2s_h$ -2	Z = -800
$b + \frac{1}{10}s_c - \frac{1}{8}s_h$	= 28 = 12
$a - \frac{1}{10}s_c + \frac{3}{8}s_h$	= 12
$\frac{3}{2}s_c - \frac{85}{8}s_h + s_m$	= 210
a,b, s _c , s _h ,s _m	≥ 0

basis = {
$$a, b, s_m$$
}
 $s_c = s_h = 0$
 $Z = 800$
 $b = 28$
 $a = 12$
 $s_m = 210$

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h, s_c \ge 0, s_h \ge 0$
- hence optimum solution value is at most 800
- the current solution has value 800

Matrix View

Let our linear program be

$$\begin{array}{rclcrcrc} c_B^t x_B &+& c_N^t x_N &=& Z\\ A_B x_B &+& A_N x_N &=& b\\ x_B &, & x_N &\geq& 0 \end{array}$$

The simplex tableaux for basis B is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

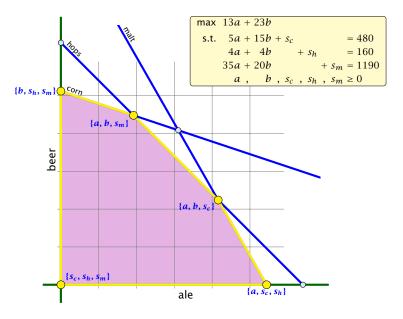
$$x_B , \qquad x_N \ge 0$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II © Harald Räcke 4 Simplex Algorithm

Geometric View of Pivoting



- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

- $d_j = 1$ (normalization)
- $d_{\ell} = 0, \ \ell \notin B, \ \ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*j}$.

Definition 2 (*j*-th basis direction)

Let *B* be a basis, and let $j \notin B$. The vector *d* with $d_j = 1$ and $d_{\ell} = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the *j*-th basis direction for *B*.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^t d = \theta (c_j - c_B^t A_B^{-1} A_{*j})$$

Definition 3 (Reduced Cost)

For a basis B the value

$$\tilde{c}_j = c_j - c_B^t A_B^{-1} A_{*j}$$

is called the reduced cost for variable x_j .

Note that this is defined for every j. If $j \in B$ then the above term is 0.

Let our linear program be

$$c_B^t x_B + c_N^t x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , \quad x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^t - c_B^t A_B^{-1} A_N) x_N = Z - c_B^t A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

$$x_B , \qquad x_N \ge 0$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^t - c_B^t A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II ©Harald Räcke

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^t - c_B^t A_B^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

If yes how do we make sure that we reach such a basis?

Min Ratio Test

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

Termination

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

Termination

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

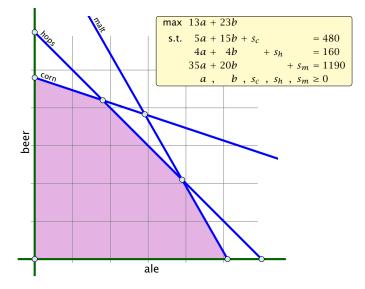
The set of inequalities is degenerate (also the basis is degenerate).

Definition 4 (Degeneracy)

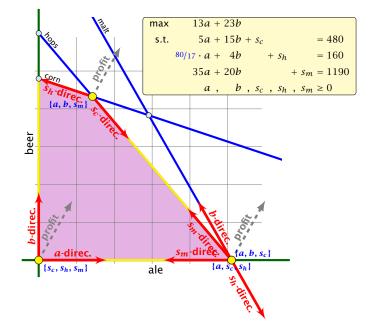
A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

Non Degenerate Example

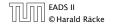


Degenerate Example



Summary: How to choose pivot-elements

- ► We can choose a column *e* as an entering variable if *c̃_e* > 0 (*c̃_e* is reduced cost for *x_e*).
- The standard choice is the column that maximizes \tilde{c}_e .
- If A_{ie} ≤ 0 for all i ∈ {1,..., m} then the maximum is not bounded.
- ► Otw. choose a leaving variable ℓ such that b_ℓ/A_{ℓe} is minimal among all variables *i* with A_{ie} > 0.
- If several variables have minimum b_l/A_{le} you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.



Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is <u>unbounded</u>, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an <u>optimum solution</u>.

How do we come up with an initial solution?

- $Ax \le b, x \ge 0$, and $b \ge 0$.
- The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where *s* denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Two phase algorithm

Suppose we want to maximize $c^t x$ s.t. $Ax = b, x \ge 0$.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- 2. maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

Optimality

Lemma 5

Let B be a basis and x^* a BFS corresponding to basis B. $\tilde{c} \le 0$ implies that x^* is an optimum solution to the LP.

