Prof. Dr. Susanne Albers
Dr. Dimitrios Letsios
Lehrstuhl Theoretische Informatik
Fakultät für Informatik
Fall Semester
Technische Universität München

Randomized Algorithms Exercise Sheet 10

Due: January 12, 2015

Exercise 1a: (10 points)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables such that X_{i} is equal to 1 with probability p_{i} and equal to 0 with probability $1-p_{i}$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=E[X]$. For any $\delta>1$, show that

$$
\operatorname{Pr}(X \geq(1+\delta) \mu) \leq e^{-\frac{\delta \ln \delta}{2} \mu}
$$

Exercise 1b: (10 points)
In the Cyclic Shift problem, given a $n \times n$ matrix A with entries in $\{0,1\}$, the objective is to shift the rows cyclically so that the maximum column sum is minimized. For example, consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

which has maximum column sum 3. By shifting the second row by one place we get the matrix

$$
A^{\prime}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

with maximum column sum 2. Consider the following randomized algorithm for the Cyclic Shift problem:

- for each $i=1,2, \ldots, n$
choose $s_{i} \in\{0,1, \ldots, n-1\}$ uniformly at random
shift the i-th row by s_{i} places
Let $c=\sum_{i=1}^{n} \frac{c_{i}}{n}$, where c_{i} is the number of entries in the i-th row which are equal to 1 . We say that the input matrix A is sparse if $c \leq \ln n$. Consider a column in the matrix produced by the algorithm and let X be a random variable which corresponds to the sum of the elements in that column. Show that
- $\operatorname{Pr}(X \geq 5 c) \leq \frac{1}{n^{2}}$ when A is not sparse, and
- $\operatorname{Pr}(X>c+4 \ln n) \leq \frac{1}{n^{2}}$ when A is sparse.

Exercise 2a: (10 points)
Consider the bit-fixing algorithm for permutation routing on the n-cube where n is even. Recall that, in a permutation routing, each node sends exactly one packet and receives exactly one packet. Consider the permutation in which, if a source node s is the concatenation of two binary strings a_{s} and b_{s} each of length $\frac{n}{2}$, then the destination of the packet sent from s is the concatenation of b_{s} and a_{s}. Show that, given this permutation, the bit-fixing algorithm takes $\Omega(\sqrt{N})$ steps, where $N=2^{n}$ is the number of nodes of the n-cube.

Exercise 2b: (10 points)
Consider the following variant of the bit-fixing algorithm for permutation routing on the n-cube. Instead of fixing the bits in order from 1 to n, each packet chooses a random order (independently from the other packets) and fixes the bits in that order. Show that there is a permutation such that the expected number of steps taken by this algorithm is $2^{\Omega(n)}$.

Hint: Consider the same permutation with the previous exercise. That is, each packet has a source node $\left(a_{1}, a_{2}, \ldots, a_{n / 2}, b_{1}, b_{2}, \ldots, b_{n / 2}\right)$ and a destination node $\left(b_{1}, b_{2}, \ldots, b_{n / 2}, a_{1}, a_{2}, \ldots, a_{n / 2}\right)$. Then, show that the expected number of packets that pass through the node $(0,0, \ldots, 0)$ is $2^{\Omega(n)}$. You may use the inequality $\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}$.

