Ellipsoid Method

- Let K be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E^{\prime} that contains $K \cap H$.
- REPEAT

Issues/Questions:

- How do you choose the first Ellipsoid? What is its volume?
- What if the polytop K is unbounded?
- How do you measure progress? By how much does the volume decrease in each iteration?
- When can you stop? What is the minimum volume of a non-empty polytop?

Definition 3
A mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $f(x)=L x+t$, where L is an invertible matrix is called an affine transformation.

Definition 4

A ball in \mathbb{R}^{n} with center c and radius r is given by

$$
\begin{aligned}
B(c, r) & =\left\{x \mid(x-c)^{t}(x-c) \leq r^{2}\right\} \\
& =\left\{x \mid \sum_{i}(x-c)_{i}^{2} / r^{2} \leq 1\right\}
\end{aligned}
$$

$B(0,1)$ is called the unit ball.

Definition 5

An affine transformation of the unit ball is called an ellipsoid.
From $f(x)=L x+t$ follows $x=L^{-1}(f(x)-t)$.

$$
\begin{aligned}
f(B(0,1)) & =\{f(x) \mid x \in B(0,1)\} \\
& =\left\{y \in \mathbb{R}^{n} \mid L^{-1}(y-t) \in B(0,1)\right\} \\
& =\left\{y \in \mathbb{R}^{n} \mid(y-t)^{t} L^{-1} t L^{-1}(y-t) \leq 1\right\} \\
& =\left\{y \in \mathbb{R}^{n} \mid(y-t)^{t} Q^{-1}(y-t) \leq 1\right\}
\end{aligned}
$$

where $Q=L L^{t}$ is an invertible matrix.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.
- Use the transformations R and f to get the new center c^{\prime} and the new matrix Q^{\prime} for the original ellipsoid E.

The Easy Case

- The new center lies on axis x_{1}. Hence, $\hat{c}^{\prime}=t e_{1}$ for $t>0$.
- The vectors e_{1}, e_{2}, \ldots have to fulfill the ellipsoid constraint with equality. Hence $\left(e_{i}-\hat{c}^{\prime}\right)^{t} \hat{Q}^{\prime-1}\left(e_{i}-\hat{c}^{\prime}\right)=1$.

The Easy Case

- The obtain the matrix $\hat{Q}^{\prime^{-1}}$ for our ellipsoid \hat{E}^{\prime} note that \hat{E}^{\prime} is axis-parallel.
- Let a denote the radius along the x_{1}-axis and let b denote the (common) radius for the other axes.
- The matrix

$$
\hat{L}^{\prime}=\left(\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b
\end{array}\right)
$$

maps the unit ball (via function $\hat{f}^{\prime}(x)=\hat{L}^{\prime} x$) to an axis-parallel ellipsoid with radius a in direction x_{1} and b in all other directions.

The Easy Case

- As $\hat{Q}^{\prime}=\hat{L}^{\prime} \hat{L}^{\prime t}$ the matrix $\hat{Q}^{\prime-1}$ is of the form

$$
\hat{Q}^{\prime-1}=\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b^{2}}
\end{array}\right)
$$

The Easy Case

- $\left(e_{1}-\hat{c}^{\prime}\right)^{t} \hat{Q}^{\prime-1}\left(e_{1}-\hat{c}^{\prime}\right)=1$ gives

$$
\left(\begin{array}{c}
1-t \\
0 \\
\vdots \\
0
\end{array}\right)^{t} \cdot\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
1-t \\
0 \\
\vdots \\
0
\end{array}\right)=1
$$

- This gives $(1-t)^{2}=a^{2}$.

The Easy Case

- For $i \neq 1$ the equation $\left(e_{i}-\hat{c}^{\prime}\right)^{t} \hat{Q}^{\prime-1}\left(e_{i}-\hat{c}^{\prime}\right)=1$ gives

$$
\left(\begin{array}{c}
-t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)^{t} \cdot\left(\begin{array}{cccc}
\frac{1}{a^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{b^{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\left(\begin{array}{c}
-t \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)=1
$$

- This gives $\frac{t^{2}}{a^{2}}+\frac{1}{b^{2}}=1$, and hence

$$
\frac{1}{b^{2}}=1-\frac{t^{2}}{a^{2}}=1-\frac{t^{2}}{(1-t)^{2}}=\frac{1-2 t}{(1-t)^{2}}
$$

Summary

So far we have

$$
a=1-t \quad \text { and } \quad b=\frac{1-t}{\sqrt{1-2 t}}
$$

The Easy Case

We still have many choices for t :

Choose t such that the volume of \hat{E}^{\prime} is minimal!!!

9 The Ellipsoid Algorithm

The Easy Case

We want to choose t such that the volume of \hat{E}^{\prime} is minimal.

Lemma 6
Let L be an affine transformation and $K \subseteq \mathbb{R}^{n}$. Then

$$
\operatorname{vol}(L(K))=|\operatorname{det}(L)| \cdot \operatorname{vol}(K) .
$$

n-dimensional volume

The Easy Case

- We want to choose t such that the volume of \hat{E}^{\prime} is minimal.

$$
\operatorname{vol}\left(\hat{E}^{\prime}\right)=\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right|
$$

where $\hat{Q}^{\prime}=\hat{L}^{\prime} \hat{L}^{\prime}$.

- We have

$$
\hat{L}^{\prime-1}=\left(\begin{array}{cccc}
\frac{1}{a} & 0 & \ldots & 0 \\
0 & \frac{1}{b} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{b}
\end{array}\right) \text { and } \hat{L}^{\prime}=\left(\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & b & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b
\end{array}\right)
$$

- Note that a and b in the above equations depend on t, by the previous equations.

The Easy Case

$$
\begin{aligned}
\operatorname{vol}\left(\hat{E}^{\prime}\right) & =\operatorname{vol}(B(0,1)) \cdot\left|\operatorname{det}\left(\hat{L}^{\prime}\right)\right| \\
& =\operatorname{vol}(B(0,1)) \cdot a b^{n-1} \\
& =\operatorname{vol}(B(0,1)) \cdot(1-t) \cdot\left(\frac{1-t}{\sqrt{1-2 t}}\right)^{n-1} \\
& =\operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}
\end{aligned}
$$

The Easy Case

$$
\begin{aligned}
& \frac{\mathrm{d} \operatorname{vol}\left(\hat{E}^{\prime}\right)}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{(1-t)^{n}}{(\sqrt{1-2 t})^{n-1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot((n-1)(1-t)-n(1-2 t)) \\
& =\frac{1}{N^{2}} \cdot(\sqrt{1-2 t})^{n-3} \cdot(1-t)^{n-1} \cdot((n+1) t-1)
\end{aligned}
$$

The Easy Case

- We obtain the minimum for $t=\frac{1}{n+1}$.
- For this value we obtain

$$
a=1-t=\frac{n}{n+1} \text { and } b=\frac{1-t}{\sqrt{1-2 t}}=\frac{n}{\sqrt{n^{2}-1}}
$$

To see the equation for b, observe that

$$
b^{2}=\frac{(1-t)^{2}}{1-2 t}=\frac{\left(1-\frac{1}{n+1}\right)^{2}}{1-\frac{2}{n+1}}=\frac{\left(\frac{n}{n+1}\right)^{2}}{\frac{n-1}{n+1}}=\frac{n^{2}}{n^{2}-1}
$$

The Easy Case

Let $\gamma_{n}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=a b^{n-1}$ be the ratio by which the volume changes:

$$
\begin{aligned}
\gamma_{n}^{2} & =\left(\frac{n}{n+1}\right)^{2}\left(\frac{n^{2}}{n^{2}-1}\right)^{n-1} \\
& =\left(1-\frac{1}{n+1}\right)^{2}\left(1+\frac{1}{(n-1)(n+1)}\right)^{n-1} \\
& \leq e^{-2 \frac{1}{n+1}} \cdot e^{\frac{1}{n+1}} \\
& =e^{-\frac{1}{n+1}}
\end{aligned}
$$

where we used $(1+x)^{a} \leq e^{a x}$ for $x \in \mathbb{R}$ and $a>0$.
This gives $\gamma_{n} \leq e^{-\frac{1}{2(n+1)}}$.

How to Compute the New Ellipsoid

- Use f^{-1} (recall that $f=L x+t$ is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_{1}.
- Compute the new center \hat{c}^{\prime} and the new matrix \hat{Q}^{\prime} for this simplified setting.
- Use the transformations R and f to get the new center c^{\prime} and the new matrix Q^{\prime} for the original ellipsoid E.

Our progress is the same:

$$
\begin{aligned}
e^{-\frac{1}{2(n+1)}} & \geq \frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(B(0,1))}=\frac{\operatorname{vol}\left(\hat{E}^{\prime}\right)}{\operatorname{vol}(\hat{E})}=\frac{\operatorname{vol}\left(R\left(\hat{E}^{\prime}\right)\right)}{\operatorname{vol}(R(\hat{E}))} \\
& =\frac{\operatorname{vol}\left(\bar{E}^{\prime}\right)}{\operatorname{vol}(\bar{E})}=\frac{\operatorname{vol}\left(f\left(\bar{E}^{\prime}\right)\right)}{\operatorname{vol}(f(\bar{E}))}=\frac{\operatorname{vol}\left(E^{\prime}\right)}{\operatorname{vol}(E)}
\end{aligned}
$$

Here it is important that mapping a set with affine function $f(x)=L x+t$ changes the volume by factor $\operatorname{det}(L)$.

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: $f(x)=L x+c$;
The halfspace to be intersected: $H=\left\{x \mid a^{t}(x-c) \leq 0\right\}$;

$$
\begin{aligned}
f^{-1}(H) & =\left\{f^{-1}(x) \mid a^{t}(x-c) \leq 0\right\} \\
& =\left\{f^{-1}(f(y)) \mid a^{t}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{t}(f(y)-c) \leq 0\right\} \\
& =\left\{y \mid a^{t}(L y+c-c) \leq 0\right\} \\
& =\left\{y \mid\left(a^{t} L\right) y \leq 0\right\}
\end{aligned}
$$

This means $\bar{a}=L^{t} a$.

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_{1}-direction. Hence,

$$
R^{-1}\left(\frac{L^{t} a}{\left\|L^{t} a\right\|}\right)=-e_{1} \quad \Rightarrow \quad-\frac{L^{t} a}{\left\|L^{t} a\right\|}=R \cdot e_{1}
$$

Hence,

$$
\bar{c}^{\prime}=R \cdot \hat{c}^{\prime}=R \cdot \frac{1}{n+1} e_{1}=-\frac{1}{n+1} \frac{L^{t} a}{\left\|L^{t} a\right\|}
$$

$$
\begin{aligned}
c^{\prime} & =f\left(\bar{c}^{\prime}\right)=L \cdot \bar{c}^{\prime}+c \\
& =-\frac{1}{n+1} L \frac{L^{t} a}{\left\|L^{t} a\right\|}+c \\
& =c-\frac{1}{n+1} \frac{Q a}{\sqrt{a^{t} Q a}}
\end{aligned}
$$

For computing the matrix Q^{\prime} of the new ellipsoid we assume in the following that $\hat{E}^{\prime}, \bar{E}^{\prime}$ and E^{\prime} refer to the ellispoids centered in the origin.

Recall that

$$
\hat{Q}^{\prime}=\left(\begin{array}{cccc}
a^{2} & 0 & \ldots & 0 \\
0 & b^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & b^{2}
\end{array}\right)
$$

This gives

$$
\hat{Q}^{\prime}=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{t}\right)
$$

because for $a=n / n+1$ and $b=n / \sqrt{n^{2}-1}$

$$
\begin{aligned}
b^{2}-b^{2} \frac{2}{n+1} & =\frac{n^{2}}{n^{2}-1}-\frac{2 n^{2}}{(n-1)(n+1)^{2}} \\
& =\frac{n^{2}(n+1)-2 n^{2}}{(n-1)(n+1)^{2}}=\frac{n^{2}(n-1)}{(n-1)(n+1)^{2}}=a^{2}
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
\bar{E}^{\prime} & =R\left(\hat{E}^{\prime}\right) \\
& =\left\{R(x) \mid x^{t} \hat{Q}^{\prime-1} x \leq 1\right\} \\
& =\left\{y \mid\left(R^{-1} y\right)^{t} \hat{Q}^{\prime-1} R^{-1} y \leq 1\right\} \\
& =\left\{y \mid y^{t}\left(R^{t}\right)^{-1} \hat{Q}^{\prime-1} R^{-1} y \leq 1\right\} \\
& =\{y \mid y^{t}(\underbrace{\left(\hat{Q}^{\prime} R^{t}\right.}_{\hat{Q}^{\prime}})^{-1} y \leq 1\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

Hence,

$$
\begin{aligned}
\bar{Q}^{\prime} & =R \hat{Q}^{\prime} R^{t} \\
& =R \cdot \frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} e_{1} e_{1}^{t}\right) \cdot R^{t} \\
& =\frac{n^{2}}{n^{2}-1}\left(R \cdot R^{t}-\frac{2}{n+1}\left(R e_{1}\right)\left(R e_{1}\right)^{t}\right) \\
& =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} \frac{L^{t} a a^{t} L}{\left\|L^{t} a\right\|^{2}}\right)
\end{aligned}
$$

9 The Ellipsoid Algorithm

$$
\begin{aligned}
E^{\prime} & =L\left(\bar{E}^{\prime}\right) \\
& =\left\{L(x) \mid x^{t} \bar{Q}^{\prime-1} x \leq 1\right\} \\
& =\left\{y \mid\left(L^{-1} y\right)^{t} \bar{Q}^{\prime-1} L^{-1} y \leq 1\right\} \\
& =\left\{y \mid y^{t}\left(L^{t}\right)^{-1} \bar{Q}^{\prime-1} L^{-1} y \leq 1\right\} \\
& =\{y \mid y^{t}(\underbrace{L \bar{Q}^{\prime} L^{t}}_{Q^{\prime}})^{-1} y \leq 1\}
\end{aligned}
$$

9 The Ellipsoid Algorithm

Hence,

$$
\begin{aligned}
Q^{\prime} & =L \bar{Q}^{\prime} L^{t} \\
& =L \cdot \frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} \frac{L^{t} a a^{t} L}{a^{t} Q a}\right) \cdot L^{t} \\
& =\frac{n^{2}}{n^{2}-1}\left(Q-\frac{2}{n+1} \frac{Q a a^{t} Q}{a^{t} Q a}\right)
\end{aligned}
$$

Incomplete Algorithm

```
Algorithm 1 ellipsoid-algorithm
    1: input: point \(c \in \mathbb{R}^{n}\), convex set \(K \subseteq \mathbb{R}^{n}\)
    2: output: point \(x \in K\) or " \(K\) is empty"
    3: \(Q \leftarrow\) ???
    4: repeat
    5: \(\quad\) if \(c \in K\) then return \(c\)
    6: else
        choose a violated hyperplane \(a\)
    8:
    9 :
        \(Q \leftarrow \frac{n^{2}}{n^{2}-1}\left(Q-\frac{2}{n+1} \frac{Q a a^{t} Q}{a^{t} Q a}\right)\)
10: endif
11: until ???
12: return " \(K\) is empty"
```


Repeat: Size of basic solutions

Lemma 7
Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ be a bounded polytop. Let $\left\langle a_{\max }\right\rangle$ be the maximum encoding length of an entry in A, b. Then every entry x_{j} in a basic solution fulfills $\left|x_{j}\right|=\frac{D_{j}}{D}$ with $D_{j}, D \leq 2^{2 n\left\langle a_{\max }\right\rangle+2 n \log _{2} n}$.

In the following we use $\delta:=2^{2 n\left\langle a_{\max }\right\rangle+2 n \log _{2} n}$.
Note that here we have $P=\{x \mid A x \leq b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

Repeat: Size of basic solutions

Proof:

Let $\bar{A}=\left[\begin{array}{ccc}A & -A & I_{m} \\ -A & A & \end{array}\right], \bar{b}=\binom{b}{-b}$, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_{B} and \bar{M}_{j} (matrix obt. when replacing the j-th column of \bar{A}_{B} by \bar{b}) can become at most

$$
\begin{aligned}
\operatorname{det}\left(\bar{A}_{B}\right), \operatorname{det}\left(\bar{M}_{j}\right) & \leq\left\|\vec{\ell}_{\max }\right\|^{2 n} \\
& \leq\left(\sqrt{2 n} \cdot 2^{\left\langle a_{\max }\right\rangle}\right)^{2 n} \leq 2^{2 n\left\langle a_{\max }\right\rangle+2 n \log _{2} n},
\end{aligned}
$$

where $\vec{\ell}_{\text {max }}$ is the longest column-vector that can be obtained after deleting all but $2 n$ rows and columns from \bar{A}.

This holds because columns from I_{m} selected when going from \bar{A} to \bar{A}_{B} do not increase the determinant. Only the at most $2 n$ columns from matrices A and $-A$ that \bar{A} consists of contribute.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_{i} in a basic solution fulfills $\left|x_{i}\right| \leq \delta$.
Hence, P is contained in the cube $-\delta \leq x_{i} \leq \delta$.
A vector in this cube has at most distance $R:=\sqrt{n} \delta$ from the origin.

Starting with the ball $E_{0}:=B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^{n} B(0,1) \leq(n \delta)^{n} B(0,1)$.

When can we terminate?

Let $P:=\{x \mid A x \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop. Let $\left\langle a_{\max }\right\rangle$ be the encoding length of the largest entry in A or b.

Consider the following polytope

$$
P_{\lambda}:=\left\{x \left\lvert\, A x \leq b+\frac{1}{\lambda}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)\right.\right\}
$$

where $\lambda=\delta^{2}+1$.

Lemma 8

P_{λ} is feasible if and only if P is feasible.
\Longleftarrow : obvious!

$$
\Rightarrow:
$$

Consider the polytops

$$
\bar{P}=\left\{x \left\lvert\,\left[\begin{array}{cc}
A & -A \\
-A & A
\end{array} I_{m}\right] x=\binom{b}{-b}\right. ; x \geq 0\right\}
$$

and

$$
\bar{P}_{\lambda}=\left\{x \left\lvert\,\left[\begin{array}{cc}
A & -A \\
-A & A
\end{array} I_{m}\right] x=\binom{b}{-b}+\frac{1}{\lambda}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)\right. ; x \geq 0\right\} .
$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.
\bar{P}_{λ} is bounded since P_{λ} and P are bounded.

Let $\bar{A}=\left[\begin{array}{ccc}A & -A & I_{m} \\ -A & A & \end{array}\right]$, and $\bar{b}=\binom{b}{-b}$.
\bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$
x_{B}=\bar{A}_{B}^{-1} \bar{b}+\frac{1}{\lambda} \bar{A}_{B}^{-1}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$
\left(\bar{A}_{B}^{-1} \bar{b}\right)_{i}<0 \leq\left(\bar{A}_{B}^{-1} \bar{b}\right)_{i}+\frac{1}{\lambda}\left(\bar{A}_{B}^{-1} \overrightarrow{1}\right)_{i}
$$

By Cramers rule we get

$$
\left(\bar{A}_{B}^{-1} \bar{b}\right)_{i}<0 \quad \Rightarrow \quad\left(\bar{A}_{B}^{-1} \bar{b}\right)_{i} \leq-\frac{1}{\operatorname{det}\left(\bar{A}_{B}\right)}
$$

and

$$
\left(\bar{A}_{B}^{-1} \overrightarrow{1}\right)_{i} \leq \operatorname{det}\left(\bar{M}_{j}\right),
$$

where \bar{M}_{j} is obtained by replacing the j-th column of \bar{A}_{B} by $\overrightarrow{1}$.
However, we showed that the determinants of \bar{A}_{B} and \bar{M}_{j} can become at most δ.

Since, we chose $\lambda=\delta^{2}+1$ this gives a contradiction.

Lemma 9

If P_{λ} is feasible then it contains a ball of radius $r:=1 / \delta^{3}$. This has a volume of at least $r^{n} \operatorname{vol}(B(0,1))=\frac{1}{\delta^{3 n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.
This means $A x \leq b$.
Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$
\begin{aligned}
\left(A(x+\vec{\ell})_{i}\right. & =(A x)_{i}+(A \vec{\ell})_{i} \leq b_{i}+A_{i} \vec{\ell} \\
& \leq b_{i}+\left\|A_{i}\right\| \cdot\|\vec{\ell}\| \leq b_{i}+\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle} \cdot r \\
& \leq b_{i}+\frac{\sqrt{n} \cdot 2^{\left\langle a_{\max }\right\rangle}}{\delta^{3}} \leq b_{i}+\frac{1}{\delta^{2}+1} \leq b_{i}+\frac{1}{\lambda}
\end{aligned}
$$

Hence, $x+\vec{\ell}$ is feasible for P_{λ} which proves the lemma.

How many iterations do we need until the volume becomes too small?

$$
e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0, R))<\operatorname{vol}(B(0, r))
$$

Hence,

$$
\begin{aligned}
i & >2(n+1) \ln \left(\frac{\operatorname{vol}(B(0, R))}{\operatorname{vol}(B(0, r))}\right) \\
& =2(n+1) \ln \left(n^{n} \delta^{n} \cdot \delta^{3 n}\right) \\
& =8 n(n+1) \ln (\delta)+2(n+1) n \ln (n) \\
& =\mathcal{O}\left(\operatorname{poly}\left(n,\left\langle a_{\max }\right\rangle\right)\right)
\end{aligned}
$$

Algorithm 1 ellipsoid-algorithm
1: input: point $c \in \mathbb{R}^{n}$, convex set $K \subseteq \mathbb{R}^{n}$, radii R and r
2: \quad with $K \subseteq B(c, R)$, and $B(x, r) \subseteq K$ for some x
3: output: point $x \in K$ or " K is empty"
4: $Q \leftarrow \operatorname{diag}\left(R^{2}, \ldots, R^{2}\right) / /$ i.e., $L=\operatorname{diag}(R, \ldots, R)$
5: repeat
6: \quad if $c \in K$ then return c
7: else
8: \quad choose a violated hyperplane a
9:
$c \leftarrow c-\frac{1}{n+1} \frac{Q a}{\sqrt{a^{t} Q a}}$
$Q \leftarrow \frac{n^{2}}{n^{2}-1}\left(Q-\frac{2}{n+1} \frac{Q a a^{t} Q}{a^{t} Q a}\right)$
11: endif
12: until $\operatorname{det}(Q) \leq r^{2 n} / /$ i.e., $\operatorname{det}(L) \leq r^{n}$
13: return " K is empty"

Separation Oracle:

Let $K \subseteq \mathbb{R}^{n}$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^{n}$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball $B(c, R)$ with radius R that contains K,
- a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log (R / r))$
iterations. Each iteration is polytime for a polynomial-time
Separation oracle.

