Prof. Dr. Susanne Albers
 Dr. Dimitrios Letsios
 Lehrstuhl Theoretische Informatik
 Fakultät für Informatik
 Technische Universität München
 Randomized Algorithms Exercise Sheet 9

Fall Semester

Due: December 22, 2014

Exercise 1: (10 points)

- Compute the moment generating function of a Binomial random variable with parameters (n, p). Hint: Use the binomial identity $(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j} y^{n-j}$.
- Let X and Y be independent Binomial random variables with parameters (n, p) and (m, p), respectively. Compute the moment generating function of the random variable $Z=X+Y$. What can you say about Z ?

Exercise 2: (10 points)
Consider a game in which we have $\frac{2}{3}$ probability of winning. We play 30 such games independently and we consider the probability of winning 5 or fewer games? Compute upper bounds (numerical values) on this probability by using Chebyshev's inequality and an appropriate Chernoff bound.

Exercise 3: (10 points)
Consider a BPP algorithm which has error probability $\frac{1}{2}-\frac{1}{p(n)}$, where $p(n)$ is a polynomial of the input size n. By using a Chernoff bound for the tail of the binomial distribution, show that a polynomial number of indepedent repetitions of the algorithm are sufficient to reduce the error probability to $\frac{1}{2^{n}}$.

Exercise 4: (10 points)
We throw n balls uniformly at random into n bins. By using a Chernoff bound, show that the probability that a bin contains more than $\frac{\ln n}{\ln \ln n}$ balls is at most $\frac{1}{n}$ for large n.

