The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

Partition the input into long jobs and short jobs.

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$p_{\ell} \leq \sum_{j} p_{j}/(mk)$$

which is at most C_{max}^*/k .

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 3

The above algorithm gives a polynomial time approximatior scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 3

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 3

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

- ▶ A job is long if its size is larger than T/k.
- Otw. it is a short job.

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \ge \frac{1}{m} \sum_j p_j$).

- ▶ A job is long if its size is larger than T/k.
- Otw. it is a short job.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

- ▶ A job is long if its size is larger than T/k
- Otw. it is a short job.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

- ▶ A job is long if its size is larger than T/k.
- Otw. it is a short job.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- ▶ We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ▶ If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- ▶ We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

$$\Big(1+\frac{1}{k}\Big)T\ .$$

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

 $\left(1+\frac{1}{k}\right)T$.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T \ .$$

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T .$$

the new load is at most

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i\in\{k,\ldots,k^2\}$ Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i\in\{k,\ldots,k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i\in\{k,\ldots,k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i\in\{k,\ldots,k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

 $OPT(n_1,\ldots,n_{k^2})$

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$OPT(n_1,\ldots,n_{k^2})$$

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ngeq 0 \\
& & \text{otw.}
\end{aligned}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Let $OPT(n_1,...,n_{k^2})$ be the number of machines that are required to schedule input vector $(n_1,...,n_{k^2})$ with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \text{otw.}
\end{aligned}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$\mathsf{ALG} \leq \left(1 + \frac{1}{k}\right)\mathsf{OPT} \leq \mathsf{OPT} + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$\mathsf{ALG} \leq \left(1 + \frac{1}{k}\right)\mathsf{OPT} \leq \mathsf{OPT} + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$\mathsf{ALG} \leq \left(1 + \frac{1}{k}\right)\mathsf{OPT} \leq \mathsf{OPT} + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

More General

Let $OPT(n_1,...,n_A)$ be the number of machines that are required to schedule input vector $(n_1,...,n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \leq m$ we can schedule the input.

$$OPT(n_1, \dots, n_A) = \begin{cases}
0 & (n_1, \dots, n_A) = 0 \\
1 + \min_{(s_1, \dots, s_A) \in C} OPT(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\
\infty & \text{otw.}
\end{cases}$$

where *C* is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

More General

Let $\mathrm{OPT}(n_1,\ldots,n_A)$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1,...,n_A) \leq m$ we can schedule the input.

$$\begin{aligned}
\mathsf{OPT}(n_1,\ldots,n_A) \\
&= \begin{cases}
0 & (n_1,\ldots,n_A) = 0 \\
1 + \min_{(s_1,\ldots,s_A) \in C} \mathsf{OPT}(n_1 - s_1,\ldots,n_A - s_A) & (n_1,\ldots,n_A) \geq 0 \\
&\infty & \mathsf{otw}.
\end{aligned}$$

where C is the set of all configurations

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

$$\begin{aligned}
OPT(n_1, ..., n_A) &= \begin{cases}
0 & (n_1, ..., n_A) = 0 \\
1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \ge 0 \\
\infty & \text{otw.}
\end{aligned}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.