Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.
- This means $x_{i} \geq \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_{i}.

Technique 3: The Primal Dual Method

```
Algorithm 1 PrimalDual
    \(y \leftarrow 0\)
    \(I \leftarrow \emptyset\)
    while exists \(u \notin \bigcup_{i \in I} S_{i}\) do
        increase dual variable \(y_{u}\) until constraint for some
        new set \(S_{\ell}\) becomes tight
5: \(\quad I \leftarrow I \cup\{\ell\}\)
```


Technique 4: The Greedy Algorithm

```
Algorithm 1 Greedy
    I
    \mp@subsup{S}{j}{}\leftarrow\mp@subsup{S}{j}{}\quad\mathrm{ for all }j
    while I not a set cover do
        \ell}\leftarrow\operatorname{arg}\mp@subsup{\operatorname{min}}{j:\mp@subsup{\hat{S}}{j}{}\not=0}{}\frac{\mp@subsup{w}{j}{}}{|\mp@subsup{\hat{S}}{j}{}|
        I\leftarrowI\cup{\ell}
        \mp@subsup{S}{j}{}\leftarrow\mp@subsup{\hat{S}}{j}{}-\mp@subsup{S}{\ell}{}\quad\mathrm{ for all }j
```

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k}, and
$S \subseteq\{1, \ldots, k\}$ then

$$
\min _{i} \frac{a_{i}}{b_{i}} \leq \frac{\sum_{i \in S} a_{i}}{\sum_{i \in S} b_{i}} \leq \max _{i} \frac{a_{i}}{b_{i}}
$$

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1}=n_{\ell}-\left|\hat{S}_{j}\right|$.

$$
w_{j} \leq \frac{\left|\hat{S}_{j}\right| \mathrm{OPT}}{n_{\ell}}=\frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|} \leq \frac{\mathrm{OPT}}{n_{\ell}}
$$

since an optimal algorithm can cover the remaining n_{ℓ} elements with cost OPT.

Let \hat{S}_{j} be a subset that minimizes this ratio. Hence,
$w_{j} /\left|\hat{S}_{j}\right| \leq \frac{\mathrm{OPT}}{n_{\ell}}$.

Technique 4: The Greedy Algorithm

$$
\begin{aligned}
\sum_{j \in I} w_{j} & \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT} \\
& \leq \text { OPT } \sum_{\ell=1}^{s}\left(\frac{1}{n_{\ell}}+\frac{1}{n_{\ell}-1}+\cdots+\frac{1}{n_{\ell+1}+1}\right) \\
& =\text { OPT } \sum_{i=1}^{k} \frac{1}{i} \\
& =H_{n} \cdot \text { OPT } \leq \text { OPT }(\ln n+1) .
\end{aligned}
$$

Technique 4: The Greedy Algorithm

A tight example:

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).
Version A: Repeat rounds until you have a cover.
Version B: Repeat for s rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Probability that $u \in U$ is not covered (in one round):

$\operatorname{Pr}[u$ not covered in one round]

$$
\begin{aligned}
& =\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}} \leq e^{-1} .
\end{aligned}
$$

Probability that $u \in U$ is not covered (after $\boldsymbol{\ell}$ rounds):
$\operatorname{Pr}[u$ not covered after ℓ round $] \leq \frac{1}{e^{\ell}}$.
$=\operatorname{Pr}\left[u_{1}\right.$ not covered $\vee u_{2}$ not covered $\vee \ldots \vee u_{n}$ not covered $]$
$\leq \sum_{i} \operatorname{Pr}\left[u_{i}\right.$ not covered after ℓ rounds $] \leq n e^{-\ell}$.
Lemma 5
With high probability $\mathcal{O}(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1-n^{-\alpha}$.

