Effiziente Algorithmen und Datenstrukturen II

General Information for the Examination

- Write your name and matrikel no. on all extra supplementaries (Blätter) provided.
- Please keep your identity card readily available.
- Do not use pencils. Do not write in red or green ink.
- You are not allowed to use any device other than your pens and a single sided handwritten A4 sized paper (with your name clearly written on top).
- Verify that you have received 12 printed sides (check page numbers).
- Attempt all questions. You have 150 minutes to answer the questions.
Left Examination Hall from to / from to
Submitted Early at

Special Notes:

	A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8	Σ	Examiner
Maximum	3	3	4	5	5	10	10	10	50	
$1^{\text {st }}$ Correction										
$2^{\text {nd }}$ Correction										

Aufgabe 1 (3 Points)

Give formal definitions of a Basis, and a Basic Feasible Solution.

Aufgabe 2 (3 Points)

(a) Explain why the 2-phase simplex algorithm is needed.
(b) Explain the first phase of this algorithm.

Aufgabe 3 (4 Points)

Show that there does not exist any FPTAS for the unweighted MAXCUT problem. In the MAXCUT problem, we are given an unweighted graph $G=(V, E)$ and wish to find a partition $U \uplus W$ of V so as to maximize the number of edges having exactly one endpoint in U. It is known that the unweighted MAXCUT problem is strongly NP-Complete.

Aufgabe 4 (5 Points)

Let P be a given feasible, bounded Linear Program. We know how to find the dual D of P. By combining P and D, demonstrate a linear program whose only feasible solution corresponds to the feasible solution optimizing the objective value of P (and similarly for $D)$. The new linear program should have constraints linear in the number of constraints of P and D. Further, ensure that the new linear program is infeasible if either P or D is infeasible.

Aufgabe 5 (5 Points)

Given a directed graph $G=(V, A)$, a special vertex r and a positive cost $c_{i j}$ for each edge $(i, j) \in A$, the minimum-cost arborescence problem is to find a subgraph of minimum cost that contains directed paths from r to all other vertices.
(a) Observe that the following ILP solves the minimum-cost arborescence problem:

$$
\begin{array}{llll}
\text { minimize } & \sum_{(i, j) \in A} c_{i j} x_{i j} & & \\
\text { subject to } & \sum_{i \in S, j \notin S,(i, j) \in A} x_{i j} & \geq 1 & \forall S \subseteq V, S \ni r \\
x_{i j} & \in\{0,1\} & \forall(i, j) \in A
\end{array}
$$

(b) Show how to efficiently solve the LP obained by relaxing the above ILP.

Aufgabe 6 (10 Points)

We are given a directed graph G on vertex set V, with a nonnegative cost specified for edge $(u \rightarrow v)$, for each pair $u, v \in V$. The edge costs satisfy the directed triangle inequality, i.e., for any three vertices u, v, and $w, \operatorname{cost}(u \rightarrow v) \leq \operatorname{cost}(u \rightarrow w)+\operatorname{cost}(w \rightarrow v)$. We need to find a minimum cost cycle visiting every vertex exactly once. Give a $O(\log n)$ approximation algorithm for this problem.
(Hint: Use the fact that a minimum cost cycle cover (i.e., disjoint cycles covering all the vertices) can be found in polynomial time. Shrink the cycles and recurse.)

Aufgabe 7 (10 Points)

We are given k stretchable bags b_{1}, \ldots, b_{k} and n items a_{1}, \ldots, a_{n} with weights w_{1}, \ldots, w_{n} and volume v_{1}, \ldots, v_{n} respectively, such that $w_{i}, v_{i} \leq 1$ and $\sum_{i=1}^{n} w_{i}=k=\sum_{i=1}^{n} v_{i}$. We say that a packing of the n items in the k bags is an (α, β)-packing if each bag is filled with weight $\leq \alpha$ and volume $\leq \beta$. Give an efficient algorithm for obtaining a (3,3)-packing.

Lösungsvorschlag

Let

Aufgabe 8 (10 Points)

We are given a graph which is a cycle on n nodes, numbered 0 through $n-1$ clockwise around the cycle. We are also given a set C of calls; each call is a pair (i, j) originating at node i and destined for node j. The call can be routed either clockwise or counter-clockwise around the cycle. The task is to route the calls so as to minimize the maximum edge load in the graph. The load L_{i} on $\operatorname{link}(i,(i+1) \bmod n)$ is the number of calls routed through $(i,(i+1) \bmod n)$, and the maximum edge load is $\max _{0 \leq i \leq n-1} L_{i}$.
(a) Observe that the following ILP solves the given problem:

$$
\begin{array}{lll}
\operatorname{minimize} & L & \\
\text { subject to } & x_{0}^{k}+x_{1}^{k}=1 & \forall k \in C \\
& \sum_{k \in C} x_{b(k, i)}^{k} \leq L & \forall i \in\{0, \ldots, n-1\} \\
& x_{0}^{k} \in\{0,1\} & \forall k \in C \\
& x_{1}^{k} \in\{0,1\} & \forall k \in C \\
& L \geq 0 &
\end{array}
$$

where $x_{0}^{k}=1$ indicates that we route the call clockwise, $x_{1}^{k}=1$ indicates that we route the call counter-clockwise, $b(k, i)=0$ if the clockwise routing uses the link $(i,(i+1)$ $\bmod n)$ and $b(k, i)=1$ if the counter-clockwise routing uses the link $(i,(i+1) \bmod n)$.
(b) Relax the above ILP to a linear program and obtain a 2-approximation algorithm for the given problem.

ROUGH WORK

