
Sommersemester 2014

Online and Approximation

Algorithms

http://www14.in.tum.de/lehre/2014SS/oa/index.html.en

Susanne Albers

Fakultät für Informatik

TU München

Lectures: 4 SWS
Mon 14:00–16:00, MI 00.08.038
Wed 10:00–12:00, MI 00.08.038

Exercises: 2 SWS
Wed 13:00–15:00, MI 01.11.018 or
Mon 16:00–18:00 MI 01.07.023
Teaching assistant: Moritz Fuchs
(fuchsmo@informatik.tu-muenchen.de)

Bonus: If at least 50% of the maximum number of
points of the homework assignments are attained
and student presents the solutions of at least two
problems in the exercise sessions, then the grade of
the final exam can be improved by 0.3 (or 0.4).

2SS 2014

0. Organizational matters

mailto:fuchsmo@informatik.tu-muenchen.de

Valuation: 8 ECTS (4 + 2 SWS)

Office hours: by appointment (albers@informatik.tu-muenchen.de)

3SS 2014

0. Organizational matters

Problem sets: Made available on Wednesday by 10:00
on the course webpage.
Must be turned in a week later before the lecture.

Exam: Written exam or oral exam depending on the number
of participants

The final exam is closed book, i.e. no auxiliary means
are permitted.

Prerequisites: Grundlagen: Algorithmen und Datenstrukturen (GAD)
Diskrete Wahrscheinlichkeitstheorie (DWT)

Effiziente Algorithmen und Datenstrukturen
(advantageous but not required)

4SS 2014

0. Organizational matters

 [BY] A. Borodin und R. El-Yaniv. Online Computation and

Competitive Analysis. Cambridge University Press, Cambridge,

1998. ISBN 0-521-56392-5

 [V] V.V. Vazirani. Approximation Algorithms. Springer Verlag, Berlin,

2001. ISBN 3-540-65367-8

 Handouts

5SS 2014

0. Literature

Online algorithms

• Scheduling

• Paging

• List update

• Randomization

• Data compression

• Robotics

• Matching

6SS 2014

0. Content

Approximation algorithms

• Traveling Saleman Problem

• Knapsack Problem

• Scheduling (makespan minimization)

• SAT (Satisfiability)

• Set Cover

• Hitting Set

• Shortest Superstring

7SS 2014

0. Content

Online and approximation algorithms

Optimization problems for which the computation of an

optimal solution is hard or impossible.

Have to resort to approximations:

Design algorithms with a provably good performance.

8SS 2014

1. Introduction

Relevant input arrives incrementally over time. Online algorithm has to

make decisions without knowledge of any future input.

1. Ski rental problem: Student wishes to pick up the sport of skiing.

Renting equipment: 10$ per season

Buying equipment: 100$

Do not know how long (how many seasons) the student will

enjoy skiing.

2. Currency conversion: Wish to convert 1000$ into Yen over a certain

time horizon.

9SS 2014

1.1 Online problems

3. Paging/caching: Two-level memory system

10SS 2014

1. Online problems

AC ED B

F

A

IH GC B E OA L large slow memory

small fast memory

Request: Access to page in memory system

Page fault: requested page not in fast memory; must be loaded into

fast memory

Goal: Minimize the number of page faults

σ = A C B E D A F …

D

4. Data structures: List update problem

Unsorted linear list

11SS 2014

1.1 Online problems

Request: Access to item in the list

Cost: Accessing the i-th item in the list incurs a cost of i.

Goal: Minimize cost paid in serving σ.

σ = A A C B E D A …

B C E A DL:

Rearrangements: After an access, requested item may be moved at

no extra cost to any position closer to the front of the list

(free exchanges). At any time two adjacent items may be

exchanged at a cost of 1.

5. Robotics: Navigation

12SS 2014

1.1 Online problems

Unknown scene: Robot has to find a short path from s to t.

s
t

6. Scheduling: Makespan minimization

13SS 2014

1.1 Online problems

m identical parallel machines

Input portion: Job Ji with individual processing time pi.

Goal: Minimize the completion time of the last job in the schedule.

1

m

time

Assuming P ≠ NP, NP-hard optimization problems cannot be solved

optimally in polynomial time.

1. Scheduling: Makespan minimization (see above)

Entire job sequence is known in advance. Famous optimization

problem studied by Ronald Graham in 1966.

2. Traveling Salesman Problem: n cities, c(i,j) = cost/distance to travel

from city i to city j, 1≤ i,j ≤ n.

Goal: Find tour that visits each city exactly once and minimizes

the total cost.

14SS 2014

1.2 NP-hard optimization problems

15SS 2014

1.2 NP-hard optimization problems

16SS 2014

1.2 NP-hard optimization problems

Formal model:

Each request σ(t) has to be served without knowledge of any future

requests.

Goals: Optimize a desired objective, typically the total cost incurred in

serving σ.

17SS 2014

2. Online algorithms

σ = σ(1) σ(2) σ(3) …. σ(t) σ(t+1) …

A Online algorithm

has to serve σ.

Online algorithm A is compared to an optimal offline algorithm OPT that

knows the entire input σ in advance and can serve is optimally,

with minimum cost.

A OPT

Cost: A(σ) OPT(σ)

Online algorithm A is called c-competitive if there exists a constant a,

which is independent of σ, such that

A(σ) ≤ c ∙ OPT(σ) + a

holds for all σ.

18SS 2014

2. Competitive analysis

Makespan minimization: m identical parallel machines.

n jobs J1 , … , Jn . pt = processing time of Jt , 1 ≤ t ≤ n

Goal: Minimize the makespan

Algorithm Greedy: Schedule each job on the machine currently having

the smallest load.

Algorithm is also referred to as List Scheduling.

Theorem: Greedy is (2-1/m)-competitive.

Theorem: The competitive ratio of Greedy is not smaller than 2-1/m.

See e.g. [BY], page 205.

19SS 2014

2.1 Scheduling

Two-level memory system

20SS 2014

2.2 Paging

AC ED B

F

A

IH GC B E OA L large slow memory

small fast memory

Request: Access to page in memory system

Page fault: requested page not in fast memory; must be loaded into

fast memory

Goal: Minimize the number of page faults

σ = A C B E D A F …

D

Popular online algorithms

 LRU (Least Recently Used): On a page fault evict the page from fast

memory that has been requested least recently.

 FIFO (First-In First-Out): Evict the page that has been in fast

memory longest.

Let k be the number of pages that can simultaneously reside in fast

memory.

Theorem: LRU and FIFO are k-competitive.

Theorem: Let A be a deterministic online paging algorithm. If A is

c-competitive, then c ≥ k.

21SS 2014

2.2 Paging

Marking algorithms: Serve a request sequence in phases. First phase

starts with the first request. Any other phase starts with the first

request following the end of the previous phase.

At the beginning of a phase all pages are unmarked. Whenever

a page is requested, it is marked. On a fault evict an arbitrary

unmarked page in fast memory. If no such page is available,

the phase ends and all marks are erased.

Flush-When-Full: If there is a page fault and there is no empty slot in

fast memory, evict all pages.

22SS 2014

2.2 Paging

Offline algorithm

 MIN: On a page fault evict the page whose next request is farthest in

the future.

Theorem: MIN is an optimal offline algorithm for the paging problem,

i.e. it achieves the smallest number of page faults/page

replacements.

See [BY], pages 33 – 38.

23SS 2014

2.2 Paging

An algorithm is a demand paging algorithm if it only replaces a page in

fast memory if there is a page fault.

Fact: Any paging algorithm can be turned into a demand paging

algorithm such that, for any request sequence, the number of

memory replacements does not increase.

24SS 2014

2.2 Paging

General concept to analyze the cost of a sequence of operations

executed, for instance, on a data structure.

Wish to show: An individual operation can be expensive, but the

average cost of an operation is small.

Amortization: Distribute cost of a sequence of operations properly

among the operations.

Example: Binary counter with increment operation. Cost of an operation

is equal to the number of bit flips.

25SS 2014

2.3 Amortized analysis

26WS04/05

2.3 Amortized analysis, binary counter

.
Operation Counter value Cost

00000

1 00001 1

2 00010 2

3 00011 1

4 00100 3

5 00101 1

6 00110 2

7 00111

8 01000

9 01001

10 01010

11 01011

12 01100

13 01101

27SS 2014

2.3 Amortized analysis

28SS 2014

2.3 Amortized competitive analysis

29SS 2014

2.4 List update problem

Request: Access to item in the list

Cost: Accessing the i-th item in the list incurs a cost of i.

Goal: Minimize cost paid in serving σ.

σ = A A C B E D A …

B C E A DL:

Rearrangements: After an access, requested item may be moved at

no extra cost to any position closer to the front of the list

(free exchanges). At any time two adjacent items may be

exchanged at a cost of 1.

Unsorted, linear linked list of items

Online algorithms

 Move-To-Front (MTF): Move requested item to the front of the list.

 Transpose: Exchange requested item with immediate predecessor

in the list.

 Frequency Count: Store a frequency counter for each item in the

list. Whenever an item is requested, increase its counter by

one. Always maintain the items of the list in order of non-

increasing counter values.

Theorem: MTF is 2-competitive.

Theorem: Transpose and Frequency Count are not c-competitive, for

any constant c.

Theorem: Let A be a deterministic list update algorithm. If A is

c-competitive, for all list lengths, then c ≥ 2.

See [BY], pages 7 – 13.

30SS 2014

2.4 List update problem

A = randomized online algorithm

A(σ) random variable, for any σ

Competitive ratio of A defined w.r.t. an adversary ADV who

 generates σ

 also serves σ

ADV knows the description of A

Critical question: Does ADV know the outcome of the random choices

made by A?

31SS 2014

2.5 Randomized online algorithms

Oblivious adversary:

Does not know the outcome of the random choices made by A.

Generates the entire σ in advance.

32SS 2014

2.5 Randomized online algorithms

σ = σ(1) σ(2) σ(3) …. σ(m)

A

ADV

Adaptive adversary:

Does know the outcome of the random choices made by A on the first

t-1 requests when generating σ(t).

Adaptive online adversary: Serves σ online.

Adaptive offline adversary: Serves σ offline.

33SS 2014

2.5 Randomized online algorithms

σ = σ(1) σ(2) σ(3) …. σ(t-1)

A

ADV

σ(t)

Oblivious adversary: Does not know the outcome of A‘s random

choices; serves σ offline. A is c-competitive against oblivious

adversaries, if there exists a constant a such that

E[A(σ)] ≤ c ∙ ADV(σ) + a

holds for all σ generated by oblivious adversaries.

Constant a must be independent of input σ.

Adaptive online adversary: Knows the outcome of A‘s random

choices on first t-1 requests when generating σ(t); serves σ

online. A is c-competitive against adaptive online adversaries, if

there exists a constant a such that

E[A(σ)] ≤ c ∙ E[ADV(σ)] + a

holds for all σ generated by adaptive online adversaries.

Constant a must be independent of input σ.

34SS 2014

2.5 Three types of adversaries

Adaptive offline adversary: Knows the outcome of A‘s random

choices on first t-1 requests when generating σ(t); serves σ

offline. A is c-competitive against adaptive offline adversaries, if

there exists a constant a such that

E[A(σ)] ≤ c ∙ E[OPT(σ)] + a

holds for all σ generated by adaptive offline adversaries.

Constant a must independent of input σ.

35SS 2014

2.5 Three types of adversaries

Theorem: If there exists a randomized online algorithm that is

c-competitive against adaptive offline adversaries, then there

also exists a c-competitive deterministic online algorithm.

Theorem: If A is c-competitive against adaptive online adversaries and

there exists a d-competitive algorithm against oblivious

adversaries, then there exists a cd-competitive algorithm

against adpative offline adversaries.

Corollary: If A is c-competitive against adaptive online adversaries,

then there exists a c2-competitive deterministic algorithm.

36SS 2014

2.5 Relating the adversaries

37SS 2014

2.6 Randomized paging

Theorem: Let A be a randomized online paging algorithm. If A is c-

competitive against oblivious adversaries, then c ≥ Hk.

See e.g. [BY], pages 49-53.

38SS 2014

2.6 Randomized paging

39SS 2014

2.6 Randomized paging

40SS 2014

2.6 Randomized paging

Theorem: Let A be a randomized online paging algorithm. If A is c-

competitive against oblivious adversaries, then c ≥ Hk.

See e.g. [BY], pages 120-122.

41SS 2014

2.6 Randomized paging

Online algorithm

 Random: On a fault evict a page chosen uniformly at random from

among the pages in fast memory.

Theorem: Random is k-competitive against adaptive online

adversaries.

Theorem: Let A be a randomized online paging algorithm. If A is c-

competitive against adaptive online adversaries, then c ≥ k.

See e.g. [BY], page 47.

42SS 2014

2.6 Randomized paging

Deficiencies of competitive analysis:

 Competitive ratio of LRU/FIFO much higher than ratios observed in

practice (typically in the range [1,2]).

 In practice LRU much better than FIFO

Reason: Request sequences in practice exhibit locality of reference, i.e.

(short) subsequences reference few distinct pages.

43SS 2014

2.7 Refinements of competitive paging

1. Access graph model: G(V,E) undirected graph. Each node

represents a memory page. Page p can be referenced after q if p

and q are adjacent in the access graph.

44SS 2014

2.7 Refined models

Competitive factors depend on G.

2. Markov paging: n pages

qij = probability that request to page i is followed by request to

page j

Page fault rate of A on σ = # page faults incurred by A on σ / |σ|

45SS 2014

2.7 Refined models

𝑞11 … 𝑞1𝑛
⋮ ⋱ ⋮

𝑞𝑛1 … 𝑞𝑛𝑛
Q=

2. Denning‘s working set model: n pages

Concave function

46SS 2014

2.7 Refined models

47SS 2014

2.7 Refined models

SPARC, GCC, 196 pages

48SS 2014

2.7 Refined models

SPARC, COMPRESS, 229 pages

Program executed on CPU characterized by concave function f.

It generates σ that are consistent with f.

Max-Model: σ consistent with f if, for all n ∈ ℕ, the number of distinct

pages referenced in any window of length n is at most f(n).

Average-Model: σ consistent with f if, for all n ∈ ℕ, the average number

of distinct pages referenced in windows of length n is at most

f(n).

49SS 2014

2.7 Refined models

 ∀ concave f: page fault rate of LRU ≤

page fault rate of any online alg. A

 ∃ concave f: page fault rate of LRU < page fault rate of FIFO

 page fault rate of LRU ≤
𝑘−1

𝑓−1 𝑘+1 −2

50SS 2014

2.7 Refined models

51SS 2014

2.8 Randomized list update

Algorithm Random Move-To-Front (RMTF): With probability ½, move

requested item to the front of the list.

Theorem: The competitive ratio of RMTF is not smaller than 2, for a

general list length n.

See [BY], page 27.

52SS 2014

2.8 Randomized list update

σ = X X Z Y V U X …

Y Z V X UL:

Unsorted, linear linked list of items

1 0 1 1 0

Algorithm BIT: Maintain bit b(x), for each item x in the list. Bits are

initialized independently and uniformly at random to 0/1.

Whenever an item is requested, its bit is complemented. If

value changes to 1, item is moved to the front of the list.

Theorem: BIT is 1.75-competitive against oblivious adversaries.

See [BY], pages 24-26.

53SS 2014

2.8 Randomized list update

σ = … X U Y V V W W X …

W V U Y XL:

Algorithm TIMESTAMP(p): Let 0 ≤ p ≤ 1. Serve a request to item x as

follows.

With probability p move x to the front of the list.

With probability 1-p, insert x in front of the first item in the list

that has been referenced at most once since the last request

to x.

Theorem: TIMESTAMP(p), with p = (3- 5)/2, achieves a competitive

ratio of (1+ 5)/2 ≈ 1.62 against oblivious adversaries.

Z

54SS 2014

2.8 Randomized list update

Algorithm Combination: With probability 4/5 serve a request sequence

using BIT and with probability 1/5 serve is using

TIMESTAMP(0).

Theorem: Combination is 1.6-competitive against oblivious

adversaries.

Theorem: Let A be a randomized online algorithm for list update. If A is

c-competitive against adaptive online adversaries, for a general

list length, then c ≥ 2.

55SS 2014

2.9 Data compression

S = … x1 x1 x2 x1 x2 x3 x3 x2 …

x3 x4 x2 x5 x1L:

String S to be represented in a more compact way using fewer bits.

Symbols of S are elements of an alphabet Σ, e.g. Σ = {x1, …, xn}.

Encoding: Convert string S of symbols into string I of integers.

Encoder maintains a linear list L of all the elements of Σ. It reads the

symbols of S sequentially. Whenever symbol xi has to be encoded,

encoder looks up the current position of in L, outputs this position and

updates the list using a given algorithm.

Generates compression because frequenctly occuring symbols are

stored near the front of the list and can be encoded using small

integers/ few bits.

x6

I = … 5 1 4 2 …

56SS 2014

2.9 Data compression

S = … x1 x1 x2 x1 x2 x3 x3 x2 …

x3 x4 x2 x5 x1L:

Decoding: Decoder also maintains a linear list L of all the elements of

Σ. It reads the integers of I sequentially. Whenever integer j has to be

decoded, it looks up the symbol currently stored at position j in L,

outputs this symbol and updates the list using the same algorithm as

the encoder.

x6

I = … 5 1 4 2 …

57SS 2014

2.9 Data compression

Integers of I have to encoded using a variable-length prefix code.

A prefix code satisfies the „prefix property“:

No code word is the prefix of another code word.

Possible encoding of j : 2 log 𝑗 + 1 bits suffice

 log 𝑗 0′s followed by

 binary representation of j, which requires log 𝑗 + 1 bits

58SS 2014

2.9 Data compression

Two schemes

 Byte-based compression: Each byte in the input string represents

a symbol.

 Word-based compresion: Each „natural language“ word

represents a symbol.

The following tables report on experiments done using the

Calgary corpus (benchmark library for data compression).

2.9 Byte-based compression

59SS 2014

File TS

Bytes % Orig.

MTF

Bytes % Orig. Size in Bytes

bib 99121 89.09 106478 95.70 111261

book1 581758 75.67 644423 83.83 768771

book2 473734 77.55 515257 84.35 610856

geo 92770 90.60 107437 104.92 102400

news 310003 82.21 333737 88.50 377109

obj1 18210 84.68 19366 90.06 21504

obj2 229284 92.90 250994 101.69 246814

paper1 42719 80.36 46143 86.80 53161

paper2 63654 77.44 69441 84.48 82199

pic 113001 22.02 119168 23.22 513216

progc 33123 83.62 35156 88.75 39611

progl 52490 73.26 55183 77.02 71646

progp 37266 75.47 40044 81.10 49379

trans 79258 84.59 82058 87.58 93695

2.9 Word-based compression

60SS 2014

File TS

Bytes % Orig.

MTF

Bytes % Orig. Size in Bytes

bib 34117 30.66 35407 31.82 111261

book1 286691 37.29 296172 38.53 768771

book2 260602 42.66 267257 43.75 610856

news 116782 30.97 117876 31.26 377109

paper1 15195 28.58 15429 29.02 53161

paper2 24862 30.25 25577 31.12 82199

progc 10160 25.65 10338 26.10 39611

progl 14931 20.84 14754 20.59 71646

progp 7395 14.98 7409 15.00 49379

Transformation: Given S, compute all cyclic shifts and sort them

lexicographically.

In the resulting matrix M, extract last column and encode it using

MTF encoding. Add index I of row containing original string.

0 a a b r a c

1 a b r a c a

2 a c a a b r

3 b r a c a a

4 c a a b r a

5 r a c a a b (c a r a a b, I=1)

2.9 Burrows-Wheeler transformation

61SS 2014

Back-transformation: Sort characters lexicographically, gives first and

last columns of M.

Fill remaining columns by repeatedly shifting last column in

front of the first one and sorting lexicographically.

0 a a b r a c

1 a b r a c a

2 a c a a b r

3 b r a c a a

4 c a a b r a

5 r a c a a b (c a r a a b, I=1)

2.9 Burrows-Wheeler transformation

62SS 2014

Back-transformation using linear space:

 M‘= matrix M in which columns are cyclically rotated by one

position to the right.

 Compute vector T that indicates how rows of M and M‘ correspond,

i.e. row j of M‘ is row T[j] in M. Example: T = [4 , 0 , 5 , 1 , 2 , 3]

0 a a b r a c c a a b r a

1 a b r a c a a a b r a c

2 a c a a b r r a c a a b

3 b r a c a a a b r a c a

4 c a a b r a a c a a b r

5 r a c a a b b r a c a a

2.9 Burrows-Wheeler transformation

63SS 2014

M M‘

Back-transformation using linear space:

 L : vector, first column of M‘ = last column of M

 L[T[j]] is cyclic predecessor of L[j]

For i=0, , N-1, there holds S[N-1-i] = L[Ti [I]]

2.9 Burrows-Wheeler transformation

64SS 2014

2.9 Burrows-Wheeler transformation

65SS 2014

File
Bytes % Orig. bits/char Size in Bytes

bib 28740 25.83 2.07 111261

book1 238989 31.08 2.49 768771

book2 162612 26.62 2.13 610856

geo 56974 55.63 4.45 102400

news 122175 32.39 2.59 377109

obj1 10694 49.73 3.89 21504

obj2 81337 32.95 2.64 246814

paper1 16965 31.91 2.55 53161

paper2 25832 31.24 2.51 82199

pic 53562 10.43 0.83 513216

progc 12786 32.27 2.58 39611

progl 16131 22.51 1.80 71646

progp 11043 22.36 1.79 49379

trans 18383 19.62 1.57 93695

Program mean

bits per character

compress 3.36

gzip 2.71

BW-Trans 2.43

comp-2 2.47

2.9 Burrows-Wheeler transformation

66SS 2014

compress: version 4.32 of LZW-based tool

gzip: version 1.24 of Gaily‘s LZ77-based tool

comp-2: Nelson‘s comp-2 coder

67SS 2014

2.9 Data compression

Assume that S is generated by a memoryless source P= (p1, …, pn)

In a string generated according to P, each symbol is equal to xi with

probability pi.

The entropy of P is defined as

H(P)= 𝑖=1
𝑛 𝑝𝑖 log(1/𝑝𝑖)

It is a lower bound on the expected number of bits needed to

encoded one symbol in a string generated according to P.

68SS 2014

2.9 Huffman code

Constructs optimal prefix codes.

Code tree constructed using greedy approach.

Maintain forest of code trees.

 Initially, each symbol xi represents a tree consisting of one node

with accumulated probability pi.

 While there exist at least two trees, choose T1, T2 having the

smallest accumulated probabilies and merge them by adding a

new root. New accumulated probability is the sum of those of

T1, T2.

69SS 2014

2.9 Data compression

EMTF (P) = expected number of bits needed to encode one symbol

using MTF encoding

Theorem: For each memoryless source P, there holds

EMTF (P) ≤ 1 + 2 H(P).

See: J.L. Bentley, D.D. Sleator, R.E. Tarjan, V.K. Wei. A locally

adaptive data compression scheme. CACM 29(4), 320-330, 1986.

3 Problems: Navigation, Exploration, Localization

70SS 2014

2.10 Robotics

s

Navigation: Find a short path from s to t.

71SS 2014

2.10 Robotics

Robot always knows its current position and the position of t.

Does not know in advance the position/extent of the obstacles.

Tactile robot: Can touch/sense the obstacles.

s
t

The material on navigation is taken from the following two papers.

 A. Blum, P. Raghavan, B. Schieber. Navigating in unfamiliar

geometric Terrain. SIAM J. Comput. 26(1):110-137, 1997.

 R.A. Baeza-Yates, J.C. Culberson, G.J.E. Rawlins. Searching in

the plane. Inf. Comput. 106(2):234-252, 1993.

72SS 2014

2.10 Robot navigation

Tactile robot has to find a target t on a line. The position of t is not

known in advance.

2.10 Navigation on the line

73SS 2014

ts

Reach some point on a vertical wall that is a distance of n away.

Assumption: Obstacles have width of at least 1 and are aligned with

axes.

2.10 Wall problem

74SS 2014

s

n

Theorem: Every deterministic online algorithm has a competitive ratio

of Ω 𝑛 .

Upper bound: Design an algorithm with competitive ratio of O 𝑛 .

Idea: Try to reach wall within a small window around the origin.

Double window size whenever the optimal offline algorithm

OPT would also have a high cost within the window, i.e. if

OPT‘s cost within the window of size W has cost W.

2.10 Wall problem

75SS 2014

2.10 Wall problem

76SS 2014

Window of size W: W0 = n (boundaries y = +W/2 y = -W/2)

τ := W/ 𝑛

Sweep direction = north/south

Sweep counter (initially 0)

Always walk in +x direction until obstacle is reached.

Rule 1: Distance to next corner ≤ τ

Walk around obstacle and back to original y-coordinate.

2.10 Wall problem

77SS 2014

Rule 2: yn > W/2 and ys < -W/2 (yn and ys are y-coordinates of northern

and southern corners of obstacle)

W := 4 min {yn , |ys|}

Walk to next corner within the window.

Sweep counter := 0

Sweep direction := north if at ys, and south yn

2.10 Wall problem

78SS 2014

yn

ys

Rule 3: Distance to nearest corner > τ but yn ≤ W/2 or ys ≥ -W/2

Walk in sweep direction and then around obstacle.

If window boundary is reached, increase sweep counter by 1

and change sweep direction. If sweep counter reaches 𝑛 ,

double window size and set sweep counter to 0.

2.10 Wall problem

79SS 2014

Analysis: Wf = last window size

Lemma: Robot walks a total distance of O(𝑛 Wf).

Lemma: Length of shortest path is Ω(Wf).

2.10 Wall problem

80SS 2014

Square room s = lower left corner t = (n,n) center of room

Rectangular obstacles aligned with axes; unit circle can be

inscribed into any of them. No obstacle touches a wall.

81SS 2014

2.11 Room problem

s

t

Greedy <+x,+y>: Walk due east, if possible, and due north otherwise.

Paths <+x,-y>, <-x,+y> and <-x,-y> are defined analogously.

Brute-force <+x>: Walk due east. When hitting an obstacle walk to

nearest corner, then around obstacle. Return to original

y-coordinate.

Monotone path from (x1,y1) to (x2,y2): x- and y-coordinates do not

change their monotonicity along the path.

2.10 Paths

82SS 2014

Invariant: Robot always knows a monotone path from (x0,n) to (n,y0)

that touches no obstacle. Initially x0 = y0= 0.

In each iteration x0 or y0 increases by at least 𝑛 .

1. Walk to t‘= (x0+ 𝑛 , y0+ 𝑛)

Specifically, walk along monotone path to y-coordinate y0+ 𝑛 ,

then brute-force <+x>. If t‘ is below the monotone path, then walk to

point with y-coordinate y0+ 𝑛 on the monotone path. If t‘ is in an

obstacle, take its north-east corner.

2. Walk Greedy <+x,+y> until x- or y-coordinate is n. Assume that point

(𝑥, n) is reached.

3. Walk Greedy <+x,-y> until a point (n, 𝑦) or old monotone path is

reached. Gives new monotone path. Set (x0,y0) := (𝑥, 𝑦)

2.10 Algorithm for room problem

83SS 2014

4. If x0 < n - 𝑛 and y0 < n - 𝑛 , then goto Step 1.

If y0 ≥ n - 𝑛 , walk to (x0,n) and then brute-force <+x>.

If x0 ≥ n - 𝑛 , walk to (n,y0) and then brute-force <+y>.

Theorem: The above algorithm is O(𝑛)-competitive.

The algorithm can be generalized to rooms of dimension 2N x 2n,

where N ≥ n and t = (N,n).

In Step 1, set t‘= (x0+ 𝑛 r, y0+ 𝑛) where r=N/n. In Step 4 an x-

threshold of n - 𝑛 r and is considered.

2.10 Algorithm for room problem

84SS 2014

85

2.11 Bipartite matching

Input: G = (U ∪ V, E) undirected bipartite graph.

There holds U ∩ V = Ø and E ⊆ U x V.

Output: Matching M of maximum cardinality

M ⊆ E is a matching if no vertex is adjacent to two edges of E.

U V

86

2.11 Bipartite matching

Input: G = (U V, E)

Output: Matching M of maximum cardinality

U V

87

2.11 Online bipartite matching

U given initially v V arrive one by one

v V arrives: neighbors in U are known;

has to be matched immediately

R.M. Karp, U.V. Vazirani, V.V. Vazirani: An optimal algorithm for on-line

bipartite matching. STOC 1990: 352-358.

U V

88

2.11 Applications

 Switch routing: U = set of ports V = data packets

 Market clearing: U = set of sellers V = set of buyers

 Online advertising: U = advertiser V= users

switchports

89

90

2.11 Adwords problem

Advertisers Users with queries

91

2.11 Adwords problem

• U = set of advertisers Bu= daily budget of advertiser u

• V = sequence of queries v

• cuv= cost paid by u when ad shown to v (bid)

Goal: Maximize revenue, while respecting budgets.

Unit budgets, unit cost Online bipartite matching

Maximization problem

A OPT

Cost: A(σ) OPT(σ)

Online algorithm A is called c-competitive if there exists a constant a,

which is independent of σ, such that

A(σ) ≥ c ∙ OPT(σ) + a

holds for all σ.

92SS 2014

2.11 Competitive analysis

93

2.11 Greedy algorithms

An algorithm has the greedy property if an arriving vertex v ∈ V is matched if

there is an unmatched adjacent vertex u ∈ U available.

Theorem: Let A be a greedy algorithm. Then its competitive ratio is at least ½

Proof: G = (U V, E)

MOPT = optimum matching

2|MOPT| = number of matched vertices in MOPT

(u,v) MOPT arbitrary

In A’s matching at least one of the two vertices is matched

Number of vertices in A’s matching at least |MOPT|

94

2.11 Deterministic online algorithms

Theorem: Let A be any deterministic algorithm. If A is c-competitive,

then c ≤ ½

Proof: G = (U V, E) |U| = |V| = 2n even

v1 ,…, vn incident to all u U

vn+i : If vi matched by A to uj , then vn+i is incident to uj only;

otherwise to all u U

nvi

Vn+i

uj

95

2.11 Deterministic online algorithms

Theorem: Let A be any deterministic algorithm. If A is c-competitive,

then c ≤ ½

Proof: A : |MA| ≤ n Among vi and vn+i only one can be matched

OPT : |MOPT| = 2n vn+1 ,…, v2n with 1 neighbor are matched to them.

All other v can be matched arbitrarily.

n/2vi

Vn/2+i

96

2.11 Ranking algorithm

Init: Choose permutation π of U uniformly at random.

Arrival of v V: N(v) = set of unmatched neighbors.

If N(v) ≠ Ø, match v with uN(v) of smallest rank, i.e. π(u)-value

u3

u1

u5

u4

u2

97

2.11 Analysis of Ranking

Theorem: Ranking achieves a competitive ratio of 1-1/e ≈ 0.632 against

oblivious adversaries.

Outline of analysis:

1. It suffices to consider G = (U V, E) having a perfect matching

(each vertex is matched).

2. Analyze Ranking on G with perfect matching.

98

2.11 Reduction to G with perfect matching

G = (U V, E) π = permutation of U w U V

H = G \ {w}

w U → permutation obtained from π by deleting x

w V → π

M= Ranking(G, π) MH = Ranking(H, πH)

Lemma: |M| ≥ |MH |

πH =

99

2.11 Lemma: |M| ≥ |MH|

Case 1: w U x = x1

yi matched xi in Ranking (G,π)

xi+1 matched yi in Ranking (H, πH)

Process stops with

xk not matched in Ranking (G, π)

→ |MH | = |M|

yk not matched in Ranking (H, πH)

→ |MH | = |M| - 1

x1

x2

y1

y2

x3
y3

100

2.11 Lemma: |M| ≥ |M’|

Case 1: w U w = x1

yi matched xi in Ranking (G,π)

xi+1 matched yi in Ranking (H, πH)

Process stops with

xk not matched in Ranking (G, π)

→ |MH | = |M|

yk not matched in Ranking (H, πH)

→ |MH | = |M| - 1

x1

x2

y1

y2

x3
y3

101

2.11 Reduction to G with perfect matching

Corollary: Comp. ratio of Ranking assumed on G having a perfect matching.

Proof: G = (U V, E) arbitrary

MOPT = optimum matching

H = obtained from G by deleting all vertices not in MOPT

 π |Ranking(G, π)| ≥ |Ranking(H, πH)|

E[|Ranking(G)|} ≥ E[|Ranking(H)|]

MOPT = optimum matching for G and H

102

2.11 Analysis on G with perfect matching

|U| = |V| = n t {1, … n}

pt = probability (over all π) that vertex of rank t in U is matched

E[|Ranking(G)|] = 1≤t≤n pt

Main Lemma: 1 - pt ≤ 1/n · 1≤s≤t ps

1

n

t

103

2.11 Main theorem

Thm: Ranking achieves competitive ratio of 1-1/e.

Proof: E[|Ranking(G)|] / |OPT(G)| = 1/n · 1≤t ≤n pt

Determine infimum of 1/n · 1≤t ≤n pt

Main Lemma implies 1 + St-1 ≤ St (1 + 1/n) St = 1≤s≤ t ps

St = 1≤s≤ t (1-1/(n+1))s solves inequality with equality

Main Lemma: 1 - pt ≤ 1/n · 1≤s ≤t ps

104

2.11 Main theorem

 en

n
nnn

n

n
n

S
n

nn

nn

s

nsn

/11)1/(111

)1/(11
111

1)1/(11(1

)1/(11
11

1

105

2.11 Establishing Main Lemma

G = (UV,E) |U| = |V| = n

M* = perfect matching u = m* (v) vertex to which v is matched in M*

Fix π and (u,v) such that u has rank t in π and u = m* (v)

πi = permutation in which u is reinserted so that its rank is i 1≤ i ≤ n

i

ut

106

2.11 Claim

Claim: If u not matched in Ranking (π), then for i = 1,…, n,

v is matched in Ranking (πi) to ui of rank at most t in πi.

ut

ui

v v

Ranking(π) Ranking(πi)

107

2.11 Proof Claim

X = { unmatched vertices with rank < t in π when Ranking executed with π }

Xi = { unmatched vertices with rank < t in π when Ranking executed with πi }

Invariant: X Xi at any time before arrival of v

m(v) = partner of v in Ranking(π), rank < t in π

Invariant when v arrives, m(v) Xi

m(v) has rank ≤ t in πi
ut

v

m(v)

108

2.11 Proof of invariant

X Xi holds before arrival of a y V

x = partner of y in Ranking (π) xi = partner of y in Ranking (πi)

Suppose x ≠ xi and xi has rank < t in π

xi has smaller rank than x in π hence xi X

109

2.11 Establishing Main Lemma

Main Lemma: 1 - pt ≤ 1/n · 1≤s ≤t ps

Proof: For each π construct Sπ

u = vertex of rank t in π v vertex such that u = m* (v)

Sπ = { (v, πi) | 1 ≤ i ≤ n }

Sπ is marked if, for i = 1,…, n, v is matched in Ranking (πi) to ui of rank at

most t in πi.

Claim u not matched in Ranking(π), then Sπ is marked

Claim: If u not matched in Ranking (π), then for i = 1,…, n,

v is matched in Ranking (πi) to ui of rank at most t in πi.

110

2.11 Establishing Main Lemma

Main Lemma: 1 - pt ≤ 1/n · 1≤s ≤t ps

Proof: For each π construct Sπ

u = vertex of rank t in π v vertex such that u = m* (v)

Sπ = { (v, πi) | 1 ≤ i ≤ n }

Sπ is marked if, for i = 1,…, n, v is matched in Ranking (πi) to ui of rank at

most t in πi.

Claim u not matched in Ranking(π), then Sπ is marked

1 - pt ≤ # marked sets Sπ / n! = πP |Sπ|/ (n·n!)

P = {π | Sπ is marked }

111

2.11 Establishing Main Lemma

Proposition: Elements in Sπ with π P are distinct

1 - pt ≤ πP |Sπ|/ (n·n!) = |UπP Sπ|/ (n·n!)

For any π’, count occurrences of π’ in |UπP Sπ| : (v1,π’) (v2,π’) (v3,π’) …

#occurrences of π’ in |UπP Sπ| ≤ #v being matched to vertex of rank ≤ t in π’

= |R (π’)|

R (π’) = { vertices of rank ≤ t in U being matched in Ranking(π’) }

112

2.11 Establishing Main Lemma

R (π) = { vertices of rank ≤ t in U being matched in Ranking(π) }

1 - pt ≤ |UπP Sπ|/ (n·n!) ≤ π’ |R (π’)| / (n·n!)

= 1/n · π |R (π)| / n!

= 1/n · 1≤s ≤t ps

113

2.11 Proof of claim

Claim: Elements in all sets Sπ with π P are distinct.

For a fixed π, elements of Sπ = { (v, πi) | 1 ≤ i ≤ n } are distinct

Suppose (v, πi) = (v, π’j) where (v, πi) Sπ (v, π’j) Sπ’

Let u vertex such that u = m*(v)

Removing u in πi and π’j and reinserting it at position t, we obtain identical

permutation, i.e. π = π’

114

2.12 Energy-efficient algorithms

• Power-down mechanisms: Transistion an idle system into low-power

stand-by or sleep states

• Dynamic speed scaling: Modern microprocessors can run at variable

speed/frequency. Required power at speed s is P(s) = sα , where α >1.

More generally P(s) may be an arbitrary convex function.

• Networking: Optimize transmission energy in the network

115

2.12 Energy-efficient algorithms

Power-down mechanisms:

• System with an active state and several low-power states.

• Each state has an individual power consumption rate.

• Transitions between the various states also consume energy.

• Goal: Minimize energy consumption in an idle period.

Example: Advanced Configuration and Power Interface (ACPI)

Open standard for device configuration and power management

by the operating systems. 1 active state; 4 sleep states; 1 soft-off state;

1 mechanical-off state

116

2.12 Energy-efficient algorithms

General system:

• S = (s0, …, sl) l+1 states; s0 = active state

• R = (r0, …, rl) power consumption rates per time unit; ri > rj for 0 ≤ i < j ≤ l

• D = (dij)0≤ i,j ≤ l dij = energy needed to transition from si to sj

Triangle inequality: dij ≤ dik + dkj for all i, j, k

117

2.12 Properties

Lemma: During any idle period, the following properties hold.

(a) System never powers up and then down again.

(b) If the system powers up, then it powers to s0.

Lemma: We may assume w.l.o.g. that di0 = 0. If di0 > 0, for some i, then the

following system of transitions energies is equivalent.

d‘ij = dij + + dj0 - di0 for i < j

d‘ij = 0 for i > j

Let D(i) = d0i

118

2.12 Offline algorithm

OPT(t) = mini {D(i) + rit} S(t) = optimal state for time t

State 0 State 1
State 2

State 3

b1 b2 b3

bi = first time when si becomes optimal state

119

2.12 Properties

Algorithm LEA (Lower Envelope Algorithm): At any time t, use state S(t),

i.e. the state used by the optimal offline algorithm if the idle period has

total length t.

Theorem: LEA achieves a competitive ratio of 3 + 2 2 ≈ 5.82, for general

state systems.

Theorem: Given S,R and D, an online algorithm with a competitive ratio of

c*+ ɛ can be constructed. Here c* is the best competitive ratio possible

for the system.

Material taken from: J. Augustine, S. Irani, C. Swamy: Optimal power-down

strategies. SIAM J. Comput. 37(5):1499-1516, 2008.

120

2.13 Financial Games

Online search: Find maximum/minimum in a sequence of prices that are

revealed sequentially.

Period i: Price pi is revealed. If pi is accepted, then the reward is pi;

otherwise the game continues.

Application: job search, selling of a house.

One-way trading: An initial wealth of D0, given in one currency has to be traded

to some other asset or currency.

Period i: Price/exchange rate pi is revealed. Trader must decide on the

fraction of the remaining initial wealth to be exchanged.

121

2.13 Financial Games

Portfolio selection: s securities (assets) such as stocks, bonds, foreign

currencies or commodities

Period i: price vector 𝑝𝑖= (pi1, …, pis)

pij = # units of the j-th asset that can be bought for 1$

vector of price changes 𝑥𝑖= (xi1, …, xis)

xij= pij/ pi+1,j

Portfolio: specifies a distribution of the wealth on the s assets just

before period i

𝑏𝑖= (bi1, …, bis) and Σbij=1

At the end of first period the wealth per initial 1$ is 𝑗=1
𝑠 𝑏1𝑗 𝑥1𝑗

122

2.13 Relation between search and trading

Theorem: a) Let A1 be a randomized algorithm for one-way trading. Then there

exists a deterministic algorithm A2 for one-way trading such that

A2(σ) = E[A1(σ)], for all price sequences σ.

b) Let A2 be a deterministic algorithm for one-way trading. Then there exists a

randomized search A3 such that E[A3(σ)] = A2(σ), for all σ.

123

2.13 Search problems

Will concentrate on search problems.

Prices in [m,M] 0< m ≤ M φ := M/m

Discrete time, finite time horizon, n periods; both m and M are known to player.

Online algorithm is c-competitive if there exists a constant a such that

c A(σ) +a ≥ OPT(σ)

for all price sequences.

124

2.13 Algorithms

Algorithm Reservation Price Policy (RPP): Accept first price of value at least

p* := 𝑀𝑚. Here p* is called the reservation price.

Theorem: RPP is φ-competitive.

Algorithm EXPO: Let φ = 2k for some positive integer k.

RPPi = deterministic RPP with price m 2i.

With probability 1/k, choose RPPi for i=1, …, k.

Theorem: EXPO is c(φ)log φ-competitive, where c(φ) tends to 1 as φ → ∞.

Material taken from [BY], pages 265-268.

125

2.13 k-server problem

Metric space M; k mobile servers; request sequence σ.

Request: x ∈ M; one of the k servers must be moved to x, if the point is not

already covered. Moving a server from y to x cost dist(y,x).

Goal: Minimize total distance traveled by all the servers in processing σ.

Special cases: Paging; caching fonts in printers; vehicle routing.

Results: General metric spaces:

Deterministic: k ≤ c ≤ 2k-1

Randomized: Ω(log k) ≤ c ≤ Õ(log2k log3n), where n is size of M.

Special metric spaces:

Competitive ratio of k for lines, trees, spaces of size N=k+1 and

resistive spaces.

126

2.13 k-server problem

Theorem: Let M be a metric space consisting of at least k+1 points and let A be

a deterministic online algorithm. If A is c-competitive, then c ≥ k.

Trees: Will restrict ourselves on metric spaces that are trees.

Consider a request at point r. Server si is a neighbor if no other server is

located between si and r.

Algorithm Coverage: In response to a request at r, move all neighboring

servers with equal speed in the direction of r until one server reaches r.

Theorem: Coverage is k-competitive.

127

2.14 Metrical task systems

(ℳ,ℛ) ℳ= (M,dist) metric space ℛ = set of allowed tasks

M: set of states in which an algorithm can reside |M| = N

dist(i,j) = cost of moving from state i to state j

r ∈ ℛ : r = (r(1), …, r(N))

r(i) ∈ ℝ0
+ ∪ {∞} cost of serving task in state i

Algorithm A: Initial state 0.

Sequence of requests/tasks: σ = r1, …, rn.

Upon the arrival of ri, A may first change state and then has to serve ri.

A[i] : state in which ri is served.

A(σ) = 𝑖=1
𝑛 𝑑𝑖𝑠𝑡(A i − 1 , A[i]) + 𝑖=1

𝑛 ri(A i)

128

2.14 Example: paging

Pages p1, …, pn fast memory of size k

Sets S1, … Sl, where l = 𝑛
𝑘

subsets of {p1, …, pn} having size k

For each set Si, there is a state si, i = 1, …, 𝑛
𝑘

dist(si,sj) = |Sj\ Si|

Request r = p

r(si) =
0 if 𝑝 ∈ Si

∞ otherwise

129

2.14 Example: list update

List consisting of n items.

n! states si, where 1 ≤ i ≤n!, for each possible permutation of the n items

dist(si,sj) = number of paid exchanges needed to transform the two lists

(We may assume w.l.o.g. that algorithm only works with paid

exchanges.)

Request r = x

r(si) = position of item x in list si.

130

2.14 Results

Deterministic: c = 2N - 1

Randomized: Ω(log N / loglog N) ≤ c ≤ O(log2N loglog N)

Approximation Algorithms

132

3.1 Basics

NP-hard optimization problems: Computation of approximate solutions

Example: Job scheduling. m identical parallel machines.

n jobs with processing times p1, …, pn. Assign the jobs to machines so

that the makespan is as small as possible.

List scheduling: Assign each job to a least loaded machine.

(2-1/m)-approximation.

General setting: Optimization problem Π, P = set of problem instances

For I ∈ P is F(I) the set of feasible solutions

For s ∈ F(I), w(s) is the value of the solution (objective function value)

Goal: Find s ∈ F(I) such that w(s) is minimal if Π is a minimization problem

(and maximal if Π is a maximization problem).

133

3.1 Basics

An approximation algorithm A for Π is an algorithm that, given an I ∈ P,

outputs an A(I) = s ∈ F(I) and has a running time which is

polynomial in the encoding length of I.

Algorithm A achieves an approximation ratio of c if

w(A(I)) ≤ c ∙ OPT(I) (Π is a minimization problem)

w(A(I)) ≥ c ∙ OPT(I) (Π is a maximization problem)

for all I ∈ P. Here OPT(I) denotes the value of an optimal solution.

Sometimes an additive constant of b is allowed in the above inequalities. This

constant b must be independent of the input. In this case c is referred to as an

asymptotic approximation ratio.

134

3.1 Basics

Problem Max Cut: Undirected graph G=(V,E), where V is the set of vertices and

E is the set of edges. Find a partition (S, V\S) of V such that the

number of edges between S and V\S is maximal.

S is called a cut. Edges between S and V\S are called cut edges.

Symmetric difference: S Δ {v}

S Δ {v} =

S ∪ v if v ∉ S

S \ {v} if v ∈ S

Algorithm Local Improvement (LI):

S:=∅;

while ∃ v ∈ V such that w(S Δ {v}) > w(S) do S := S Δ {v} endwhile;

output S;

Theorem: LI achieves an approximation ratio of 1/2.

135

3.2 Traveling Salesman Problem

Euclidean Traveling Salesman Problems (ETSP): n cities s1, …, sn in ℝ2 .

dist(si,sj) = Euclidean distance between si and sj. Find a tour that visits

each city exactly once and has minimum length.

Will design algorithms with approximation ratios of 2 and 1.5.

Formally, a tour is a Hamiltonian cycle. G=(V,E) V={v1,…,vn}

A tour is a permutation π on {1,..., n} such that

{vπ(i), vπ(i+1)} ∈ E and {vπ(n), vπ(1)} ∈ E.

Traveling Salesman Problems (TSP): Weighted graph G=(V,E) with V={v1,…,vn}

and a function w: E → ℝ+ that assigns a length/weight to each edge. Find a

tour of minimum length, i.e. a permutation π on {1,..., n} such that

 𝑖=1
𝑛−1 w({vπ(i), vπ(i+1)})+ w({vπ(n), vπ(1)}) is minimum.

TSP and ETSP are NP-hard

136

3.2 Traveling Salesman Problem

Minimum spanning tree: Weighted graph G=(V,E) with w: E → ℝ+ . A minimum

spanning tree T is a tree such that each v ∈ V is vertex of T and e∈T w(𝑒) is

minimum.

The following algorithm works with multigraph, i.e. several copies of an edge

may be contained in E.

Algorithms MST:

1. Compute a minimum spanning tree for G=(V,E) with V={s1,…,sn} and

w(si,sj)= Euclidian distance between si and sj.

2. Construct graph H in which all edges of T are duplicated.

3. Compute an Eulerian cycle C in H (each edge is traversed exactly once).

4. Determine the order sπ(1), …, sπ(n) of the first occurrences of s1,…,sn on C

and output this sequence sπ(1), …, sπ(n) .

Theorem: Algorithm MST achieves an approximation ratio of 2.

137

3.2 Traveling Salesman Problem

Minimum spanning tree: Weighted graph G=(V,E) with w: E → ℝ+ . A minimum

spanning tree T is a tree such that each v ∈ V is vertex of T and e∈T w(𝑒) is

minimum.

The following algorithm works with multigraph, i.e. several copies of an edge

may be contained in E.

Algorithms MST:

1. Compute a minimum spanning tree for G=(V,E) with V={s1,…,sn} and

w(si,sj)= Euclidian distance between si and sj.

2. Construct graph H in which all edges of T are duplicated.

3. Compute an Eulerian cycle C in H (each edge is traversed exactly once).

4. Determine the order sπ(1), …, sπ(n) of the first occurrences of s1,…,sn on C

and output this sequence sπ(1), …, sπ(n) .

Theorem: Algorithm MST achieves an approximation ratio of 2.

138

3.2 Traveling Salesman Problem

The purpose of the edge duplication is to ensure that each vertex has even

degree.

Proposition: In any tree T the number of vertices having odd degree is even.

Minimum perfect matching: Weighted graph G=(V,E) with w: E → ℝ+ . A perfect

matching is a subset F ⊆ E such that each vertex v ∈ V is incident to exactly

one edge of F. Precondition: |V| is even. A perfect matching of minimum total

weight is called a minimum perfect matching. There exist polynomial time

algorithms for computing it.

139

3.2 Traveling Salesman Problem

Algorithm Christiofides:

1. Compute a minimum spanning tree T for s1,…,sn.

2. In T determine the set V’ of vertices having odd degree and compute a

minimum perfect matching F for V’.

3. Add F to T and compute an Eulerian cycle C.

4. Determine the order sπ(1), …, sπ(n) of the first occurrences of s1,…,sn on C

and output this sequence sπ(1), …, sπ(n) .

Theorem: Algorithm Christofides achieves an approximation factor of 1.5

Theorem: The approximation ratio of the Christofides algorithm is not smaller

than 1.5.

140

3.2 Traveling Salesman Problem

Problem Hamiltonian Cycle (HC): G=(V,E) unweighted graph. Does G have a

Hamiltonian cycle, i.e. a cycle that visits each vertex exactly once?

Theorem: Let c>1. If P≠ NP, then TSP does not have an approximation

algorithm that achieves a performance factor of c.

141

3.3 Job scheduling

Makespan minimization: Schedule n jobs with processing times p1, …, pn to m

identical parallel machines so as to minimize the makespan, i.e. the

completion time of the last job that finishes in the schedule.

Algorithm Sorted List Scheduling (SLS):

1. Sort the n jobs in order of non-increasing processing times p1 ≥ … ≥ pn.

2. Schedule the job sequence using List Scheduling (Greedy).

Theorem: SLS achieves an approximation factor of 4/3.

142

3.3 Approximation schemes

An approximation scheme for an optimization problem is a set {A(ɛ) | ɛ > 0} of

approximation algorithms for the problem such that A(ɛ) achieves an

approximation factor of 1+ɛ, in case of a minimization problem, and

1-ɛ in case of a maximization problem.

PTAS = Polynomial Time Approximation Scheme

143

3.3 PTAS for Knapsack

Problem Knapsack: n objects with weights w1, …, wn ∈ ℕ and values

v1, …, vn ∈ ℕ. Knapsack with weight bound b. Find a subset

I ⊆ {1, …, n} with i∈ I wi ≤ b such that i∈ I vi is maximal.

Problem is NP-hard.

For j=1,…,n and any non-negative integer i let

Fj(i) = minimum weight of a subset of {1,…, j} whose total value is at

least i. If no such subset exists, set Fj(i) := ∝.

Observation: Let OPT be the value of an optimal solution.

Then OPT = max{i | Fn(i) ≤ b }

Lemma: a) Fj(i) = 0 for i ≤ 0 and j ∈ {1,…,n}

b) Fj(i) = ∝ for i > 0

c) Fj(i) = min {Fj-1(i), wj + Fj-1(i-vj) } for i,j > 0

144

3.3 PTAS for Knapsack

Algorithm Exact Knapsack

Fj(i) for j=0 and i ≤ 0 are known.

1. i:=0;

2. repeat

3. i:= i+1;

4. for j := 1 to n do

5. Fj(i) = min { Fj-1(i), wj + Fj-1(i-vj) };

6. endfor;

7. until Fn(i) > b;

8. output i-1;

Theorem: Exact Knapsack has a running time of O(n OPT).

145

3.3 PTAS for Knapsack

Algorithm Scaled Knapsack(ɛ) ɛ > 0

1. vmax := max {vj | 1 ≤ j ≤ n };

2. k := max {1, ⌊ɛ vmax / n⌋}

3. for j := 1 to n do vj(k) = ⌊vj / k⌋ endfor;

4. Using algorithm Exact Knapsack, compute OPT(k) and S(k), i.e. the value

and the subset of objects of an optimal solution for the Knapsack

Problem with values vj(k) and unchanged weights wk and b.

5. output OPT* = j∈ S(k) vj .

Theorem: Scaled Knapsack(ɛ) achieves an approximation factor of 1- ɛ.

Theorem: Scaled Knapsack(ɛ) has a running time of O(n3/ɛ).

146

3.3 PTAS for Makespan Minimization

m identical parallel machines, n jobs with processing times p1,…, pn.

Algorithm SLS(k)

1. Sort J1, …, Jn in order of non-increasing processing times such

that p1 ≥ … ≥ pn.

2. Compute an optimal schedule for the first k jobs.

3. Schedule the remaining jobs using List Scheduling (Greedy).

Theorem: For constant m and k = (m−1)/ɛ , algorithm SLS(k) is a PTAS.

147

3.3 PTAS for Makespan Minimization

Will construct PTAS for an arbitrary/variable number of machines.

Problem Bin Packing: n elements a1, …, an ∈ [0,1]. Bins of capacity 1. Pack the

n elements into bin, without exceeding their capacity, so that the

number of used bins is as small as possible.

Observation: There exists a schedule with makespan t if and only if p1, …, pn

can be packed into n bins of capacity t.

Notation: I = {p1, …, pn}

bins(I,t) = minimum number of bins of capacity t needed to pack I

OPT = min {t | bins(I,t) ≤ m}

LB ≤ OPT ≤ 2 LB LB = max {
1

𝑚
 𝑖=1
𝑛 pi, max

1≤𝑖≤𝑛
pi}

Execute binary search on [LB, 2LB] and solve a bin packing problem for each

guess.

148

3.3 PTAS for Makespan Minimization

Bin packing for a constant number of element sizes.

k = number of element sizes t = capacity of bins

Problem instance (n1, …, nk) with 𝑖=1
𝑘 ni = n

Subproblem specified by (i1, …, ik) where ij is the number of elements of

element size j.

bins(i1, …, ik) = minimum number of bins to pack (i1, …, ik)

149

3.3 PTAS for Makespan Minimization

Compute Q = { (q1,…,qn) | bins(q1, …, qk) = 1, 0 ≤ qi ≤ ni for i=1, …, k}

Q contains O(nk) elements

Compute k-dimensional table with entries bins(i1, …, ik),

where (i1, …, ik) ∈ {0,…, n1} x … x {0,…, nk}

Initialize bins(q)=1 for all q ∈ Q and

compute bins(i1, …, ik) = 1 + minq∈Q bins(i1-q1,…, ik-qk)

Takes O(n2k) time.

Reduction from scheduling to bin packing: Two types of errors occur.

- Rounding the element sizes to a bounded number of sizes

- Stop the binary search to ensure polynomial running time.

150

3.3 PTAS for Makespan Minimization

Basic algorithm: ɛ = error parameter t ∈ [LB,2LB]

1. Ignore jobs of processing time smaller than ɛt.

2. Round down the remaining processing times.

pi∈ [tɛ (1+ɛ)i, tɛ(1+ɛ)i+1) i ≥ 0 is rounded to tɛ (1+ɛ)i

tɛ(1+ɛ)i+1 < t implies i+1 < log1+ɛ 1/ɛ and k = log1+ɛ 1/ɛ job

classes suffice

3. Compute optimal solution to this problem with bin capacity t.

Makespan for original job sizes is at most t(1+ɛ).

4. Remaining jobs ignored so far are first assigned to the available capacity in

the open bins. Then new bins of capacity t(1+ɛ) are used.

Let α(I,t,ɛ) denote the number of used bins.

151

3.3 PTAS for Makespan Minimization

Lemma: α(I,t,ɛ) ≤ bins(I,t)

Proof: Obvious if no new bins are opened to assign the small, initially ignored

elements. Each time a new bin is opened, all the open ones are filled

to an extent of at least t.

Corollary: min {t | α(I,t,ɛ) ≤ m} ≤ OPT.

Execute binary search on [LB,2LB] until the length of the search interval is at

most ɛLB.

(1/2)i LB ≤ ɛLB implies i = log2 1/ɛ

Let T be the interval boundary when the search terminates.

152

3.3 PTAS for Makespan Minimization

Lemma: T ≤ (1+ ɛ) OPT

Proof: min {t | α(I,t,ɛ) ≤ m} in the interval [T-ɛLB, T].

Hence T ≤ min {t | α(I,t,ɛ) ≤ m} + ɛLB ≤ (1+ ɛ) OPT.

Basic algorithm with t = T produces a makespa of at most (1+ ɛ)T

Theorem: The entire algorithm produces a solution with a makespan of at

most (1+ ɛ)2T ≤ (1+ 3ɛ) OPT.

The running time is O(n2k log2 1/ɛ) where k = log1+ɛ 1/ɛ .

153

3.4 Max-SAT and randomization

Problem Max-≥kSAT: Clauses C1,…,Cm over Boolean variables x1,…,xn.

Ci = li,1 ˅ … ˅ li,k(i) where k(i) ≥ k and

literals li,j ∈ {x1, x1, …, xn, x𝑛} for j=1,…,k(i)

Find an assignment to the variables that maximizes the number of

satisfied clauses.

Example: C1 = x1 ˅ x2˅ x3 C2 = x1 ˅ x3 C3 = x2 ˅ x3

Max-≥kSAT is NP-hard

154

3.4 Max-SAT and randomization

Definition: A randomized approximation algorithm is an approximation

algorithm that is allowed to make random choices. In polynomial time a

random number in the range {1,…,n}, n ∈ ℕ, is chosen, where the

coding length of n is polynomial in the coding length of the input.

Algorithm A achieves an approximation factor of c if

E[w(A(I))] ≤ c ·OPT(I) (in case of a minimization problem)

E[w(A(I))] ≥ c ·OPT(I) (in case of a maximization problem)

for all I ∈ P.

155

3.4 Max-SAT and randomization

Algorithm RandomSAT:

for i:=1 to n do

Choose a bit b ∈ {0,1} uniformly at random;

if b=0 then xi := 0 else xi := 1; endif;

endfor;

Output the assignment of the variables x1,…,xn;

Theorem: The expected number of satisfied clauses achieved by RandomSAT

is at least (1-1/2k)m.

156

3.4 Max-SAT and randomization

Derandomization

E[X|B] = expected value of X is even B holds

Algorithm DetSAT:

for i:=1 to n do

Compute E0 = E[X | xj = bj for j=1,…, i-1 and xi = false];

Compute E1 = E[X | xj = bj for j=1,…, i-1 and xi = true];

if E0 ≥ E1 then bi := 0 else bi := 1; endif;

endfor;

Output b1,…,bn;

Theorem: DetSAT satisfies at least E[X] = (1-1/2k)m clauses.

Algorithm achieves the best possible performance. If P ≠ NP, no approximation

factor greater than 1-1/2k + ε, for ε > 0, can be achieved.

157

3.4 Max-SAT and randomization

LP relaxations

Example: max x+y

s.t. x + 2y ≤ 10

3x - y ≤ 9

x,y ≥ 0

Consider Max-SAT, which corresponds to Max-≥1SAT

Formula φ with clauses C1,…,Cm over Boolean variables x1,…,xn.

For each clause Cj define

Vj,+ = set of unnegated variables in Cj

Vj,- = set of negated variables in Cj

158

3.4 Max-SAT and randomization

Formulation as integer linear program

For each xi introduce variable yi. For each clause Cj introduce variable zj.

yi=
1 if xi = true
0 if xi = false

zj=
1 if Cj satified
0 if Cj not satisfied

max j=1
m zj

s.t. i:x
i
∈V

j
,+

yi + i:x
i
∈V

j
,−

(1 − yi) ≥ zj j=1,…,m

yi, zj ∈ {0,1} i=1,…,n j=1,…,m

Integer linear programming (ILP) is NP-hard

Theorem: (Khachyian 1980) LP is in P.

159

3.4 Max-SAT and randomization

Relaxed linear program for MaxSAT

max j=1
m zj

s.t. i:x
i
∈V

j
,+

yi + i:x
i
∈V

j
,−

(1 − yi) ≥ zj j=1,…,m

yi, zj ∈ [0,1] i=1,…,n j=1,…,m

Algorithm RRMaxSAT (RandomizedRounding MaxSAT)

Find optimal solution (𝑦1, … , 𝑦𝑛) (𝑧1, … , 𝑧m) to the relaxed LP for MaxSAT;

for i:=1 to n do

Choose a bit b ∈ {0,1} such that b =
1 with probability 𝑦𝑖

0 with probability 1 − 𝑦𝑖

if b=1 then xi := 1 else xi := 0; endif;

endfor;

Output the assignment of the variables x1,…,xn;

160

3.4 Max-SAT and randomization

Theorem: RRMaxSAT achieves an approximation factor of 1-1/e ≈ 0.632.

Theorem: Given a formular φ, apply both RandomSAT and RRMaxSAT and

select the better of the two solutions. Then the resulting algorithm achieves an

approximation factor of ¾.

161

3.5 Probabilistic approximation algorithms

Definition: A probabilistic approximation algorithm for an optimization problem

is an approximation algorithm that outputs a feasible solution with

probability at least ½.

Problem Hitting Set: Ground set V = {v1,…,vn} and subsets S1,…, Sm ⊆ V.

Find the smallest set H ⊆ V with H ∩ Si ≠ ∅ for i=1,…,m.

H is called a hitting set.

162

3.5 Probabilistic approximation algorithms

Formulation as ILP: Variables x1, …, xn

xi=
1 if vi ∈ HOPT

0 if vi ∉ HOPT

min i=1
n xi

s.t. i:v
i
∈S

j
xi ≥ 1 j=1,…,m

xi ∈ {0,1} i=1,…,n relaxed to xi ∈ [0,1]

163

3.5 Probabilistic approximation algorithms

Algorithm RRHS (RandomizedRounding HittingSet)

Find optimal solution (𝑥1, … , 𝑥𝑛) to the relaxed LP for HittingSet;

H := ∅

for i:=1 to ln(2m) do

for j:=1 to n do

Choose a bit b ∈ {0,1} such that b =
1 with probability 𝑥𝑗
0 with probability 1 − 𝑥𝑗

if b=1 then H := H ∪ {vj} endif;

endfor;

Output H;

Theorem: For each instance of HittingSet there holds:

(1) RRHS finds a feasible solution with probability at least ½.

(2) E[|RRHS(I)|] ≤ ln(2m) OPT(I).

164

3.5 Probabilistic approximation algorithms

Theorem: Let p be a fixed polynomial and A be a polynomial time

algorithm that, for each instance I of an optimization problem,

computes a feasible solution with probability 1/p(|I|). Then, for

each ɛ>0, there exists a polynomial time algorithm Aɛ, that outputs

a feasible solution with probability 1-ɛ.

Theorem: Let A be a randomized approximation algorithm with

approximation factor c for a minimization problems. The, for any

ɛ>0 and p<1 there exists an approximation algorithm Aɛ,p that, for

each input instance I and probability at least p, computes a

solution of value at most (1+ɛ)·c·OPT(I).

165

3.6 Set Cover

Problem: Universe U = {u1,…,un}. Sets S1,…,Sm ⊆ U with associated non-

negative costs c(S1),…,c(Sm). Find J ⊆ {1,…,m} such that j∈J Sj = U and

 j∈J c(Sj) minimal.

Greedy approach: Repeatedly choose the most cost-effective set. At any time

let C be the set of covered elements. Cost-effectiveness of S is c(S) / |S-C|.

Algorithm Greedy:

1. C:= Ø;

2. while C ≠ U do

3. Determine the current most cost-effective set S and α = c(S) / |S-C|;

4. Choose S and set price(e) := α , for all e ∈ S-C;

5. C := C ∪ S;

6. endwhile;

7. Output the selected sets;

166

3.6 Set Cover

Theorem: Greedy achieves an approximation factor of Hn = 𝑘=1
𝑛 1/𝑘.

Theorem: The approximation factor of Greedy is not smaller than Hn.

