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Chintan Shah

Summer Semester 2013
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Aufgabe 1 (3 Points)
Give formal definitions of a Basis, and a Basic Feasible Solution.

Aufgabe 2 (3 Points)

(a) Explain why the 2-phase simplex algorithm is needed. (1 point)

(b) Explain the first phase of this algorithm. (2 points)
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Aufgabe 3 (4 Points)
Show that there does not exist any FPTAS for the unweighted MAXCUT problem. In
the MAXCUT problem, we are given an unweighted graph G = (V,E) and wish to find a
partition U ]W of V so as to maximize the number of edges having exactly one endpoint
in U . It is known that the unweighted MAXCUT problem is strongly NP-Complete.
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Aufgabe 4 (5 Points)
Let P be a given feasible, bounded Linear Program. We know how to find the dual D
of P . By combining P and D, demonstrate a linear program whose only feasible solution
corresponds to the feasible solution optimizing the objective value of P (and similarly for
D). The new linear program should have constraints linear in the number of constraints
of P and D. Further, ensure that the new linear program is infeasible if either P or D is
infeasible.
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Aufgabe 5 (5 Points)
Given a directed graph G = (V,A), a special vertex r and a positive cost cij for each edge
(i, j) ∈ A, the minimum-cost arborescence problem is to find a subgraph of minimum cost
that contains directed paths from r to all other vertices.

(a) Observe that the following ILP solves the minimum-cost arborescence problem:

minimize
∑

(i,j)∈A
cijxij

subject to
∑

i∈S,j /∈S,(i,j)∈A
xij ≥ 1 ∀S ⊆ V, S 3 r

xij ∈ {0, 1} ∀(i, j) ∈ A

(b) Show how to efficiently solve the LP obained by relaxing the above ILP.
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Aufgabe 6 (10 Points)
We are given a directed graph G on vertex set V , with a nonnegative cost specified for edge
(u → v), for each pair u, v ∈ V . The edge costs satisfy the directed triangle inequality,
i.e., for any three vertices u, v, and w, cost(u → v) ≤ cost(u → w) + cost(w → v). We
need to find a minimum cost cycle visiting every vertex exactly once. Give a O(log n)
approximation algorithm for this problem.
(Hint : Use the fact that a minimum cost cycle cover (i.e., disjoint cycles covering all the
vertices) can be found in polynomial time. Shrink the cycles and recurse.)

6



7



Aufgabe 7 (10 Points)
We are given k stretchable bags b1, . . . , bk and n items a1, . . . , an with weights w1, . . . , wn

and volume v1, . . . , vn respectively, such that wi, vi ≤ 1 and
∑n

i=1wi = k =
∑n

i=1 vi. We
say that a packing of the n items in the k bags is an (α, β)-packing if each bag is filled with
weight ≤ α and volume ≤ β. Give an efficient algorithm for obtaining a (3, 3)-packing.

Lösungsvorschlag

Let
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Aufgabe 8 (10 Points)
We are given a graph which is a cycle on n nodes, numbered 0 through n − 1 clockwise
around the cycle. We are also given a set C of calls; each call is a pair (i, j) originating at
node i and destined for node j. The call can be routed either clockwise or counter-clockwise
around the cycle. The task is to route the calls so as to minimize the maximum edge load
in the graph. The load Li on link (i, (i+ 1) mod n) is the number of calls routed through
(i, (i+ 1) mod n), and the maximum edge load is max0≤i≤n−1 Li.

(a) Observe that the following ILP solves the given problem:

minimize L
subject to xk0 + xk1 = 1 ∀k ∈ C∑

k∈C x
k
b(k,i) ≤ L ∀i ∈ {0, . . . , n− 1}

xk0 ∈ {0, 1} ∀k ∈ C
xk1 ∈ {0, 1} ∀k ∈ C
L ≥ 0

where xk0 = 1 indicates that we route the call clockwise, xk1 = 1 indicates that we route
the call counter-clockwise, b(k, i) = 0 if the clockwise routing uses the link (i, (i + 1)
mod n) and b(k, i) = 1 if the counter-clockwise routing uses the link (i, (i+1) mod n).

(b) Relax the above ILP to a linear program and obtain a 2-approximation algorithm for
the given problem.
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ROUGH WORK
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