WS 2016/17

Efficient Algorithms and Data Structures

Harald Räcke

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2016WS/ea/

Winter Term 2016/17

Ernst Mayr, Harald Räcke

Part I

Organizational Matters

► Modul: IN2003

► Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"

► ECTS: 8 Credit points

Lectures:

4 SWS Mon 10:00-12:00 (Room Interim2) Fri 10:00-12:00 (Room Interim2)

Webpage: http://www14.in.tum.de/lehre/2016WS/ea/

Part I

Organizational Matters

Ernst Mayr, Harald Räcke

- Required knowledge:
 - ► IN0001, IN0003

"Introduction to Informatics 1/2"

"Einführung in die Informatik 1/2"

► IN0007

"Fundamentals of Algorithms and Data Structures"

"Grundlagen: Algorithmen und Datenstrukturen" (GAD)

► IN0011

"Basic Theoretic Informatics"

"Einführung in die Theoretische Informatik" (THEO)

► IN0015

"Discrete Structures"

"Diskrete Strukturen" (DS)

► IN0018

"Discrete Probability Theory"

"Diskrete Wahrscheinlichkeitstheorie" (DWT)

Ernst Mayr, Harald Räcke

The Lecturer

► Harald Räcke

► Fmail: raecke@in.tum.de

Room: 03.09.044

Office hours: (by appointment)

Assignment sheets

In order to pass the module you need to pass an exam.

Tutorials

```
A01 Monday, 12:00–14:00, 00.08.038 (Stotz)
A02 Monday, 12:00-14:00, 00.09.038 (Kohler)
A03 Monday, 14:00-16:00, 03.10.011 (Sperr)
B04 Tuesday, 12:00–14:00, 03.11.018 (Kohler)
B05 Tuesday, 14:00–16:00, 00.08.038 (Matl)
B06 Tuesday, 16:00–18:00, 00.08.036 (Sperr)
C07 Wednesday, 10:00–12:00, 01.13.010 (Stotz)
D08 Thursday, 10:00–12:00, 00.08.038 (Kraft)
```

E09 Friday, 12:00–14:00, 00.13.009 (Kraft)

E10 Friday, 14:00–16:00, 00.08.036 (Matl)

Ernst Mayr, Harald Räcke

Assessment

Assignment Sheets:

- ► An assignment sheet is usually made available on Monday on the module webpage.
- ▶ Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e, sheet may not be corrected by this time.
- You can submit solutions in groups of up to 2 people.

Assessment

Assignment Sheets:

- ▶ Submissions must be handwritten by a member of the group. Please indicate who wrote the submission.
- ▶ Don't forget name and student id number for each group member.

Ernst Mayr, Harald Räcke

Assessment

Requirements for Bonus

- ▶ 50% of the points are achieved on submissions 1-7,
- ▶ 50% of the points are achieved on submissions 8–13,
- each group member has written at least 4 solutions.

Assessment

Assignment can be used to improve you grade

If you obtain a bonus your grade will improve according to the following function

$$f(x) = \begin{cases} \frac{1}{10} \text{round} \left(10 \left(\frac{\text{round}(3x) - 1}{3} \right) \right) & 1 < x \le 4 \\ x & \text{otw.} \end{cases}$$

- ▶ It will improve by 0.3 or 0.4, respectively. Examples:
 - **▶** 3.3 → 3.0
 - **≥** 2.0 → 1.7
 - **▶** 3.7 → 3.3
 - **▶** 1.0 → 1.0
 - \rightarrow 4.0 no improvement

Ernst Mayr, Harald Räcke

10

1 Contents

- Foundations
 - Machine models
 - Efficiency measures
 - Asymptotic notation
 - Recursion
- ► Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures
- Cuts/Flows
- Matchings

1 Contents

2 Literatur

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman: The design and analysis of computer algorithms, Addison-Wesley Publishing Company: Reading (MA), 1974

Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms, McGraw-Hill, 1990

Michael T. Goodrich, Roberto Tamassia: Algorithm design: Foundations, analysis, and internet examples, John Wiley & Sons, 2002

Ernst Mayr, Harald Räcke

2 Literatur

13

15

2 Literatur

Donald E. Knuth:

The art of computer programming. Vol. 3: Sorting and Searching,

- 3. Auflage, Addison-Wesley Publishing Company: Reading (MA), 1997
- Christos H. Papadimitriou, Kenneth Steiglitz: Combinatorial Optimization: Algorithms and Complexity, Prentice Hall, 1982
- Uwe Schöning: Algorithmik, Spektrum Akademischer Verlag, 2001
- Steven S. Skiena: The Algorithm Design Manual, Springer, 1998

2 Literatur

Volker Heun:

Grundlegende Algorithmen: Einführung in den Entwurf und die Analyse effizienter Algorithmen,

- 2. Auflage, Vieweg, 2003
- Jon Kleinberg, Eva Tardos: Algorithm Design, Addison-Wesley, 2005
- Donald E. Knuth:

The art of computer programming. Vol. 1: Fundamental Algorithms,

3. Auflage, Addison-Wesley Publishing Company: Reading (MA), 1997

Ernst Mayr, Harald Räcke

2 Literatur

14

Part II

Foundations

Vocabularies

```
a \cdot b "a times b"
      "a multiplied by b"
     "a into b"
     "a divided by b"
      "a by b"
      "a over h"
     (a: numerator (Zähler), b: denominator (Nenner))
 a<sup>b</sup> "a raised to the b-th power"
      "a to the b-th"
     "a raised to the power of b"
     "a to the power of b"
      "a raised to b"
     "a to the b"
     "a raised by the exponent of b"
```

Ernst Mayr, Harald Räcke

17

3 Goals

- ► Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.
- Learn how to analyze and judge the efficiency of algorithms.

3 Goals

Learn how to design efficient algorithms.

Vocabularies

$$n!$$
 " n factorial"
$$\binom{n}{k}$$
 " n choose k "
$$x_i$$
 " x subscript i "
" x sub i "
" x i "
$$\log_b a$$
 "log to the base b of a "
"log a to the base b "

$$f: X \to Y, x \mapsto x^2$$

f is a function that maps from domain (Definitionsbereich) X to codomain (Zielmenge) *Y*. The set $\{y \in Y \mid \exists x \in X : f(x) = y\}$ is the image or the range of the function (Bildbereich/Wertebereich).

4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

19

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- ▶ Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $\mathcal{O}(n^2)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

| | | Ernst Mayr, Harald Räcke

4 Modellina Issues

21

Model of Computation

How to measure performance

- 1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

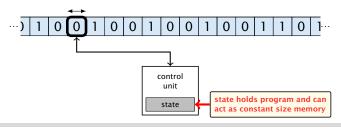
Suppose n numbers from the interval $\{1, \dots, N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

4 Modellina Issues

22

Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- ▶ Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.
- ⇒ Not a good model for developing efficient algorithms.

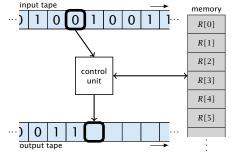


4 Modelling Issues

Ernst Mayr, Harald Räcke 4 Modellina Issues

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones: unbounded length).
- ▶ Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \dots$
- Registers hold integers.
- Indirect addressing.



Note that in the picture on the right the tapes are one-directional, and that a READ- or WRITE-operation always advances its tape.

4 Modellina Issues

| | | ∐∐∐∐ Ernst Mayr, Harald Räcke

Random Access Machine (RAM)

Operations

 $\left| igcup_{\parallel}
ight| \left| igcup_{\parallel}
ight|$ Ernst Mayr, Harald Räcke

- branching (including loops) based on comparisons
 - ▶ jump x jumps to position x in the program; sets instruction counter to x: reads the next operation to perform from register R[x]
 - ightharpoonup jumpz x R[i]jump to x if R[i] = 0if not the instruction counter is increased by 1;
 - ▶ jumpi *i* jump to R[i] (indirect jump);
- \triangleright arithmetic instructions: +, -, \times , /
 - ightharpoonup R[i] := R[j] + R[k];R[i] := -R[k];

The jump-directives are very close to the jump-instructions contained in the as-

sembler language of real machines.

Random Access Machine (RAM)

Operations

- ▶ input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations $(R[i] \rightarrow \text{output tape})$
 - ▶ WRTTF i
- register-register transfers
 - $\triangleright R[i] := R[i]$
 - R[j] := 4
- ▶ indirect addressing
 - ightharpoonup R[i] := R[R[i]]loads the content of the R[i]-th register into the j-th register
 - ightharpoonup R[R[i]] := R[j]loads the content of the j-th into the R[i]-th register

Ernst Mayr, Harald Räcke

4 Modellina Issues

26

Model of Computation

- uniform cost model Every operation takes time 1.
- logarithmic cost model

The cost depends on the content of memory cells:

- ► The time for a step is equal to the largest operand involved:
- ► The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed 2^w , where usually

$$w = \log_2 n.$$

The latter model is quite realistic as the word-size of i a standard computer that handles a problem of size nmust be at least $\log_2 n$ as otherwise the computer could either not store the problem instance or not address all its memory.

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

1: r ← 2;

2: for $i = 1 \rightarrow n$ do

 $r \leftarrow r^2$

4: return γ

running time:

▶ uniform model: *n* steps

• logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} - 1 = \Theta(2^n)$

space requirement:

• uniform model: $\mathcal{O}(1)$

▶ logarithmic model: $\mathcal{O}(2^n)$

Ernst Mayr, Harald Räcke

4 Modellina Issues

29

There are different types of complexity bounds:

amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input

x. Then take the worst-case over all x with |x| = n.

There are different types of complexity bounds:

best-case complexity:

$$C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{WC}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

more general: probability measure μ

$$C_{\operatorname{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

C(x) cost of instance input length of instance xset of instances of length n

Ernst Mayr, Harald Räcke

4 Modelling Issues

30

4 Modelling Issues

Bibliography

Ernst Mayr, Harald Räcke

Kurt Mehlhorn, Peter Sanders:

Algorithms and Data Structures — The Basic Toolbox

Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms (3rd ed.).

McGraw-Hill, 2009

Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- ▶ We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- ▶ An exact analysis (e.g. *exactly* counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- ▶ A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

5 Asymptotic Notation

31

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_0 to \mathbb{R}_0^+ .

•
$$g \in \mathcal{O}(f)$$
: $0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

•
$$g \in \Omega(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$

•
$$g \in \Theta(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

•
$$g \in o(f)$$
: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$

•
$$g \in \omega(f)$$
: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$

- · Note that for the version of the Landau notation defined here, we assume that f and g are positive func-
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^+ .

- $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \le c \cdot f(n)] \}$ (set of functions that asymptotically grow not faster than *f*)
- $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \ge c \cdot f(n)] \}$ (set of functions that asymptotically grow not slower than f)
- \bullet $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as *f*)
- ▶ $o(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)
- $\omega(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \ge c \cdot f(n)] \}$ (set of functions that asymptotically grow faster than f)

Ernst Mayr, Harald Räcke

5 Asymptotic Notation

32

Asymptotic Notation

Abuse of notation

||||||||||| Ernst Mayr, Harald Räcke

- 1. People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- **2.** People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \to \mathbb{R}^+$, $n \mapsto f(n)$, and $g: \mathbb{N} \to \mathbb{R}^+$, $n \mapsto g(n)$.
- **3.** People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z: \mathbb{N} \to \mathbb{R}^+, n \mapsto z(n), z \in o(g)$ such that h(n) = f(n) + z(n).
- 2. In this context f(n) does **not** mean the $\frac{1}{n}$ 3. This is particularly useful if you do not function f evaluated at n, but instead ' it is a shorthand for the function itself i (leaving out domain and codomain and only giving the rule of correspondence of the function).
 - want to ignore constant factors. For example the median of n elements can be determined using $\frac{3}{2}n + o(n)$ compar-

Asymptotic Notation

Abuse of notation

4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

Ernst Mayr, Harald Räcke

5 Asymptotic Notation

34

36

Asymptotic Notation in Equations

How do we interpret an expression like:

$$2n^2 + \mathcal{O}(n) = \Theta(n^2)$$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta(n^2)$ that makes the expression true.

Asymptotic Notation in Equations

How do we interpret an expression like:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

5 Asymptotic Notation

The $\Theta(i)$ -symbol on the left rep-

 $f: \mathbb{N} \to \mathbb{R}^+$, and then $\sum_i f(i)$ is

Asymptotic Notation in Equations | The @(1)-symbol on the left lepresents one anonymous function

How do we interpret an expression like:

computed. $\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$

Careful!

"It is understood" that every occurence of an \mathcal{O} -symbol (or $\Theta, \Omega, \rho, \omega$) on the left represents one anonymous function.

Hence, the left side is not equal to

$$\Theta(1) + \Theta(2) + \cdots + \Theta(n-1) + \Theta(n)$$

$$\Theta(1) + \Theta(2) + \cdots + \Theta(n-1) + \Theta(n) \text{ does }$$
 not really have a reasonable interpretation.

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as generating a set:

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n)$$

represents

Ernst Mayr, Harald Räcke

5 Asymptotic Notation

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) = \Theta(n^2)$$

represents

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) \subseteq \Theta(n^2)$$

Note that the equation does not hold.

5 Asymptotic Notation

39

Asymptotic Notation

Lemma 3

Let f, g be functions with the property

 $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for *g*). Then

- $ightharpoonup c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\triangleright \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
- $\triangleright \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

The expressions also hold for Ω . Note that this means that $f(n) + g(n) \in \Theta(\max\{f(n), g(n)\}).$

Asymptotic Notation

Comments

Ernst Mayr, Harald Räcke

- Do not use asymptotic notation within induction proofs.
- ► For any constants a, b we have $\log_a n = \Theta(\log_b n)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- ▶ In general $\log n = \log_2 n$, i.e., we use 2 as the default base for the logarithm.

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- ▶ If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- ▶ However, suppose that I have two algorithms:
 - Algorithm A. Running time $f(n) = 1000 \log n = \mathcal{O}(\log n)$.
 - ▶ Algorithm B. Running time $g(n) = \log^2 n$.

Clearly f = o(g). However, as long as $\log n \le 1000$ Algorithm B will be more efficient.

Ernst Mayr, Harald Räcke

5 Asymptotic Notation

42

43

6 Recurrences

Algorithm 2 mergesort(list *L*)

- 1: $n \leftarrow \text{size}(L)$
- 2: **if** $n \le 1$ **return** L
- 3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{n}{2} \rfloor]$
- 4: $L_2 \leftarrow L[\lfloor \frac{n}{2} \rfloor + 1 \cdots n]$
- 5: mergesor $\bar{t}(L_1)$
- 6: mergesort(L_2)
- 7: $L \leftarrow \text{merge}(L_1, L_2)$
- 8: return L

This algorithm requires

$$T(n) = T(\lceil \frac{n}{2} \rceil) + T(\lceil \frac{n}{2} \rceil) + O(n) \le 2T(\lceil \frac{n}{2} \rceil) + O(n)$$

comparisons when n > 1 and 0 comparisons when $n \le 1$.

5 Asymptotic Notation

Bibliography

Kurt Mehlhorn, Peter Sanders:

Algorithms and Data Structures — The Basic Toolbox

Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms (3rd ed.).

McGraw-Hill, 2009

Mainly Chapter 3 of [CLRS90]. [MS08] covers this topic in chapter 2.1 but not very detailed.

Ernst Mayr, Harald Räcke

5 Asymptotic Notation

43

Recurrences

How do we bring the expression for the number of comparisons (≈ running time) into a closed form?

For this we need to solve the recurrence.

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

Ernst Mayr, Harald Räcke

6 Recurrences

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types of linear inhomogenous relations and also sometimes non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations so that it e.g. becomes linear and can therefore be solved with one of the other techniques.

6 Recurrences

6.1 Guessing+Induction

Suppose we guess $T(n) \le dn \log n$ for a constant d. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$\le dn\log n$$

if we choose d > c

Ernst Mayr, Harald Räcke

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

6.1 Guessing+Induction

 $2T(\frac{n}{2}) + cn \quad n \ge 16$

Guess: $T(n) \leq dn \log n$. **Proof.** (by induction)

- **base case** (2 < n < 16): true if we choose d > h.
- ▶ induction step $2 ... n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$. We prove it for n:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$\le dn\log n$$
• Note that this proves the statement for $n \in \mathbb{N}_{\ge 2}$, as the statement is wrong for $n = 1$.
• The base case is usually omitted, as it is the same for different recurrences.

- as it is the same for different recurrences.

Hence, statement is true if we choose $d \ge c$.

6.1 Guessing+Induction

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\left\lceil\frac{n}{2} + 1 \leq \frac{9}{16}n\right\rceil \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\left[\log\frac{9}{16}n = \log n + (\log 9 - 4)\right] = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\left[\log n \leq \frac{n}{4}\right] \leq dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

 $\leq dn \log n$

for a suitable choice of d.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

$$T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 16 \\ b & \text{otherwise} \end{cases}$$

Note that we can do this as for constant-sized inputs the running time is always some constant (b in the above case).

6.1 Guessing+Induction

6.2 Master Theorem

Note that the cases do not cover all possibilities.

Lemma 4

Let $a \ge 1$, $b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

$$T(n) = aT\left(\frac{n}{h}\right) + f(n) .$$

Case 1.

If $f(n) = O(n^{\log_b(a) - \epsilon})$ then $T(n) = O(n^{\log_b a})$.

If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \geq 0$.

Case 3.

If $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ and for sufficiently large n $af(\frac{n}{h}) \le cf(n)$ for some constant c < 1 then $T(n) = \Theta(f(n))$.

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form b^{ℓ} , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

Ernst Mayr, Harald Räcke

6.2 Master Theorem

53

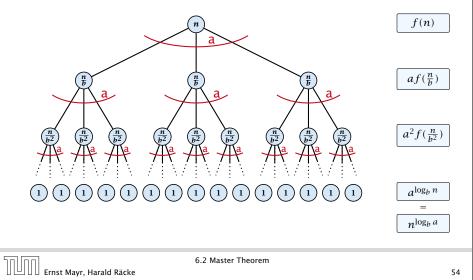
6.2 Master Theorem

This gives

$$T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) .$$

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:



Case 1. Now suppose that $f(n) \le c n^{\log_b a - \epsilon}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$$

$$= c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$

$$\sum_{i=0}^k q^i = \frac{q^{k+1} - 1}{q-1} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1)/(b^{\epsilon} - 1)$$

$$= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1)/(n^{\epsilon})$$
Hence

Hence,

Ernst Mayr, Harald Räcke

$$T(n) \le \left(\frac{c}{b^{\epsilon} - 1} + 1\right) n^{\log_b(a)}$$
 $\Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$

54

Case 2. Now suppose that $f(n) \leq c n^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$$
 $\Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$

Ernst Mayr, Harald Räcke

6.2 Master Theorem

57

Case 2. Now suppose that $f(n) \leq c n^{\log_b a} (\log_b(n))^k$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell} i^k \sum_{i=1}^{k} \ell^{k+1}$$

$$\approx \frac{c}{k} n^{\log_b a} \ell^{k+1}$$

$$\Rightarrow T(n) = O(n^{\log_b a} \log^{k+1} n).$$

6.2 Master Theorem

Case 2. Now suppose that $f(n) \ge c n^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\ge c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_b n)$$
 $\Rightarrow T(n) = \mathbf{\Omega}(n^{\log_b a} \log n).$

Ernst Mayr, Harald Räcke

6.2 Master Theorem

58

60

Case 3. Now suppose that $f(n) \ge dn^{\log_b a + \epsilon}$, and that for sufficiently large n: $a f(n/b) \le c f(n)$, for c < 1.

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1: \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \leq \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$

Hence,

$$T(n) \leq \mathcal{O}(f(n))$$
 $\Rightarrow T(n) = \Theta(f(n)).$

Where did we use $f(n) \ge \Omega(n^{\log_b a + \epsilon})$?

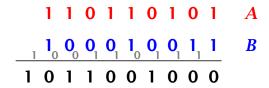
Ernst Mayr, Harald Räcke

6.2 Master Theorem

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:



This gives that two n-bit integers can be added in time $\mathcal{O}(n)$.

Ernst Mayr, Harald Räcke

6.2 Master Theorem

61

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

Then it holds that

 $\left| igcup_{\parallel}
ight| \left| igcup_{\parallel}
ight|$ Ernst Mayr, Harald Räcke

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

Hence,

$$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 B_0$$

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

- This is also nown as the "school" method" for multiplying integers.
- · Note that the intermediate numbers that are generated can have at most $m + n \le 2n$ bits.

Time requirement:

- ▶ Computing intermediate results: O(nm).
- ▶ Adding m numbers of length $\leq 2n$: $\mathcal{O}((m+n)m) = \mathcal{O}(nm)$.

6.2 Master Theorem

62

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)1: **if** |A| = |B| = 1 **then** $\mathcal{O}(1)$ return $a_0 \cdot b_0$ $\mathcal{O}(1)$ 3: split A into A_0 and A_1 $\mathcal{O}(n)$ 4: split B into B_0 and B_1 $\mathcal{O}(n)$ $T(\frac{n}{2})$ 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$ $2T(\frac{n}{2}) + \mathcal{O}(n)$ 7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ $T(\frac{n}{2})$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ $\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

64

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{h}) + f(n)$.

- ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- ► Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1. since $n = \mathcal{O}(n^{2-\epsilon}) = \mathcal{O}(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

⇒ Not better then the "school method".

Ernst Mayr, Harald Räcke

6.2 Master Theorem

Example: Multiplying Two Integers

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{h}) + f(n)$.

- ► Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59}).$

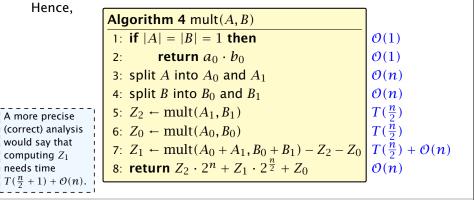
A huge improvement over the "school method".

Example: Multiplying Two Integers

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1$$
 = Z_2 = Z_0
= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence.



A more precise

would say that

computing Z_1

needs time

Ernst Mayr, Harald Räcke

Ernst Mayr, Harald Räcke

6.2 Master Theorem

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- ightharpoonup T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- ▶ The recurrence is linear as there are no products of T[n]'s.
- ▶ If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

6.3 The Characteristic Polynomial

Observations:

- ▶ The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- ▶ In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- ▶ Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Ernst Mayr, Harald Räcke

6.3 The Characteristic Polynomial

71

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$\underbrace{c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

is a solution for arbitrary values α_i .

The Homogenous Case

The solution space

$$S = \{ \mathcal{T} = T[1], T[2], T[3], \dots \mid \mathcal{T} \text{ fulfills recurrence relation } \}$$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$$

for all $n \ge k$.

Ernst Mayr, Harald Räcke

6.3 The Characteristic Polynomial

72

The Homogenous Case

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$
.

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

6.3 The Characteristic Polynomial

73

Computing the Determinant

$$\begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k \end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_k^{k-1} \end{vmatrix}$$

$$= \prod_{i=1}^{k} \lambda_i \cdot \begin{vmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{k-2} & \lambda_1^{k-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{k-2} & \lambda_2^{k-1} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \lambda_k & \cdots & \lambda_k^{k-2} & \lambda_k^{k-1} \end{vmatrix}$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_k^2 \\ & & \vdots & \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_k^k \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} T[1] \\ T[2] \\ \vdots \\ T[k] \end{pmatrix}$$

We show that the column vectors are linearly independent. Then the above equation has a solution.

6.3 The Characteristic Polynomial

74

Computing the Determinant

$$\begin{vmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{k-2} & \lambda_1^{k-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{k-2} & \lambda_2^{k-1} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \lambda_k & \cdots & \lambda_k^{k-2} & \lambda_k^{k-1} \end{vmatrix} =$$

$$\begin{vmatrix} 1 & \lambda_{1} - \lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2} - \lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1} - \lambda_{1} \cdot \lambda_{1}^{k-2} \\ 1 & \lambda_{2} - \lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2} - \lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1} - \lambda_{1} \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & \lambda_{k} - \lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2} - \lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1} - \lambda_{1} \cdot \lambda_{k}^{k-2} \end{vmatrix}$$

Computing the Determinant

$$\begin{vmatrix} 1 & \lambda_{1} - \lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2} - \lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1} - \lambda_{1} \cdot \lambda_{1}^{k-2} \\ 1 & \lambda_{2} - \lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2} - \lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1} - \lambda_{1} \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & \lambda_{k} - \lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2} - \lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1} - \lambda_{1} \cdot \lambda_{k}^{k-2} \end{vmatrix} = \\ \begin{vmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & (\lambda_{2} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-3} & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & (\lambda_{k} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-3} & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-2} \end{vmatrix}$$

Ernst Mayr, Harald Räcke

6.3 The Characteristic Polynomial

77

Computing the Determinant

Repeating the above steps gives:

$$\begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k \end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \prod_{i>\ell} (\lambda_i - \lambda_\ell)$$

Hence, if all λ_i 's are different, then the determinant is non-zero.

Computing the Determinant

$$\begin{vmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & (\lambda_{2} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-3} & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & (\lambda_{k} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-3} & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-2} \end{vmatrix} =$$

$$\begin{vmatrix} k & 1 & \lambda_{2} & \cdots & \lambda_{2}^{k-3} & \lambda_{2}^{k-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_{k} & \cdots & \lambda_{k}^{k-3} & \lambda_{k}^{k-2} \end{vmatrix}$$

Ernst Mayr, Harald Räcke

6.3 The Characteristic Polynomial

78

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P[\lambda] \cdot \lambda^{n-k} = c_0 \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \cdots + c_k \lambda^{n-k}$$

Since λ_i is a root we can write this as $Q[\lambda] \cdot (\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_0 \underbrace{n\lambda_i^n}_{T[n]} + c_1 \underbrace{(n-1)\lambda_i^{n-1}}_{T[n-1]} + \cdots + c_k \underbrace{(n-k)\lambda_i^{n-k}}_{T[n-k]} = 0$$

Ernst Mayr, Harald Räcke

6.3 The Characteristic Polynomial

81

The Homogeneous Case

Lemma 6

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

$$c_0T[n] + c_1T[n-1] + \cdots + c_kT[n-k] = 0$$

Let λ_i , i = 1, ..., m be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_i . Then the general solution to the recurrence is given by

$$T[n] = \sum_{i=1}^{m} \sum_{j=0}^{\ell_i - 1} \alpha_{ij} \cdot (n^j \lambda_i^n) .$$

The full proof is omitted. We have only shown that any choice of α_{ii} 's is a solution to the recurrence.

The Homogeneous Case

Suppose λ_i has multiplicity j. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j-1 times.

Hence, $n^{\ell}\lambda_i^n$ is a solution for $\ell \in 0, \ldots, j-1$.

6.3 The Characteristic Polynomial

82

Example: Fibonacci Sequence

$$T[0] = 0$$

$$T[1] = 1$$

$$T[n] = T[n-1] + T[n-2]$$
 for $n \ge 2$

The characteristic polynomial is

$$\lambda^2 - \lambda - 1$$

Finding the roots, gives

Ernst Mayr, Harald Räcke

$$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

Example: Fibonacci Sequence

Hence, the solution is of the form

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$T[0] = 0$$
 gives $\alpha + \beta = 0$.

$$T[1] = 1$$
 gives

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Rightarrow \alpha-\beta=\frac{2}{\sqrt{5}}$$

Ernst Mayr, Harald Räcke

6.3 The Characteristic Polynomial

Example: Fibonacci Sequence

Hence, the solution is

$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Ernst Mayr, Harald Räcke

6.3 The Characteristic Polynomial

The Inhomogeneous Case

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

with $f(n) \neq 0$.

While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

The Inhomogeneous Case

The general solution of the recurrence relation is

$$T(n) = T_h(n) + T_p(n) ,$$

where T_h is any solution to the homogeneous equation, and T_n is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

The Inhomogeneous Case

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then,

$$T[n-1] = T[n-2] + 1$$
 $(n \ge 2)$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2]$$
 $(n \ge 2)$

or

$$T[n] = 2T[n-1] - T[n-2]$$
 $(n \ge 2)$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

6.3 The Characteristic Polynomial

The Inhomogeneous Case

If f(n) is a polynomial of degree r this method can be applied r+1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

The Inhomogeneous Case

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

Then the solution is of the form

$$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$$

$$T[0] = 1$$
 gives $\alpha = 1$.

$$T[1] = 2$$
 gives $1 + \beta = 2 \Longrightarrow \beta = 1$.

90

$$T[n] = T[n-1] + n^2$$

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

Difference:

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

T[n] = 2T[n-1] - T[n-2] + 2n - 1

6.3 The Characteristic Polynomial

Shift:

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$

- $2T[n-2] + T[n-3] - 2n + 3$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

and so on...

6.4 Generating Functions

Definition 7 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n \ge 0} a_n z^n;$$

exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) = \sum_{n \ge 0} \frac{a_n}{n!} z^n.$$

Ernst Mayr, Harald Räcke

6.4 Generating Functions

93

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let $f = \sum_{n>0} a_n z^n$ and $g = \sum_{n>0} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- ▶ Addition: $f + g := \sum_{n>0} (a_n + b_n) z^n$.
- ▶ Multiplication: $f \cdot g := \sum_{n \geq 0} c_n z^n$ with $c_n = \sum_{p=0}^n a_p b_{n-p}$.

There are no convergence issues here.

6.4 Generating Functions

Example 8

1. The generating function of the sequence $(1,0,0,\ldots)$ is

$$F(z)=1.$$

2. The generating function of the sequence (1, 1, 1, ...) is

$$F(z) = \frac{1}{1-z}.$$

Ernst Mayr, Harald Räcke

6.4 Generating Functions

6.4 Generating Functions

The arithmetic view:

We view a power series as a function $f: \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

6.4 Generating Functions

What does $\sum_{n\geq 0} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1-z and the power series $\sum_{n\geq 0} z^n$ are invers, i.e.,

$$(1-z)\cdot\left(\sum_{n>0}^{\infty}z^n\right)=1.$$

This is well-defined.

Ernst Mayr, Harald Räcke

6.4 Generating Functions

97

6.4 Generating Functions

We can repeat this

$$\sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2} .$$

Derivative:

$$\sum_{n\geq 1} n(n+1)z^{n-1} = \frac{2}{(1-z)^3}$$

Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-2)^3}$.

6.4 Generating Functions

Suppose we are given the generating function

$$\sum_{n\geq 0} z^n = \frac{1}{1-z} .$$

Formally the derivative of a formal power series $\sum_{n\geq 0} a_n z^n$ is defined as $\sum_{n\geq 0} na_n z^{n-1}$.

The known rules for differentiation work for this definition. In particular, e.g. the derivative of $\frac{1}{1-z}$ is

Note that this requires a proof if we consider power series as algebraic objects. However, we did not prove this in the lecture.

We can compute the derivative:

$$\sum_{\substack{n \ge 1 \\ \sum_{n \ge 0} (n+1)z^n}} nz^{n-1} = \frac{1}{(1-z)^2}$$

Hence, the generating function of the sequence $a_n = n + 1$ is $1/(1-z)^2$.

Ernst Mayr, Harald Räcke

6.4 Generating Functions

6.4 Generating Functions

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \cdot \ldots \cdot (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \cdot \ldots \cdot (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}}.$$

Hence:

Ernst Mayr, Harald Räcke

$$\sum_{n\geq 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}} .$$

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-2)^{k+1}}$.

99

6.4 Generating Functions

$$\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$$

$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$

$$= \frac{z}{(1-z)^2}$$

The generating function of the sequence $a_n = n$ is $\frac{z}{(1-z)^2}$.

Ernst Mayr, Harald Räcke

6.4 Generating Functions

101

103

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$= a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$$

$$= 1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$$

$$= z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$$

$$= zA(z) + \sum_{n \ge 0} z^n$$

$$= zA(z) + \frac{1}{1 - z}$$

6.4 Generating Functions

We know

$$\sum_{n\geq 0} y^n = \frac{1}{1-y}$$

Hence,

$$\sum_{n>0} a^n z^n = \frac{1}{1 - az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$.

Ernst Mayr, Harald Räcke

6.4 Generating Functions

102

104

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Solving for A(z) gives

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n\geq 0} (n+1) z^n$$

Hence, $a_n = n + 1$.

Some Generating Functions

n-th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$
n^2	$\frac{z(1+z)}{(1-z)^3}$
$\frac{1}{n!}$	e^z

Ernst Mayr, Harald Räcke

6.4 Generating Functions

105

107

Solving Recursions with Generating Functions

- 1. Set $A(z) = \sum_{n>0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- **4.** Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - lookup in tables
- **6.** The coefficients of the resulting power series are the a_n .

Some Generating Functions

n-th sequence element	generating function
cf_n	cF
$f_n + g_n$	F+G
$\sum_{i=0}^{n} f_i \mathcal{G}_{n-i}$	$F\cdot G$
f_{n-k} $(n \ge k)$; 0 otw.	$z^k F$
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$
$c^n f_n$	F(cz)

Ernst Mayr, Harald Räcke

6.4 Generating Functions

106

Example: $a_n = 2a_{n-1}, a_0 = 1$

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n \ge 1} a_n z^n$$

2. Plug in:

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

Example: $a_n = 2a_{n-1}, a_0 = 1$

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

$$= 1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$$

$$= 1 + 2z \sum_{n \ge 0} a_n z^n$$

$$= 1 + 2z \cdot A(z)$$

4. Solve for A(z).

$$A(z) = \frac{1}{1 - 2z}$$

6.4 Generating Functions

109

111

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

Example: $a_n = 2a_{n-1}, a_0 = 1$

5. Rewrite f(z) as a power series:

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{1-2z} = \sum_{n\geq 0} 2^n z^n$$

Ernst Mayr, Harald Räcke

6.4 Generating Functions

110

112

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$= a_0 + \sum_{n \ge 1} a_n z^n$$

$$= 1 + \sum_{n \ge 1} (3a_{n-1} + n) z^n$$

$$= 1 + 3z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} n z^n$$

$$= 1 + 3z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} n z^n$$

$$= 1 + 3z A(z) + \frac{z}{(1-z)^2}$$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

4. Solve for A(z):

$$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$$

gives

$$A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}$$

Ernst Mayr, Harald Räcke

6.4 Generating Functions

113

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

This leads to the following conditions:

$$A + B + C = 1$$
$$2A + 4B + 3C = 1$$
$$A + 3B = 1$$

which gives

$$A = \frac{7}{4}$$
 $B = -\frac{1}{4}$ $C = -\frac{1}{2}$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

This gives

$$z^{2} - z + 1 = A(1 - z)^{2} + B(1 - 3z)(1 - z) + C(1 - 3z)$$

$$= A(1 - 2z + z^{2}) + B(1 - 4z + 3z^{2}) + C(1 - 3z)$$

$$= (A + 3B)z^{2} + (-2A - 4B - 3C)z + (A + B + C)$$

Ernst Mayr, Harald Räcke

6.4 Generating Functions

114

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

$$A(z) = \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2}$$

$$= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n$$

$$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2}(n + 1)\right) z^n$$

$$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{2}n - \frac{3}{4}\right) z^n$$

6. This means $a_n = \frac{7}{4}3^n - \frac{1}{2}n - \frac{3}{4}$.

6.5 Transformation of the Recurrence

Example 9

$$f_0=1$$

 $f_1=2$
 $f_n=f_{n-1}\cdot f_{n-2} \text{ for } n\geq 2$.

Define

$$g_n := \log f_n$$
.

Then

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$
 $g_1 = \log 2 = 1$ (for $\log = \log_2$), $g_0 = 0$
 $g_n = F_n$ (n -th Fibonacci number)
 $f_n = 2^{F_n}$

Ernst Mayr, Harald Räcke

6.5 Transformation of the Recurrence

117

6 Recurrences

We get

$$g_k = 3 [g_{k-1}] + 2^k$$

$$= 3 [3g_{k-2} + 2^{k-1}] + 2^k$$

$$= 3^2 [g_{k-2}] + 32^{k-1} + 2^k$$

$$= 3^2 [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^k$$

$$= 3^3 g_{k-3} + 3^2 2^{k-2} + 32^{k-1} + 2^k$$

$$= 2^k \cdot \sum_{i=0}^k \left(\frac{3}{2}\right)^i$$

$$= 2^k \cdot \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{1/2} = 3^{k+1} - 2^{k+1}$$

6.5 Transformation of the Recurrence

Example 10

$$f_1=1$$

$$f_n=3f_{\frac{n}{2}}+n; \text{ for } n=2^k, \ k\geq 1 \ ;$$

Define

$$g_k := f_{2^k}$$
.

Then:

$$g_0 = 1$$

 $g_k = 3g_{k-1} + 2^k, \ k \ge 1$

6.5 Transformation of the Recurrence

118

6 Recurrences

Let $n = 2^k$:

$$g_k = 3^{k+1} - 2^{k+1}$$
, hence
 $f_n = 3 \cdot 3^k - 2 \cdot 2^k$
 $= 3(2^{\log 3})^k - 2 \cdot 2^k$
 $= 3(2^k)^{\log 3} - 2 \cdot 2^k$
 $= 3n^{\log 3} - 2n$.

6 Recurrences

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:

Algorithms and Data Structures — The Basic Toolbox

Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms (3rd ed.),

MIT Press and McGraw-Hill, 2009

Chung Laung Liu:

Elements of Discrete Mathematics

McGraw-Hill, 1985

The Karatsuba method can be found in [MS08] Chapter 1. Chapter 4.3 of [CLRS90] covers the "Substitution method" which roughly corresponds to "Guessing+induction". Chapters 4.4, 4.5, 4.6 of this book cover the master theorem. Methods using the characteristic polynomial and generating functions can be found in [Liu85] Chapter 10.

6.5 Transformation of the Recurrence

121

Abstract Data Type

An abstract data type (ADT) is defined by an interface of operations or methods that can be performed and that have a defined behavior.

The data types in this lecture all operate on objects that are represented by a [key, value] pair.

- ▶ The key comes from a totally ordered set, and we assume that there is an efficient comparison function.
- ▶ The value can be anything; it usually carries satellite information important for the application that uses the ADT.

Part III

Data Structures

Ernst Mayr, Harald Räcke

121

Dynamic Set Operations

- S. search(k): Returns pointer to object x from S with key[x] = k or null.
- S. insert(x): Inserts object x into set S. key[x] must not currently exist in the data-structure.
- S. delete(x): Given pointer to object x from S, delete xfrom the set.
- S. minimum(): Return pointer to object with smallest key-value in S.
- S. maximum(): Return pointer to object with largest key-value in S.
- \triangleright S. successor(x): Return pointer to the next larger element in S or null if x is maximum.
- S. predecessor(x): Return pointer to the next smaller element in *S* or null if *x* is minimum.

122

Dynamic Set Operations

- ▶ S. union(S'): Sets $S := S \cup S'$. The set S' is destroyed.
- ▶ S. merge(S'): Sets $S := S \cup S'$. Requires $S \cap S' = \emptyset$.
- \triangleright S. split(k, S'): $S := \{x \in S \mid \text{key}[x] \le k\}, S' := \{x \in S \mid \text{key}[x] > k\}.$
- ▶ S. concatenate(S'): $S := S \cup S'$. Requires $key[S.maximum()] \le key[S'.minimum()]$.
- S. decrease-key(x, k): Replace key[x] by $k \le key[x]$.

Ernst Mayr, Har<u>ald Räcke</u>

7 Dictionary

Dictionary:

- \triangleright S. insert(x): Insert an element x.
- \triangleright S. delete(x): Delete the element pointed to by x.
- S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

Examples of ADTs

Stack:

- S. push(x): Insert an element.
- S. pop(): Return the element from S that was inserted most recently; delete it from *S*.
- ▶ *S.* empty(): Tell if *S* contains any object.

Oueue:

- S. enqueue(x): Insert an element.
- S. dequeue(): Return the element that is longest in the structure; delete it from S.
- ► S. empty(): Tell if S contains any object.

Priority-Queue:

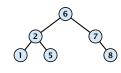
- ► S. insert(x): Insert an element.
- S. delete-min(): Return the element with lowest key-value; delete it from S.

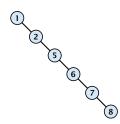
7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than key[v] and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:





7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

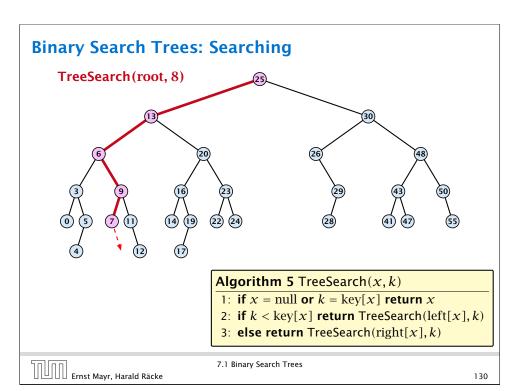
- ightharpoonup T. insert(x)
- ightharpoonup T. delete(x)
- ightharpoonup T. search(k)
- $ightharpoonup T. \operatorname{successor}(x)$
- ightharpoonup T. predecessor(x)
- ightharpoonup T. minimum()
- ightharpoonup T. maximum()

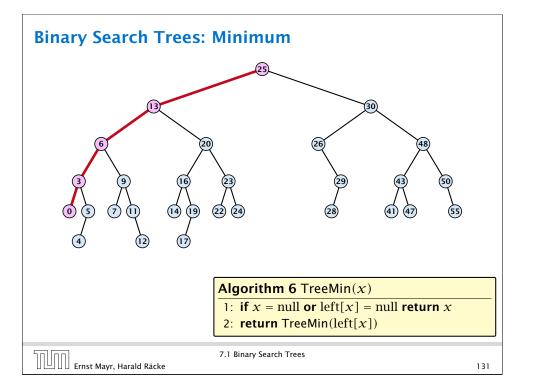
Ernst Mayr, Harald Räcke

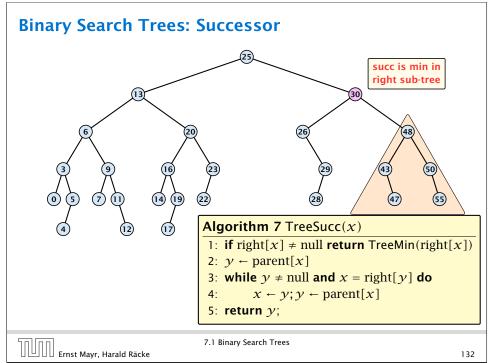
7.1 Binary Search Trees

128

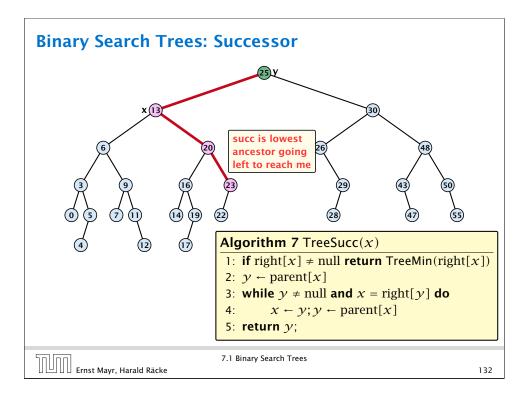
Binary Search Trees: Searching TreeSearch(root, 17) **Algorithm 5** TreeSearch(x, k) 1: **if** x = null or k = key[x] **return** x2: **if** k < key[x] **return** TreeSearch(left[x], k) 3: **else return** TreeSearch(right[x], k) Ernst Mayr, Harald Räcke 7.1 Binary Search Trees

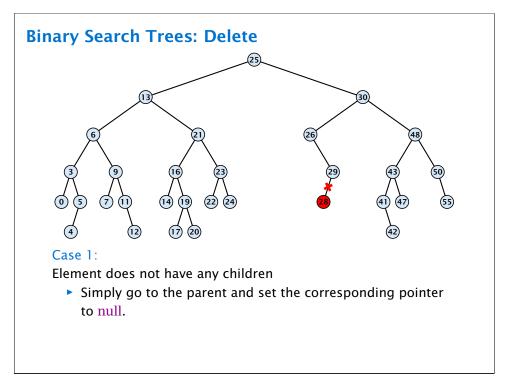












Binary Search Trees: Delete (3) (9) (16) (23) (16) (23) (16) (29) (43) (50) (17) (14) (19) (22) (24) (28) (41) (47) (55)

Case 2:

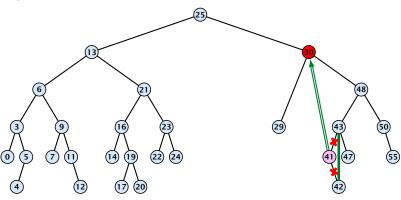
Element has exactly one child

► Splice the element out of the tree by connecting its parent to its successor.

Binary Search Trees: Delete

```
Algorithm 9 TreeDelete(z)
 1: if left[z] = null or right[z] = null
           then v \leftarrow z else v \leftarrow \text{TreeSucc}(z);
                                                           select \nu to splice out
 3: if left[\gamma] \neq null
           then x \leftarrow \text{left}[y] else x \leftarrow \text{right}[y]; x is child of y (or null)
 5: if x \neq \text{null then parent}[x] \leftarrow \text{parent}[y];
                                                             parent[x] is correct
 6: if parent[y] = null then
           root[T] \leftarrow x
 8: else
          if y = left[parent[y]] then
                                                                   fix pointer to x
 9:
                 left[parent[y]] \leftarrow x
10:
11:
           else
12:
                 right[parent[y]] \leftarrow x
13: if y \neq z then copy y-data to z
```

Binary Search Trees: Delete



Case 3:

Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.

Binary Search Trees (BSTs)

Bibliography

Kurt Mehlhorn, Peter Sanders:

Algorithms and Data Structures — The Basic Toolbox,

Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to Algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009

Binary search trees can be found in every standard text book. For example Chapter 7.1 in [MS08] and Chapter 12 in [CLRS90].

||||||||||| Ernst Mayr, Harald Räcke

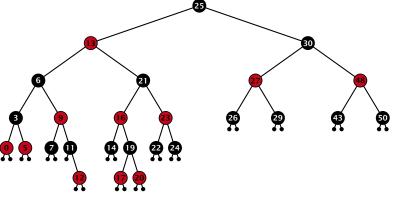
7.1 Binary Search Trees

137

138

Red Black Trees: Example

│∐]∐∐ Ernst Mayr, Harald Räcke



7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Ernst Mayr, Harald Räcke

7.2 Red Black Trees

137

7.2 Red Black Trees

Lemma 12

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 13

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 14

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.

7.2 Red Black Trees

Proof of Lemma 14.

Induction on the height of v.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- ▶ The black height of v is 0.
- ▶ The sub-tree rooted at v contains $0 = 2^{bh(v)} 1$ inner vertices.

Ernst Mayr, Harald Räcke

7.2 Red Black Trees

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 < n$.

Hence, $h \le 2\log(n+1) = \mathcal{O}(\log n)$.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ▶ These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) - 1.$
- ▶ By induction hypothesis both sub-trees contain at least $2^{bh(v)-1}-1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1}-1)+1 \ge 2^{bh(v)}-1$ vertices.

7.2 Red Black Trees

141

7.2 Red Black Trees

Definition 1

Ernst Mayr, Harald Räcke

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red black properties are maintained.

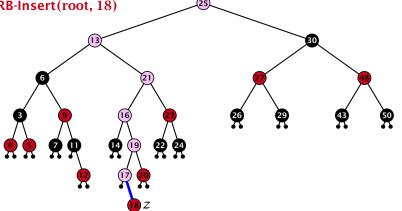
Ernst Mayr, Harald Räcke

7.2 Red Black Trees

144

146

Red Black Trees: Insert RB-Insert(root, 18)



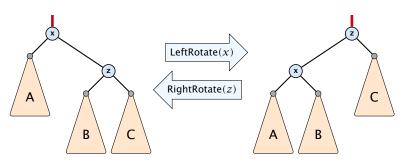
Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

7.2 Red Black Trees

Rotations

The properties will be maintained through rotations:



Ernst Mayr, Harald Räcke

7.2 Red Black Trees

145

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- ▶ the black-height property is fulfilled at every node
- ▶ the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

7.2 Red Black Trees

Red Black Trees: Insert

1. rotate around grandparent

black height property holds

uncle

7.2 Red Black Trees

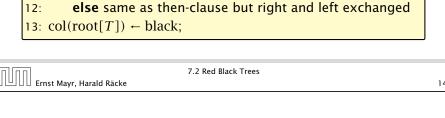
2. re-colour to ensure that

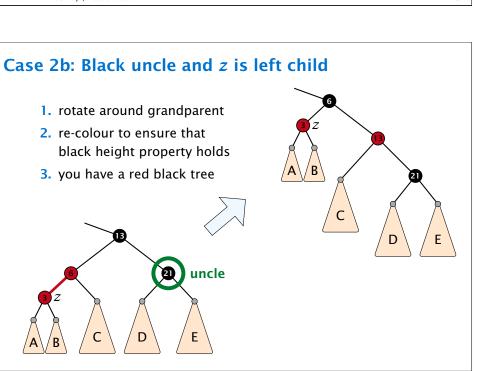
3. you have a red black tree

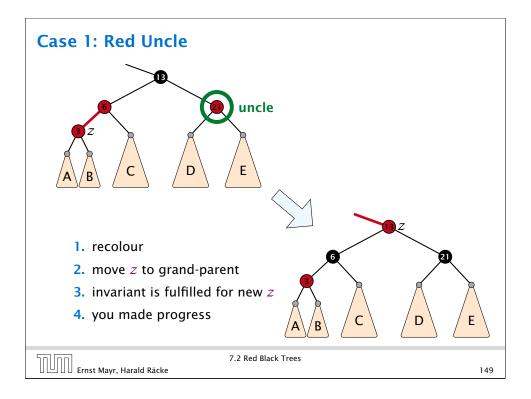
🖺 📗 Ernst Mayr, Harald Räcke

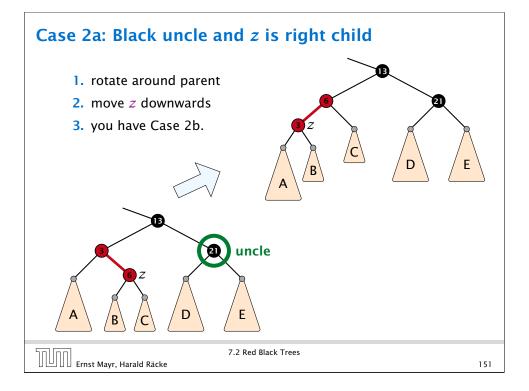
```
Algorithm 10 InsertFix(z)
1: while parent[z] \neq null and col[parent[z]] = red do
        if parent[z] = left[gp[z]] then z in left subtree of grandparent
             uncle \leftarrow right[grandparent[z]]
 3:
             if col[uncle] = red then
 4:
                                                           Case 1: uncle red
                  col[p[z]] \leftarrow black; col[u] \leftarrow black;
 5:
                 col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
             else
 7:
                                                         Case 2: uncle black
                 if z = right[parent[z]] then
 8:
                                                            2a: z right child
                      z \leftarrow p[z]; LeftRotate(z);
                  col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z left child
10:
11:
                  RightRotate(gp[z]);
        else same as then-clause but right and left exchanged
```

148









Red Black Trees: Insert

Running time:

- ▶ Only Case 1 may repeat; but only h/2 many steps, where his the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

Ernst Mayr, Harald Räcke

7.2 Red Black Trees

Red Black Trees: Delete

Case 3:

Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

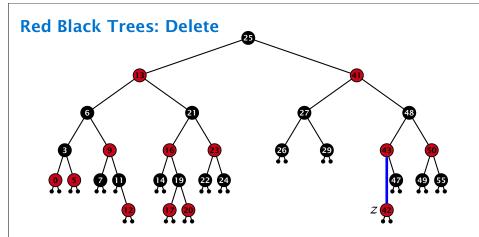
If it was black there may be the following problems.

- ▶ Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

Ernst Mayr, Harald Räcke

7.2 Red Black Trees

153



Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- ▶ the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorithm

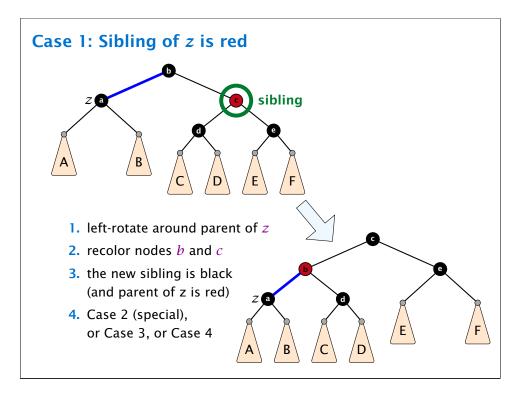
- ▶ the node *z* is black
- ▶ if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

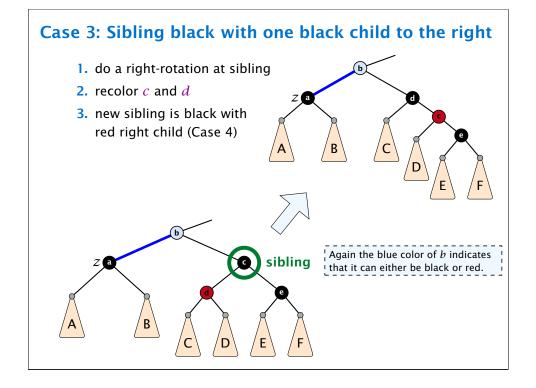
Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

Ernst Mayr, Harald Räcke

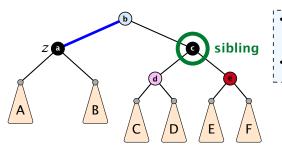
7.2 Red Black Trees

Case 2: Sibling is black with two black children Here b is either black or red. If it is red we are in a special case that directly leads to a red-black tree. sibling 1. re-color node *c* 2. move fake black unit upwards 3. move z upwards 4. we made progress **5.** if *b* is red we color it black and are done



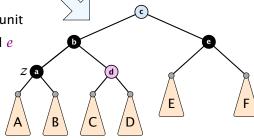


Case 4: Sibling is black with red right child



- · Here b and d are either red or black but have possibly different colors.
- We recolor c by giving it the color of b.

- **1.** left-rotate around *b*
- 2. remove the fake black unit
- 3. recolor nodes b, c, and e
- red black tree



4. you have a valid

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
- Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

Performing Case 2 at most $\mathcal{O}(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colorings and at most 3 rotations.

7.2 Red Black Trees

161

Red-Black Trees

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to Algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009

Red black trees are covered in detail in Chapter 13 of [CLRS90].

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

- + after access, an element is moved to the root; splay(x)repeated accesses are faster
- only amortized guarantee
- read-operations change the tree

Splay Trees

find(x)

- search for x according to a search tree
- ightharpoonup let \bar{x} be last element on search-path
- splay (\bar{x})

Ernst Mayr, Harald Räcke

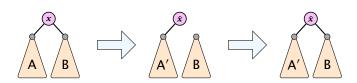
7.3 Splay Trees

163

Splay Trees

delete(x)

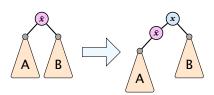
- search for x; splay(x); remove x
- search largest element \bar{x} in A
- ▶ splay(\bar{x}) (on subtree A)
- connect root of B as right child of \bar{x}



Splay Trees

insert(x)

- search for x; \bar{x} is last visited element during search (successer or predecessor of x)
- splay(\bar{x}) moves \bar{x} to the root
- insert x as new root

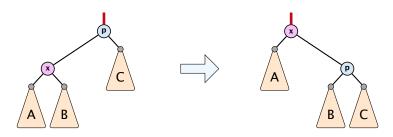


The illustration shows the case when \bar{x} is the predecessor of x.

Ernst Mayr, Harald Räcke

7.3 Splay Trees

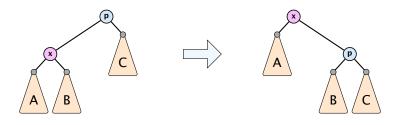
Move to Root



How to bring element to root?

- one (bad) option: moveToRoot(x)
- iteratively do rotation around parent of x until x is root
- if *x* is left child do right rotation otw. left rotation

Splay: Zig Case



better option splay(x):

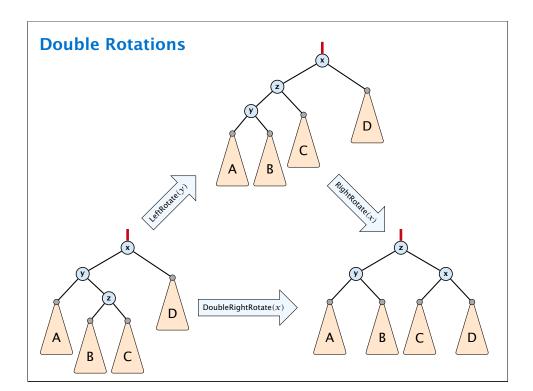
zig case: if x is child of root do left rotation or right rotation around parent

Note that moveToRoot(x) does the same.

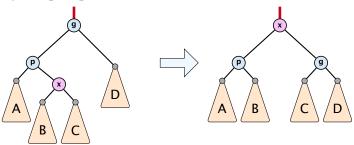
Ernst Mayr, Harald Räcke

7.3 Splay Trees

167



Splay: Zigzag Case

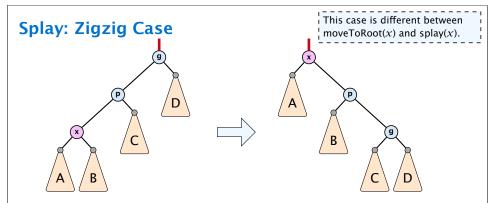


better option splay(x):

- zigzag case: if x is right child and parent of x is left child (or x left child parent of x right child)
- ▶ do double right rotation around grand-parent (resp. double left rotation)

Note that moveToRoot(x) does the same.

7.3 Splay Trees

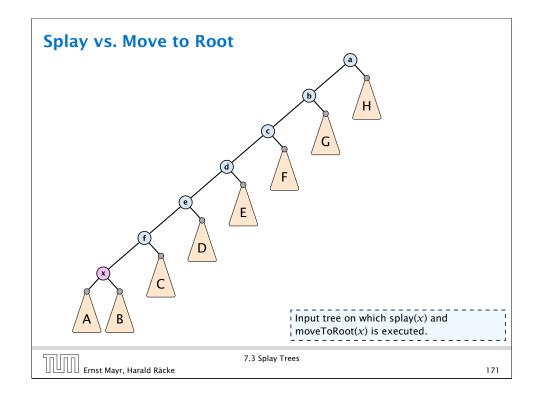


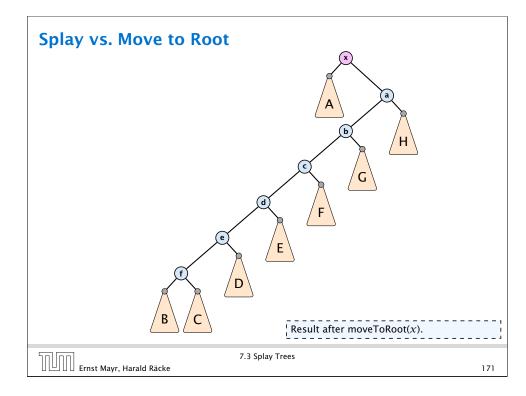
better option splay(x):

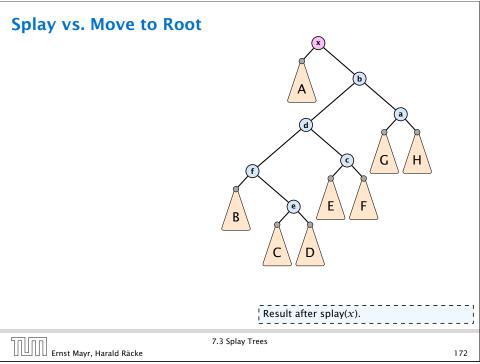
- zigzig case: if x is left child and parent of x is left child (or x right child, parent of x right child)
- do right roation around grand-parent followed by right rotation around parent (resp. left rotations)

Ernst Mayr, Harald Räcke

7.3 Splay Trees







Static Optimality

Suppose we have a sequence of m find-operations. find(x) appears h_x times in this sequence.

The cost of a static search tree *T* is:

$$cost(T) = m + \sum_{x} h_{x} \operatorname{depth}_{T}(x)$$

The total cost for processing the sequence on a splay-tree is $\mathcal{O}(\cos(T_{\min}))$, where T_{\min} is an optimal static search tree.

> $depth_T(x)$ is the number of edges on a path from the root of T to x. Theorem given without proof.

Ernst Mayr, Harald Räcke

7.3 Splay Trees

Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:

- the cost for accessing element x is 1 + depth(x);
- ▶ after accessing x the tree may be re-arranged through rotations;

Conjecture:

A splay tree that only contains elements from *S* has cost $\mathcal{O}(\cot(A,S))$, for processing S.

Ernst Mayr, Harald Räcke

7.3 Splay Trees

174

Lemma 15

Splay Trees have an amortized running time of $O(\log n)$ for all operations.

Ernst Mayr, Harald Räcke

7.3 Splay Trees

175

Amortized Analysis

Definition 16

A data structure with operations $op_1(), \ldots, op_k()$ has amortized running times t_1, \ldots, t_k for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most n elements. and let k_i denote the number of occurrences of $op_i()$ within this sequence. Then the actual running time must be at most $\sum_i k_i \cdot t_i(n)$.

Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- ► Amortized cost of the *i*-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) .$$

▶ Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

Ernst Mayr, Harald Räcke

$$\sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

Example: Stack

Stack

- ► S. push()
- ► S. pop()
- \triangleright S. multipop(k): removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- ▶ The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- S. push(): cost 1.
- **S.** pop(): cost 1.
- S. multipop(k): cost min{size, k} = k.

Ernst Mayr, Harald Räcke

7.3 Splay Trees

178

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine *n*-bits, and maybe change them.

Actual cost:

- ► Changing bit from 0 to 1: cost 1.
- ▶ Changing bit from 1 to 0: cost 1.
- ▶ Increment: cost is k+1, where k is the number of consecutive ones in the least significant bit-positions (e.g., 001101 has k = 1).

Example: Stack

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

• *S.* push(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2$$
.

► **S.** pop(): cost

$$\hat{C}_{pop} = C_{pop} + \Delta \Phi = 1 - 1 \le 0.$$

Note that the analysis becomes wrong if pop() or multipop() are called on an empty stack.

 \triangleright S. multipop(k): cost

$$\hat{C}_{\text{mp}} = C_{\text{mp}} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$$
.

7.3 Splay Trees

179

Example: Binary Counter

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

► Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 .$$

► Changing bit from 1 to 0:

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0$$
.

▶ Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k $(1 \rightarrow 0)$ -operations, and one $(0 \rightarrow 1)$ -operation.

Hence, the amortized cost is $k\hat{C}_{1\rightarrow 0} + \hat{C}_{0\rightarrow 1} \leq 2$.

Splay Trees

potential function for splay trees:

- ightharpoonup size $s(x) = |T_x|$
- ightharpoonup rank $r(x) = \log_2(s(x))$
- $\Phi(T) = \sum_{v \in T} r(v)$

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1 plus the number of rotations.

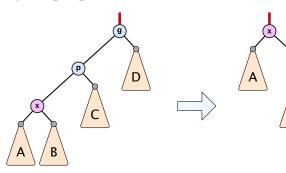
Ernst Mayr, Harald Räcke

7.3 Splay Trees

Last inequality follows

from next slide.

Splay: Zigzig Case



$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

$$= r'(p) + r'(g) - r(x) - r(p)$$

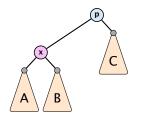
$$\leq r'(x) + r'(g) - r(x) - r(x)$$

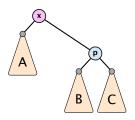
$$= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x)$$

$$= -2r'(x) + r'(g) + r(x) + 3(r'(x) - r(x))$$

$$\leq -2 + 3(r'(x) - r(x)) \Rightarrow cost_{zigzig} \leq 3(r'(x) - r(x))$$

Splay: Zig Case





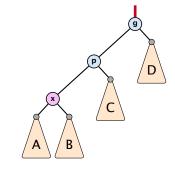
$$\Delta\Phi = r'(x) + r'(p) - r(x) - r(p)$$
$$= r'(p) - r(x)$$
$$\leq r'(x) - r(x)$$

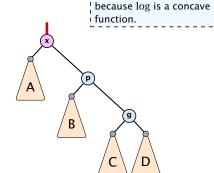
$$cost_{ziq} \le 1 + 3(r'(x) - r(x))$$

7.3 Splay Trees

The last inequality holds

Splay: Zigzig Case





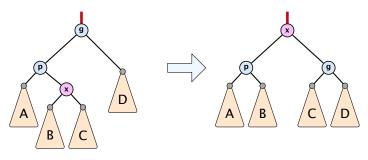
$$\frac{1}{2} \left(r(x) + r'(g) - 2r'(x) \right)$$

$$= \frac{1}{2} \left(\log(s(x)) + \log(s'(g)) - 2\log(s'(x)) \right)$$

$$= \frac{1}{2} \log \left(\frac{s(x)}{s'(x)} \right) + \frac{1}{2} \log \left(\frac{s'(g)}{s'(x)} \right)$$

$$\leq \log \left(\frac{1}{2} \frac{s(x)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)} \right) \leq \log \left(\frac{1}{2} \right) = -1$$

Splay: Zigzag Case



$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

$$= r'(p) + r'(g) - r(x) - r(p)$$

$$\leq r'(p) + r'(g) - r(x) - r(x)$$

$$= r'(p) + r'(g) - 2r'(x) + 2r'(x) - 2r(x)$$

$$\leq -2 + 2(r'(x) - r(x)) \Rightarrow cost_{zigzag} \leq 3(r'(x) - r(x))$$

Ernst Mayr, Harald Räcke

7.3 Splay Trees

185

Amortized cost of the whole splay operation:

$$\leq 1 + 1 + \sum_{\text{steps } t} 3(r_t(x) - r_{t-1}(x))$$

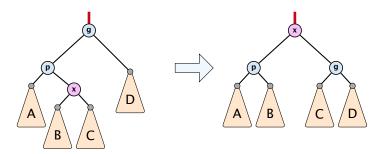
$$= 2 + r(\text{root}) - r_0(x)$$

$$\leq \mathcal{O}(\log n)$$

The first one is added due to the fact that so far for each step of a splay-operation we have only counted the number of rotations, but the cost is 1+#rotations.

The second one comes from the zig-operation. Note that we ! have at most one zig-operation during a splay.

Splay: Zigzag Case



$$\frac{1}{2} \Big(r'(p) + r'(g) - 2r'(x) \Big)
= \frac{1}{2} \Big(\log(s'(p)) + \log(s'(g)) - 2\log(s'(x)) \Big)
\leq \log\Big(\frac{1}{2} \frac{s'(p)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)} \Big) \leq \log\Big(\frac{1}{2} \Big) = -1$$

Ernst Mayr, Harald Räcke

7.3 Splay Trees

185

Splay Trees

Bibliography

Ernst Mayr, Harald Räcke

7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

- ► Insert(x): insert element x.
- **Search**(k): search for element with key k.
- **Delete**(x): delete element referenced by pointer x.
- find-by-rank(ℓ): return the ℓ -th element; return "error" if the data-structure contains less than \(\ell \) elements.

Augment an existing data-structure instead of developing a new one.

||∐||||| Ernst Mayr, Harald Räcke

7.4 Augmenting Data Structures

187

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

- 1. We choose a red-black tree as the underlying data-structure.
- 2. We store in each node v the size of the sub-tree rooted at v.
- 3. We need to be able to update the size-field in each node without asymptotically affecting the running time of insert, delete, and search. We come back to this step later...

7.4 Augmenting Data Structures

How to augment a data-structure

- 1. choose an underlying data-structure
- 2. determine additional information to be stored in the underlying structure
- 3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
- 4. develop the new operations
- · Of course, the above steps heavily depend on each other. For example it makes no sense to choose additional information to be stored (Step 2), and later realize that either the information cannot be maintained efficiently (Step 3) or is not sufficient to support the new operations (Step 4).
- However, the above outline is a good way to describe/document a new data-structure.

Ernst Mayr, Harald Räcke

Ernst Mayr, Harald Räcke

7.4 Augmenting Data Structures

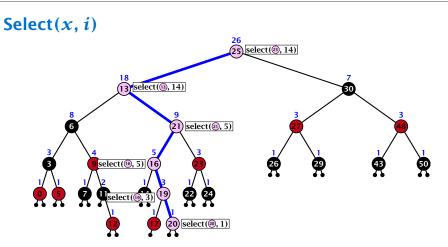
188

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

4. How does find-by-rank work? Find-by-rank(k) = Select(root,k) with

```
Algorithm 11 Select(x, i)
1: if x = \text{null} then return error
2: if left[x] \neq null then r \leftarrow left[x]. size +1 else r \leftarrow 1
3: if i = r then return x
4: if i < r then
         return Select(left[x], i)
6: else
        return Select(right[x], i - r)
```



Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

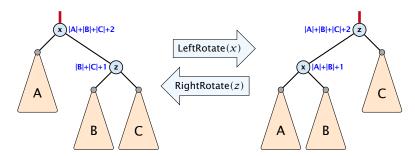
Ernst Mayr, Harald Räcke

7.4 Augmenting Data Structures

191

Rotations

The only operation during the fix-up procedure that alters the tree and requires an update of the size-field:



The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields of the children.

7.4 Augmenting Data Structures Ernst Mayr, Harald Räcke

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

Search(*k*): Nothing to do.

Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Delete(x): Directly after splicing out a node traverse the path from the spliced out node upwards, and decrease the size counter on every node on this path. Maintain the size field during rotations.

7.4 Augmenting Data Structures

192

Augmenting Data Structures

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to Algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009

See Chapter 14 of [CLRS90].

7.5 (a, b)-trees

Definition 17

For $b \ge 2a - 1$ an (a, b)-tree is a search tree with the following properties

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex v has at least a and at most *b* children
- 3. the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

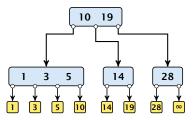
Ernst Mayr, Harald Räcke

7.5 (a, b)-trees

194

7.5 (a, b)-trees

Example 18



7.5 (a, b)-trees

Each internal node v with d(v) children stores d-1 keys k_1, \ldots, k_{d-1} . The *i*-th subtree of v fulfills

$$k_{i-1} < \text{key in } i\text{-th sub-tree } \leq k_i$$
 ,

where we use $k_0 = -\infty$ and $k_d = \infty$.

7.5 (a, b)-trees

195

7.5 (a, b)-trees

Variants

- ▶ The dummy leaf element may not exist; it only makes implementation more convenient.
- ▶ Variants in which b = 2a are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.
- ► A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- ▶ A B^* tree requires that a node is at least 2/3-full as opposed to 1/2-full (the requirement of a B-tree).

Lemma 19

Let T be an (a, b)-tree for n > 0 elements (i.e., n + 1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

- 1. $2a^{h-1} \le n+1 \le b^h$
- **2.** $\log_h(n+1) \le h \le 1 + \log_a(\frac{n+1}{2})$

Proof.

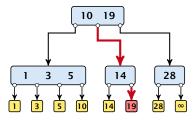
- ▶ If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2a^{h-1}$.
- ▶ Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h .

7.5 (a, b)-trees

198

Search

Search(19)



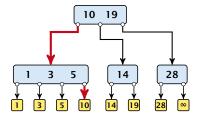
The search is straightforward. It is only important that you need to go all the way to the leaf.

7.5 (a, b)-trees

Time: $\mathcal{O}(b \cdot h) = \mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Search

Search(8)



The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $\mathcal{O}(b \cdot h) = \mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Ernst Mayr, Harald Räcke

7.5 (a, b)-trees

199

200

Insert

Insert element x:

Ernst Mayr, Harald Räcke

- Follow the path as if searching for key[x].
- If this search ends in leaf ℓ , insert x before this leaf.
- ► For this add key[x] to the key-list of the last internal node \boldsymbol{v} on the path.
- If after the insert v contains b nodes, do Rebalance(v).

Insert

Rebalance(v):

- Let k_i , i = 1, ..., b denote the keys stored in v.
- ▶ Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- Create two nodes v_1 , and v_2 . v_1 gets all keys k_1, \ldots, k_{i-1} and v_2 gets keys k_{i+1}, \ldots, k_b .
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- ▶ They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- ▶ The key k_i is promoted to the parent of v. The current pointer to v is altered to point to v_1 , and a new pointer (to the right of k_i) in the parent is added to point to v_2 .
- ► Then, re-balance the parent.

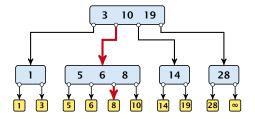
Ernst Mayr, Harald Räcke

7.5 (a, b)-trees

201

Insert

Insert(7)



Ernst Mayr, Harald Räcke

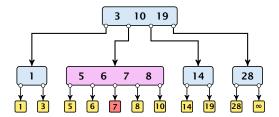
7.5 (a, b)-trees

202

202

Insert

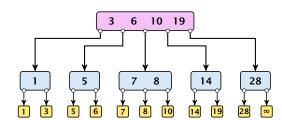
Insert(7)



7.5 (a, b)-trees

Insert

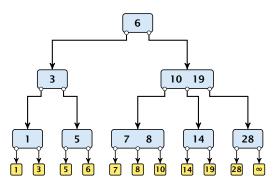
Insert(7)



7.5 (a, b)-trees

Insert

Insert(7)



| | | Ernst Mayr, Harald Räcke

7.5 (a, b)-trees

202

Delete

Delete element *x* (pointer to leaf vertex):

- Let v denote the parent of x. If key[x] is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x]in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- ▶ If now the number of keys in v is below a 1 perform Rebalance'(v).

Ernst Mayr, Harald Räcke

7.5 (a, b)-trees

203

Delete

Rebalance'(v):

- ightharpoonup If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- \blacktriangleright If not: merge v with one of its neighbours.
- ▶ The merged node contains at most (a-2) + (a-1) + 1keys, and has therefore at most $2a - 1 \le b$ successors.
- ► Then rebalance the parent.
- ▶ During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Delete

Animation for deleting in an (a,b)-tree is only available in the lecture version of the slides.

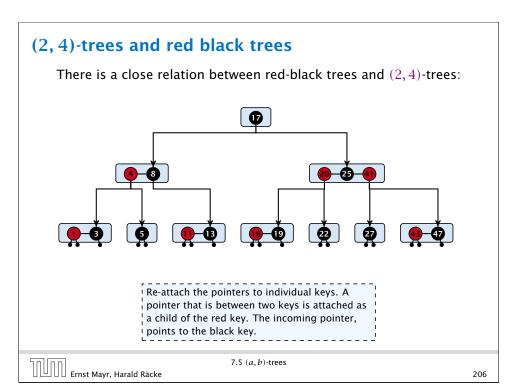
(2, 4)-trees and red black trees There is a close relation between red-black trees and (2, 4)-trees: 17 10 10 11 13 14 15 18 19 19 20 22 27 43 47 68 First make it into an internal search tree by

moving the satellite-data from the leaves to

7.5 (a, b)-trees

internal nodes. Add dummy leaves.

Ernst Mayr, Harald Räcke



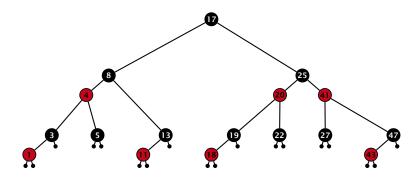
(2, 4)-trees and red black trees There is a close relation between red-black trees and (2, 4)-trees: Then, color one key in each internal node v black. If v contains 3 keys you need to select the middle key otherwise choose a black key arbitrarily. The other keys are colored red.

(2, 4)-trees and red black trees

Ernst Mayr, Harald Räcke

206

There is a close relation between red-black trees and (2,4)-trees:



Note that this correspondence is not unique. In particular, there are different red-black trees that correspond to the same (2,4)-tree.

7.5 (a, b)-trees

Ernst Mayr, Harald Räcke

206

Augmenting Data Structures

Bibliography

Kurt Mehlhorn, Peter Sanders:

Algorithms and Data Structures — The Basic Toolbox,

Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms (3rd ed.),

MIT Press and McGraw-Hill, 2009

A description of B-trees (a specific variant of (a, b)-trees) can be found in Chapter 18 of [CLRS90]. Chapter 7.2 of [MS08] discusses (a,b)-trees as discussed in the lecture.

Ernst Mayr, Harald Räcke

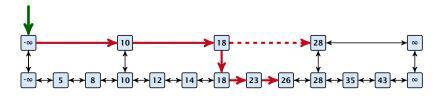
7.5 (a, b)-trees

207

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:



Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

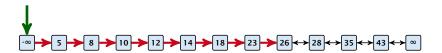
Worst case search time: $|L_1| + \frac{|L_0|}{|L_1|}$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- ▶ time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- \blacktriangleright time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$



Ernst Mayr, Harald Räcke

7.6 Skip Lists

207

7.6 Skip Lists

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x) $(k + 1 \text{ lists } L_0, \ldots, L_k)$

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At $\mathsf{most}\left[\frac{|L_{k-1}|}{|L_k|+1}\right] + 2 \mathsf{ steps}.$
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left[\frac{|L_{k-2}|}{|L_{k-1}|+1}\right] + 2$ steps.
- ▶ At most $|L_k| + \sum_{i=1}^k \frac{L_{i-1}}{L_i} + 3(k+1)$ steps.

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$
$$= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}$$
$$= (k+1)n^{\frac{1}{k+1}}.$$

Choosing $k = \Theta(\log n)$ gives a logarithmic running time.

7.6 Skip Lists

210

Ernst Mayr, Harald Räcke

211

7.6 Skip Lists

Insert:

- ► A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists $L_0, ..., L_{t-1}$.

Delete:

- ▶ You get all predecessors via backward pointers.
- ▶ Delete *x* in all lists it actually appears in.

The time for both operations is dominated by the search time.

🔲 📗 Ernst Mayr, Harald Räcke

7.6 Skip Lists

212

7.6 Skip Lists

7.6 Skip Lists

How to do insert and delete?

If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

Ernst Mayr, Harald Räcke

7.6 Skip Lists

Insert (35):

Ernst Mayr, Harald Räcke

7.6 Skip Lists

High Probability

Definition 20 (High Probability)

We say a **randomized** algorithm has running time $O(\log n)$ with high probability if for any constant α the running time is at most $\mathcal{O}(\log n)$ with probability at least $1 - \frac{1}{n^{\alpha}}$.

7.6 Skip Lists

Here the \mathcal{O} -notation hides a constant that may depend on α .

214

7.6 Skip Lists

Lemma 21

A search (and, hence, also insert and delete) in a skip list with n elements takes time O(logn) with high probability (w. h. p.).

High Probability

Suppose there are a polynomially many events E_1, E_2, \dots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the *i*-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$$

$$\geq 1 - n^c \cdot n^{-\alpha}$$

$$= 1 - n^{c - \alpha}.$$

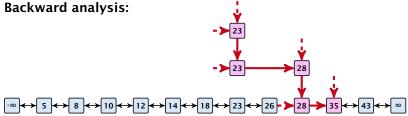
This means $Pr[E_1 \wedge \cdots \wedge E_\ell]$ holds with high probability.

7.6 Skip Lists

215

7.6 Skip Lists

Backward analysis:



At each point the path goes up with probability 1/2 and left with probability 1/2.

We show that w.h.p:

Ernst Mayr, Harald Räcke

- A "long" search path must also go very high.
- ▶ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k} = \frac{n \cdot \dots \cdot (n - k + 1)}{k!} \le \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}$$
$$= \left(\frac{n}{k}\right)^k \cdot \frac{k^k}{k!} \le \left(\frac{en}{k}\right)^k$$

Ernst Mayr, Harald Räcke

7.6 Skip Lists

218

7.6 Skip Lists

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2^{\beta}k}\right)^k \cdot n^{-\alpha}$$
$$\leq \left(\frac{2e(\beta + \alpha)}{2^{\beta}}\right)^k n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

$$\leq \left(\frac{42\alpha}{64^{\alpha}}\right)^k n^{-\alpha} \leq n^{-\alpha}$$

for $\alpha \geq 1$.

|| || || || Ernst Mayr, Harald Räcke

Let $E_{z,k}$ denote the event that a search path is of length z(number of edges) but does not visit a list above L_k .

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

7.6 Skip Lists

219

7.6 Skip Lists

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence.

Pr[search requires z steps]
$$\leq \Pr[E_{z,k}] + \Pr[A_{k+1}]$$

 $< n^{-\alpha} + n^{-(\gamma-1)}$

This means, the search requires at most z steps, w. h. p.

Skip Lists

Bibliography

[GT98] Michael T. Goodrich, Roberto Tamassia Data Structures and Algorithms in JAVA, John Wiley, 1998

Skip lists are covered in Chapter 7.5 of [GT98].

Ernst Mayr, Harald Räcke

7.6 Skip Lists

222

7.7 Hashing

Definitions:

- ▶ Universe *U* of keys, e.g., $U \subseteq \mathbb{N}_0$. *U* very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- ▶ Array T[0,...,n-1] hash-table.
- ▶ Hash function $h: U \rightarrow [0, ..., n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- ► Good distribution of elements over the whole table.

7.7 Hashing

Dictionary:

- S. insert(x): Insert an element x.
- S. delete(x): Delete the element pointed to by x.
- \triangleright S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.

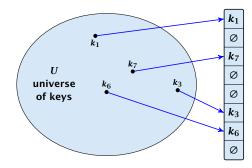
7.7 Hashing

222

Direct Addressing

Ernst Mayr, Harald Räcke

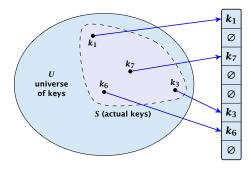
Ideally the hash function maps all keys to different memory locations.



This special case is known as Direct Addressing. It is usually very unrealistic as the universe of keys typically is guite large, and in particular larger than the available memory.

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.



Such a hash function h is called a perfect hash function for set S.

|||||||| Ernst Mayr, Harald Räcke

7.7 Hashing

225

227

Collisions

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \ge \omega(\sqrt{n})$.

Lemma 22

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$1 - e^{-\frac{m(m-1)}{2n}} \approx 1 - e^{-\frac{m^2}{2n}} .$$

Uniform hashing:

Choose a hash function uniformly at random from all functions $f: U \to [0, ..., n-1].$

$\left| igcup_{\parallel} ight| \left| igcup_{\parallel} ight|$ Ernst Mayr, Harald Räcke

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k_1, k_2 from the set S that map to the same memory location (i.e., $h(k_1) = h(k_2)$). This is called a collision.

7.7 Hashing

226

Collisions

Proof.

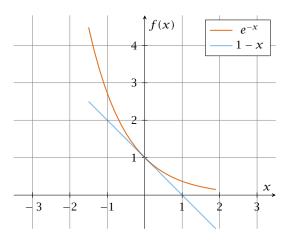
Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}} = e^{-\frac{m(m-1)}{2n}}.$$

Here the first equality follows since the ℓ -th element that is hashed has a probability of $\frac{n-\ell+1}{n}$ to not generate a collision under the condition that the previous elements did not induce collisions.

Collisions



The inequality $1 - x \le e^{-x}$ is derived by stopping the Taylor-expansion of e^{-x} after the second term.

|||||||| Ernst Mayr, Harald Räcke

7.7 Hashing

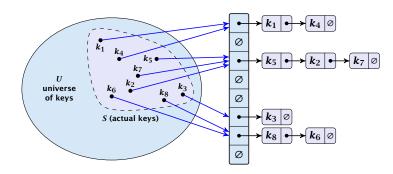
229

231

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

- \blacktriangleright Access: compute h(x) and search list for key[x].
- ▶ Insert: insert at the front of the list.



Resolving Collisions

The methods for dealing with collisions can be classified into the two main types

- open addressing, aka. closed hashing
- hashing with chaining, aka. closed addressing, open hashing.

There are applications e.g. computer chess where you do not resolve collisions at all.

7.7 Hashing

230

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- $ightharpoonup A^+$ denotes the average time for a **successful** search when using A;
- $ightharpoonup A^-$ denotes the average time for an **unsuccessful** search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha = \frac{m}{n}$. Hence, if A is the collision resolving strategy "Hashing with Chaining" we have

$$A^- = 1 + \alpha .$$

7.7 Hashing

233

Hashing with Chaining

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$

$$= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$

$$= 1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$

$$= 1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)$$

$$= 1+\frac{m-1}{2n}=1+\frac{\alpha}{2}-\frac{\alpha}{2m}.$$

Hence, the expected cost for a successful search is $A^+ \le 1 + \frac{\alpha}{2}$.

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before *k* in *k*'s list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

The expected successful search cost is

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$
cost for key k

Ernst Mayr, Harald Räcke

7.7 Hashing

234

Hashing with Chaining

Disadvantages:

- pointers increase memory requirements
- pointers may lead to bad cache efficiency

Advantages:

- no à priori limit on the number of elements
- deletion can be implemented efficiently
- by using balanced trees instead of linked list one can also obtain worst-case quarantees.

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the *j*-th step. The values $h(k,0),\ldots,h(k,n-1)$ must form a permutation of $0, \ldots, n-1$.

Search(k): Try position h(k, 0); if it is empty your search fails; otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your element there. If your search reaches h(k, n-1), and this slot is non-empty then your table is full.

Ernst Mayr, Harald Räcke

7.7 Hashing

237

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- ▶ Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 23

Let L be the method of linear probing for resolving collisions:

$$L^+ \approx \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$$

$$L^- \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right)$$

Open Addressing

Choices for h(k, j):

- Linear probing: $h(k,i) = h(k) + i \mod n$ (sometimes: $h(k, i) = h(k) + ci \mod n$).
- Quadratic probing: $h(k,i) = h(k) + c_1 i + c_2 i^2 \mod n$.
- Double hashing: $h(k,i) = h_1(k) + ih_2(k) \mod n$.

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing $h_2(k)$ must be relatively prime to n (teilerfremd); for quadratic probing c_1 and c_2 have to be chosen carefully).

7.7 Hashing

238

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 24

Ernst Mayr, Harald Räcke

Let Q be the method of quadratic probing for resolving collisions:

$$Q^+ \approx 1 + \ln\left(\frac{1}{1-\alpha}\right) - \frac{\alpha}{2}$$

$$Q^- \approx \frac{1}{1-\alpha} + \ln\left(\frac{1}{1-\alpha}\right) - \alpha$$

Double Hashing

▶ Any probe into the hash-table usually creates a cache-miss.

Lemma 25

Let A be the method of double hashing for resolving collisions:

$$D^+ \approx \frac{1}{\alpha} \ln \left(\frac{1}{1 - \alpha} \right)$$

$$D^- \approx \frac{1}{1-\alpha}$$

Ernst Mayr, Harald Räcke

7.7 Hashing

241

Open Addressing

Some values:

α	Linear Probing		Quadratic Probing		Double Hashing	
	L^+	L-	Q^+	Q^-	D^+	D -
0.5	1.5	2.5	1.44	2.19	1.39	2
0.9	5.5	50.5	2.85	11.40	2.55	10
0.95	10.5	200.5	3.52	22.05	3.15	20

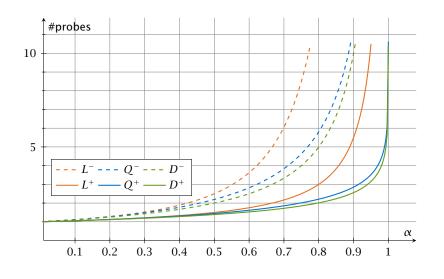
Ernst Mayr, Harald Räcke

7.7 Hashing

242

Open Addressing

Ernst Mayr, Harald Räcke



Analysis of Idealized Open Address Hashing

We analyze the time for a search in a very idealized Open Addressing scheme.

▶ The probe sequence h(k,0), h(k,1), h(k,2),... is equally likely to be any permutation of $(0, 1, \dots, n-1)$.

Analysis of Idealized Open Address Hashing

Let *X* denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the *i*-th probe occurs and is to a non-empty slot.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot Pr[A_{i-1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \dots \cdot \frac{m-i+2}{n-i+2}$$
$$\le \left(\frac{m}{n}\right)^{i-1} = \alpha^{i-1} .$$

Ernst Mayr, Harald Räcke

7.7 Hashing

245

Analysis of Idealized Open Address Hashing

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha}.$$

$$\frac{1}{1-\alpha}=1+\alpha+\alpha^2+\alpha^3+\dots$$

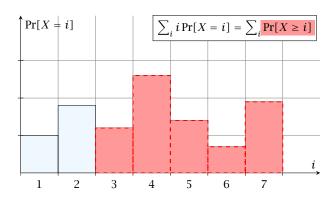
Ernst Mayr, Harald Räcke

7.7 Hashing

246

Analysis of Idealized Open Address Hashing

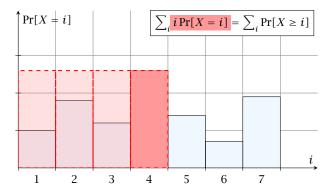
$$i = 3$$



The j-th rectangle appears in both sums j times. (j times in the first due to multiplication with j; and j times in the second for summands i = 1, 2, ..., j

Analysis of Idealized Open Address Hashing

i = 4



The j-th rectangle appears in both sums j times. (j times in the first due to multiplication with j; and j times in the second for summands $i = 1, 2, \dots, j$

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i+1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$

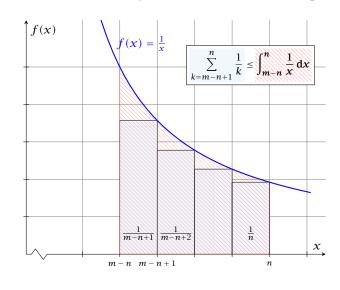
$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} dx = \frac{1}{\alpha} \ln \frac{n}{n-m} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha} .$$

Ernst Mayr, Harald Räcke

7.7 Hashing

248

Analysis of Idealized Open Address Hashing



Ernst Mayr, Harald Räcke

7.7 Hashing

249

Deletions in Hashtables

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.
- For open addressing this is difficult.

Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- ▶ The table could fill up with deleted-markers leading to bad performance.
- ▶ If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.

7.7 Hashing

Deletions for Linear Probing

- For Linear Probing one can delete elements without using deletion-markers.
- ▶ Upon a deletion elements that are further down in the probe-sequence may be moved to guarantee that they are still found during a search.

Ernst Mayr, Harald Räcke

7.7 Hashing

252

Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f: U \to [0, ..., n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

Universal hashing tries to define a set ${\mathcal H}$ of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from \mathcal{H} .

Deletions for Linear Probing

Algorithm 12 delete(p)

- 1: $T[p] \leftarrow \text{null}$
- 2: $p \leftarrow \operatorname{succ}(p)$
- 3: while $T[p] \neq \text{null do}$
- $\gamma \leftarrow T[p]$
- $T[p] \leftarrow \text{null}$
- $p \leftarrow \operatorname{succ}(p)$
- $insert(\gamma)$

p is the index into the table-cell that contains the object to be deleted.

Pointers into the hash-table become invalid.

7.7 Hashing

253

Universal Hashing

Definition 26

Ernst Mayr, Harald Räcke

A class \mathcal{H} of hash-functions from the universe U into the set $\{0,\ldots,n-1\}$ is called universal if for all $u_1,u_2\in U$ with $u_1\neq u_2$

$$\Pr[h(u_1) = h(u_2)] \leq \frac{1}{n} ,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

Note that this means that the probability of a collision between two arbitrary elements is at most $\frac{1}{n}$.

Universal Hashing

Definition 27

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \dots, n-1\}$ is called 2-independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in \{0, ..., n-1\}$ $\Pr[h(u) = t] = \frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_1, u_2 \in U$ with $u_1 \neq u_2$, and for any two hash-positions t_1, t_2 :

$$\Pr[h(u_1) = t_1 \land h(u_2) = t_2] \le \frac{1}{n^2} .$$

This requirement clearly implies a universal hash-function.

∏∐∏∏ Ernst Mayr, Harald Räcke

7.7 Hashing

256

Universal Hashing

Definition 29

A class \mathcal{H} of hash-functions from the universe U into the set $\{0,\ldots,n-1\}$ is called (μ,k) -independent if for any choice of $\ell \leq k$ distinct keys $u_1, \ldots, u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1, \ldots, t_ℓ :

$$\Pr[h(u_1) = t_1 \wedge \cdots \wedge h(u_\ell) = t_\ell] \leq \frac{\mu}{n^\ell} ,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

Universal Hashing

Definition 28

A class \mathcal{H} of hash-functions from the universe U into the set $\{0,\ldots,n-1\}$ is called *k*-independent if for any choice of $\ell \leq k$ distinct keys $u_1, \ldots, u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1, \ldots, t_ℓ :

$$\Pr[h(u_1) = t_1 \wedge \cdots \wedge h(u_{\ell}) = t_{\ell}] \leq \frac{1}{n\ell} ,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

7.7 Hashing

257

Universal Hashing

Let $U := \{0, ..., p-1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, ..., p-1\}$, and let $\mathbb{Z}_{p}^{*} := \{1, \dots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_n .

Define

$$h_{a,b}(x) := (ax + b \bmod p) \bmod n$$

Lemma 30

Ernst Mayr, Harald Räcke

The class

$$\mathcal{H} = \{ h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p \}$$

is a universal class of hash-functions from U to $\{0, \ldots, n-1\}$.

Universal Hashing

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

$$ax + b \not\equiv ay + b \pmod{p}$$

If
$$x \neq y$$
 then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with
$$a \not\equiv 0 \pmod{p}$$
 gives

$$a(x - y) \not\equiv 0 \pmod{p}$$

where we use that \mathbb{Z}_p is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).

7.7 Hashing

260

Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \neq 0$) and pairs (t_x, t_y) , $t_x \neq t_y$.

Therefore, we can view the first step (before the mod noperation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the mod n operation?

Fix a value t_x . There are p-1 possible values for choosing t_y .

From the range $0, \dots, p-1$ the values $t_x, t_x + n, t_x + 2n, \dots$ map to t_x after the modulo-operation. These are at most $\lceil p/n \rceil$ values.

Universal Hashing

▶ The hash-function does not generate collisions before the \pmod{n} -operation. Furthermore, every choice (a,b) is mapped to a different pair (t_x, t_y) with $t_x := ax + b$ and $t_{\mathcal{V}} := a_{\mathcal{V}} + b$.

This holds because we can compute a and b when given t_x and t_{ν} :

$$t_x \equiv ax + b \pmod{p}$$

$$t_{\mathcal{Y}} \equiv a\mathcal{Y} + b \qquad (\text{mod } p)$$

$$t_X - t_Y \equiv a(X - Y) \tag{mod } p)$$

$$t_{\mathcal{V}} \equiv a\mathcal{Y} + b \qquad (\text{mod } p)$$

$$a \equiv (t_x - t_y)(x - y)^{-1} \pmod{p}$$

$$b \equiv t_{\gamma} - a\gamma \tag{mod } p$$

Universal Hashing

Ernst Mayr, Harald Räcke

As $t_{\gamma} \neq t_{\chi}$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

possibilities for choosing t_{γ} such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$.

Universal Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

$$\frac{\left\lfloor \frac{p}{n} \right\rfloor^2}{p(p-1)} \le \Pr_{t_x \neq t_y \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_x \bmod n = h_1 \\ t_y \bmod n = h_2 \end{array} \right] \le \frac{\left\lceil \frac{p}{n} \right\rceil^2}{p(p-1)}$$

Note that the middle is the probability that $h(x) = h_1$ and $h(y) = h_2$. The total number of choices for (t_x, t_y) is p(p-1). The number of choices for t_x (t_y) such that $t_x \mod n = h_1$ $(t_y \mod n = h_2)$ lies between $\lfloor \frac{p}{n} \rfloor$ and $\lceil \frac{p}{n} \rceil$.

Ernst Mayr, Harald Räcke

7.7 Hashing

264

Universal Hashing

For the coefficients $\bar{a} \in \{0, \dots, q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\bar{a}}(x) = \left(\sum_{i=0}^{d} a_i x^i\right) \bmod q$$

The polynomial is defined by d+1 distinct points.

Universal Hashing

Definition 31

Let $d \in \mathbb{N}$; $q \ge (d+1)n$ be a prime; and let $\bar{a} \in \{0, ..., q-1\}^{d+1}$. Define for $x \in \{0, ..., q-1\}$

$$h_{\bar{a}}(x) := \left(\sum_{i=0}^d a_i x^i \bmod q\right) \bmod n$$
.

Let $\mathcal{H}_n^d := \{h_{\bar{a}} \mid \bar{a} \in \{0, \dots, q-1\}^{d+1}\}$. The class \mathcal{H}_n^d is (e, d+1)-independent.

Note that in the previous case we had d = 1 and chose $a_d \neq 0$.

7.7 Hashing

265

Universal Hashing

Fix $\ell \le d+1$; let $x_1, \dots, x_\ell \in \{0, \dots, q-1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let
$$A^{\ell}=\{h_{\bar{a}}\in\mathcal{H}\mid h_{\bar{a}}(x_i)=t_i \text{ for all } i\in\{1,\ldots,\ell\}\}$$

Then

$$h_{\tilde{a}} \in A^{\ell} \Leftrightarrow h_{\tilde{a}} = f_{\tilde{a}} \bmod n$$
 and

$$f_{\bar{a}}(x_i) \in \underbrace{\{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}}_{=:B_i}$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing d+1 points.

We first fix the values for inputs x_1, \ldots, x_ℓ . We have

$$|B_1|\cdot\ldots\cdot|B_\ell|$$

possibilities to do this (so that $h_{\bar{a}}(x_i) = t_i$).

 \bullet A^{ℓ} denotes the set of hashfunctions such that every x_i hits its pre-defined position

• B_i is the set of positions that $f_{\bar{a}}$ can hit so that $h_{\bar{a}}$ still hits

Universal Hashing

Now, we choose $d - \ell + 1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this.

Therefore we have

$$|B_1| \cdot \ldots \cdot |B_\ell| \cdot q^{d-\ell+1} \le \lceil \frac{q}{n} \rceil^\ell \cdot q^{d-\ell+1}$$

possibilities to choose \bar{a} such that $h_{\bar{a}} \in A_{\ell}$.

Ernst Mayr, Harald Räcke

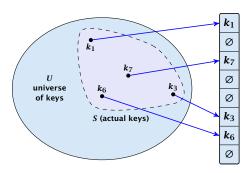
7.7 Hashing

268

270

Perfect Hashing

Suppose that we **know** the set *S* of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.



Universal Hashing

Therefore the probability of choosing $h_{\bar{a}}$ from A_{ℓ} is only

$$\frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \le \frac{\left(\frac{q+n}{n}\right)^{\ell}}{q^{\ell}} \le \left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\
\le \left(1 + \frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \le \frac{e}{n^{\ell}} .$$

This shows that the \mathcal{H} is (e, d+1)-universal.

The last step followed from $q \ge (d+1)n$, and $\ell \le d+1$.

7.7 Hashing

269

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n = m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Let m_i denote the number of items that are hashed to the j-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_i^2 . The second function can be chosen such that all elements are mapped to different locations.

Ernst Mayr, Harald Räcke

7.7 Hashing

272

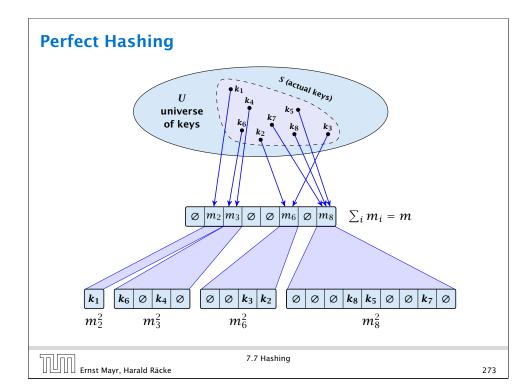
Perfect Hashing

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_i m_i^2)$. Note that m_i is a random variable.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} {m_{j} \choose 2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} {m_{j} \choose 2}\right] + E\left[\sum_{j} m_{j}\right]$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

$$= 2\binom{m}{2} \frac{1}{m} + m = 2m - 1 .$$



Perfect Hashing

We need only O(m) time to construct a hash-function h with $\sum_i m_i^2 = \mathcal{O}(4m)$, because with probability at least 1/2 a random function from a universal family will have this property.

Then we construct a hash-table h_i for every bucket. This takes expected time $\mathcal{O}(m_i)$ for every bucket. A random function h_i is collision-free with probability at least 1/2. We need $\mathcal{O}(m_i)$ to test this.

We only need that the hash-functions are chosen from a universal family!!!

Goal:

Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- ▶ Two hash-tables $T_1[0,...,n-1]$ and $T_2[0,...,n-1]$, with hash-functions h_1 , and h_2 .
- An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)].$
- ► A search clearly takes constant time if the above constraint is met.

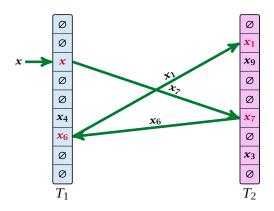
7.7 Hashing

276

278

Cuckoo Hashing

Insert:



Ernst Mayr, Harald Räcke

7.7 Hashing

277

Cuckoo Hashing

Algorithm 13 Cuckoo-Insert(x)

- 1: **if** $T_1[h_1(x)] = x \vee T_2[h_2(x)] = x$ then return
- 2: steps ← 1
- 3: **while** steps ≤ maxsteps **do**
- exchange x and $T_1[h_1(x)]$
- if x = null then return
- exchange x and $T_2[h_2(x)]$
- 7: if x = null then return
- $steps \leftarrow steps + 1$
- 9: rehash() // change hash-functions; rehash everything
- 10: Cuckoo-Insert(x)

Cuckoo Hashing

- ▶ We call one iteration through the while-loop a step of the algorithm.
- ▶ We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.
- ▶ We say a phase is successful if it is not terminated by the maxstep-condition, but the while loop is left because x = null.

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

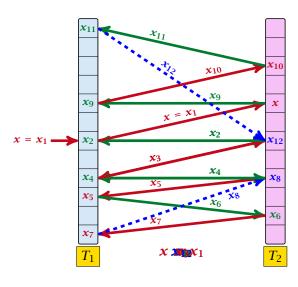
Formally what is the probability to enter an infinite loop that touches s different keys?

Ernst Mayr, Harald Räcke

7.7 Hashing

282

Cuckoo Hashing: Insert

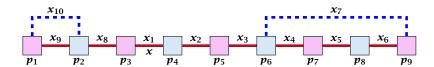


Ernst Mayr, Harald Räcke

7.7 Hashing

281

Cuckoo Hashing



A cycle-structure of size s is defined by

- ightharpoonup s-1 different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, \dots, x_s$, linking the cells.
- ▶ The leftmost cell is "linked forward" to some cell on the right.
- ▶ The rightmost cell is "linked backward" to a cell on the left.
- ightharpoonup One link represents key x; this is where the counting starts.

Cuckoo Hashing

A cycle-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_i from T_2) we have

$$h_1(x_\ell) = p_i$$
 and $h_2(x_\ell) = p_j$

Observation:

If during a phase the insert-procedure runs into a cycle there must exist an active cycle structure of size $s \ge 3$.

7.7 Hashing

What is the probability that all keys in a cycle-structure of size scorrectly map into their T_1 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ, s) -independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_2 is a (μ, s) -independent hash-function.

These events are independent.

Ernst Mayr, Harald Räcke

7.7 Hashing

Cuckoo Hashing

The number of cycle-structures of size *s* is at most

$$s^3 \cdot n^{s-1} \cdot m^{s-1}$$
.

- ightharpoonup There are at most s^2 possibilities where to attach the forward and backward links.
- ▶ There are at most *s* possibilities to choose where to place key x.
- ▶ There are m^{s-1} possibilities to choose the keys apart from χ .
- ▶ There are n^{s-1} possibilities to choose the cells.

Cuckoo Hashing

The probability that a given cycle-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

What is the probability that there exists an active cycle structure of size s?

Ernst Mayr, Harald Räcke

7.7 Hashing

Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$\sum_{s=3}^{\infty} s^{3} \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2s}} = \frac{\mu^{2}}{nm} \sum_{s=3}^{\infty} s^{3} \left(\frac{m}{n}\right)^{s}$$

$$\leq \frac{\mu^{2}}{m^{2}} \sum_{s=3}^{\infty} s^{3} \left(\frac{1}{1+\epsilon}\right)^{s} \leq \mathcal{O}\left(\frac{1}{m^{2}}\right) .$$

Here we used the fact that $(1 + \epsilon)m \le n$.

Hence,

$$\Pr[\mathsf{cycle}] = \mathcal{O}\left(\frac{1}{m^2}\right)$$
.

Now, we analyze the probability that a phase is not successful without running into a closed cycle.

Ernst Mayr, Harald Räcke

7.7 Hashing

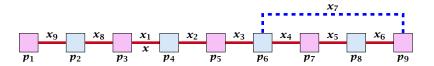
Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Lemma 32

If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.

Cuckoo Hashing



Sequence of visited keys:

$$x = x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_3, x_2, x_1 = x, x_8, x_9, \dots$$

7.7 Hashing

Cuckoo Hashing

Ernst Mayr, Harald Räcke

Taking $x_1 \rightarrow \cdots \rightarrow x_i$ twice, and $x_1 \rightarrow x_{i+1} \rightarrow \cdots x_i$ once gives $2i + (j - i + 1) = i + j + 1 \ge p + 2$ keys. Hence, one of the sequences contains at least (p+2)/3 keys.

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

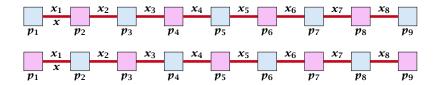
The sequence is of the form:

$$x = x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i \rightarrow x_r \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$$

As $r \le i - 1$ the length p of the sequence is

$$p = i + r + (j - i) \le i + j - 1$$
.

Either sub-sequence $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i$ or sub-sequence $x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_i$ has at least $\frac{p+2}{3}$ elements.



A path-structure of size s is defined by

- \triangleright s+1 different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, \dots, x_s$, linking the cells.
- ▶ The leftmost cell is either from T_1 or T_2 .

Ernst Mayr, Harald Räcke

7.7 Hashing

Cuckoo Hashing

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in s = (2t + 2)/3 gives

$$\leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t+2)/3-1} = 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} \ .$$

Cuckoo Hashing

A path-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_i from T_2) we have

$$h_1(x_\ell) = p_i$$
 and $h_2(x_\ell) = p_i$

Observation:

If a phase takes at least t steps without running into a cycle there must exist an active path-structure of size (2t + 2)/3.

> Note that we count complete steps. A search that touches 2t or 2t + 1 keys takes t steps.

Ernst Mayr, Harald Räcke

7.7 Hashing

293

Cuckoo Hashing

Ernst Mayr, Harald Räcke

We choose maxsteps $\geq 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

Pr[unsuccessful | no cycle]

- $\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{2}]$
- $\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1]$
- $\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1]$

$$\leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{\ell} \leq \frac{1}{m^2}$$

by choosing $\ell \ge \log\left(\frac{1}{2\mu^2m^2}\right)/\log\left(\frac{1}{1+\epsilon}\right) = \log\left(2\mu^2m^2\right)/\log\left(1+\epsilon\right)$

This gives $\max seps = \Theta(\log m)$. Note that the existence of a path structure of size larger than s implies the existence of a path structure of size exactly s.

So far we estimated

$$\Pr[\mathsf{cycle}] \le \mathcal{O}\left(\frac{1}{m^2}\right)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no} \; \mathsf{cycle}] \leq \mathcal{O}\Big(\frac{1}{m^2}\Big)$$

Observe that

$$Pr[successful] = Pr[no cycle] - Pr[unsuccessful | no cycle]$$

 $\geq c \cdot Pr[no cycle]$

for a suitable constant c > 0.

This is a very weak (and trivial) statement but still sufficient for our asymptotic analysis.

Ernst Mayr, Harald Räcke

7.7 Hashing

296

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

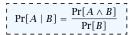
E[number of steps | phase successful]

$$= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps} \mid \text{phase successful}]$$

We have

Pr[search at least t steps | successful]

- = $Pr[search at least t steps \land successful] / <math>Pr[successful]$
- $\leq \frac{1}{2} \Pr[\text{search at least } t \text{ steps } \land \text{ successful}] / \Pr[\text{no cycle}]$
- $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{ no cycle}] / \Pr[\text{no cycle}]$
- $=\frac{1}{r} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}]$.



Cuckoo Hashing

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}]$$

$$\leq \frac{1}{c} \sum_{t>1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t>0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

$$= \frac{2\mu^2}{c(1+\epsilon)^{1/3}} \sum_{t>0} \left(\frac{1}{(1+\epsilon)^{2/3}}\right)^t = \mathcal{O}(1) \ .$$

This means the expected cost for a successful phase is constant (even after accounting for the cost of the incomplete step that finishes the phase).

Cuckoo Hashing

Ernst Mayr, Harald Räcke

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $p = O(1/m^2)$ (probability $\mathcal{O}(1/m^2)$ of running into a cycle and probability $\mathcal{O}(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires *m* insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p).$

Therefore the expected cost for re-hashes is $\mathcal{O}(m) \cdot \mathcal{O}(p) = \mathcal{O}(1)$.

Formal Proof

Let Y_i denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the m+1 insertions fails):

$$\Pr[Y_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p.$$

Let Z_i denote the event that the *i*-th rehash occurs:

$$\Pr[Z_i] \le \Pr[\wedge_{j=1}^{i-1} Y_j] \le p^{i-1}$$

Let X_i^s , $s \in \{1, ..., m+1\}$ denote the cost for inserting the s-th element during the *i*-th rehash (assuming *i*-th rehash occurs):

$$E[X_i^s] = E[steps \mid phase successful] \cdot Pr[phase successful] + maxsteps \cdot Pr[not successful] = \mathcal{O}(1)$$
.

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

Therefore, it is sufficient to have $(\mu, \Theta(\log m))$ -independent hash-functions.

The expected cost for all rehashes is

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$$

Note that Z_i is independent of X_i^s , $j \ge i$ (however, it is not independent of X_i^s , j < i). Hence,

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right] = \sum_{i}\sum_{s}E[Z_{i}] \cdot E[X_{s}^{i}]$$

$$\leq \mathcal{O}(1) \cdot \sum_{i}p^{i-1}$$

$$\leq \mathcal{O}(1) \cdot \frac{1}{1-p}$$

$$= \mathcal{O}(1) .$$

Ernst Mayr, Harald Räcke

7.7 Hashing

301

Cuckoo Hashing

Ernst Mayr, Harald Räcke

How do we make sure that $n \geq (1 + \epsilon)m$?

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n/4$ we divide n by 2 and do a rehash (table-shrink).
- ▶ Note that right after a change in table-size we have $m = \alpha n/2$. In order for a table-expand to occur at least $\alpha n/2$ insertions are required. Similar, for a table-shrink at least $\alpha n/4$ deletions must occur.
- ▶ Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

Lemma 33

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most $\frac{1}{2(1+\epsilon)}$.

The $1/(2(1+\epsilon))$ fill-factor comes from the fact that the total hash-table is of size 2n (because we have two tables of size n); moreover $m \leq 1$

🖳 📗 Ernst Mayr, Harald Räcke

7.7 Hashing

305

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- \triangleright S. build (x_1, \ldots, x_n) : Creates a data-structure that contains just the elements x_1, \ldots, x_n .
- S. insert(x): Adds element x to the data-structure.
- element S. minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- **boolean S. is-empty()**: Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

▶ S. merge(S'): $S := S \cup S'$; $S' := \emptyset$.

Hashing

Bibliography

Kurt Mehlhorn, Peter Sanders:

Algorithms and Data Structures — The Basic Toolbox

Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009

Chapter 4 of [MS08] contains a detailed description about Hashing with Linear Probing and Hashing with Chaining. Also the Perfect Hashing scheme can be found there.

The analysis of Hashing with Chaining under the assumption of uniform hashing can be found in Chapter 11.2 of [CLRS90]. Chapter 11.3.3 describes Universal Hashing. Collision resolution with Open Addressing is described in Chapter 11.4. Chapter 11.5 describes the Perfect Hashing scheme.

Reference for Cuckoo Hashing???

Ernst Mayr, Harald Räcke

7.7 Hashing

305

8 Priority Queues

An addressable Priority Queue also supports:

- **handle S. insert**(x): Adds element x to the data-structure. and returns a handle to the object for future reference.
- ► S. delete(h): Deletes element specified through handle h.
- \triangleright S. decrease-key(h, k): Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.

Dijkstra's Shortest Path Algorithm

```
Algorithm 14 Shortest-Path(G = (V, E, d), s \in V)
1: Input: weighted graph G = (V, E, d); start vertex s;
2: Output: key-field of every node contains distance from s;
3: S.build(); // build empty priority queue
 4: for all v \in V \setminus \{s\} do
          v.\ker \leftarrow \infty;
          h_v \leftarrow S.\mathsf{insert}(v);
7: s. \text{key} \leftarrow 0; S. \text{insert}(s);
 8: while S.is-empty() = false do
          v \leftarrow S.delete-min();
          for all x \in V s.t. (v, x) \in E do
10:
                if x. key > v. key +d(v,x) then
11:
12:
                       S.decrease-key(h_x, v. key +d(v, x));
13:
                       x. \text{key} \leftarrow v. \text{key} + d(v, x);
```

Ernst Mayr, Harald Räcke

8 Priority Oueues

307

Analysis of Dijkstra and Prim

Both algorithms require:

- ▶ 1 build() operation
- ▶ |V| insert() operations
- ▶ |V| delete-min() operations
- ▶ |V| is-empty() operations
- ▶ |E| decrease-key() operations

How good a running time can we obtain?

Ernst Mayr, Harald Räcke

Prim's Minimum Spanning Tree Algorithm

```
Algorithm 15 Prim-MST(G = (V, E, d), s \in V)
1: Input: weighted graph G = (V, E, d); start vertex s;
2: Output: pred-fields encode MST;
3: S.build(); // build empty priority queue
4: for all v \in V \setminus \{s\} do
          v.\text{key} \leftarrow \infty;
          h_v \leftarrow S.insert(v);
7: s. \text{key} \leftarrow 0; S. \text{insert}(s);
8: while S.is-empty() = false do
          v \leftarrow S. delete-min():
10:
          for all x \in V s.t. \{v, x\} \in E do
                if x. key > d(v,x) then
11:
12:
                      S.decrease-key(h_x,d(v,x));
13:
                      x. key \leftarrow d(v, x);
                      x. pred \leftarrow v;
14:
```

Ernst Mayr, Harald Räcke

8 Priority Oueues

308

8 Priority Queues

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use **build()** only to create an empty heap which then costs time 1.

* Fibonacci heaps only give an amortized guarantee.

1** The standard version of binary heaps is not addressable. Hence, it does not support a delete.

8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time $\mathcal{O}((|V| + |E|)\log|V|)$.

Using Fibonacci Heaps, Prim and Dijkstra run in time $\mathcal{O}(|V|\log|V|+|E|)$.

Ernst Mayr, Harald Räcke

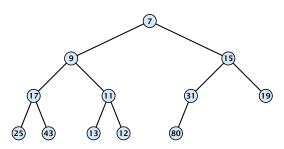
8 Priority Queues

311

313

8.1 Binary Heaps

- ▶ Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- ▶ Heap property: A node's key is not larger than the key of one of its children.



Ernst Mayr, Harald Räcke

8.1 Binary Heaps

312

Binary Heaps

Operations:

- **minimum()**: return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): check whether root-pointer is null. Time $\mathcal{O}(1)$.

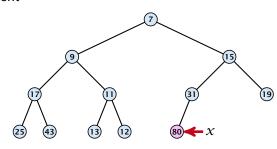
8.1 Binary Heaps

Maintain a pointer to the last element x.

We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$.

go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element



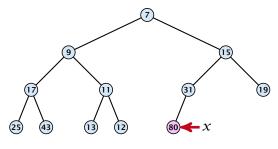
8.1 Binary Heaps

8.1 Binary Heaps

8.1 Binary Heaps

Maintain a pointer to the last element x.

- \blacktriangleright We can compute the successor of x(last element when an element is inserted) in time $O(\log n)$. go up until the last edge used was a left edge. go right; go left until you reach a null-pointer. if you hit the root on the way up, go to the leftmost
 - element; insert a new element as a left child;



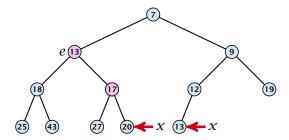
Ernst Mayr, Harald Räcke

8.1 Binary Heaps

315

Delete

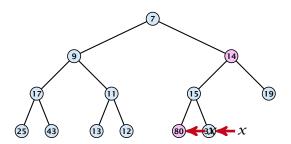
- 1. Exchange the element to be deleted with the element e pointed to by x.
- **2.** Restore the heap-property for the element *e*.



At its new position *e* may either travel up or down in the tree (but not both directions).

Insert

- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



Note that an exchange can either be done by moving the data or by changing pointers. The latter method leads to an addressable priority queue.

Ernst Mayr, Harald Räcke

8.1 Binary Heaps

316

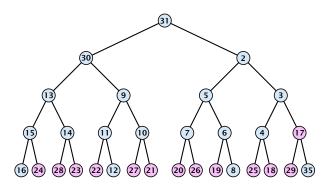
Binary Heaps

Operations:

- **minimum()**: return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): check whether root-pointer is null. Time $\mathcal{O}(1)$.
- insert(k): insert at successor of x and bubble up. Time $\mathcal{O}(\log n)$.
- delete(h): swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.

Build Heap

We can build a heap in linear time:



$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \sum_{i} i 2^{h-i} = \mathcal{O}(2^h) = \mathcal{O}(n)$$

Ernst Mayr, Harald Räcke

8.1 Binary Heaps

319

Binary Heaps

The standard implementation of binary heaps is via arrays. Let $A[0,\ldots,n-1]$ be an array

- ▶ The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of *i*-th element is at position 2i + 1.
- ▶ The right child of *i*-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don't maintain their positions and therefore there are no stable handles.

Binary Heaps

Operations:

- **minimum():** Return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): Check whether root-pointer is null. Time $\mathcal{O}(1)$.
- ▶ **insert**(k): Insert at x and bubble up. Time $O(\log n)$.
- delete(h): Swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.
- **build** (x_1, \ldots, x_n) : Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time $\mathcal{O}(n)$.

8.1 Binary Heaps

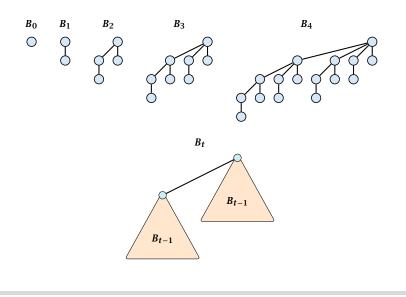
320

8.2 Binomial Heaps

Ernst Mayr, Harald Räcke

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	log n	1

Binomial Trees



8.2 Binomial Heaps

323

Binomial Trees

Properties of Binomial Trees

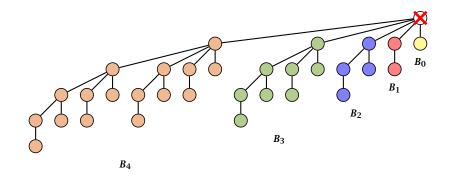
- ▶ B_k has 2^k nodes.
- $ightharpoonup B_k$ has height k.
- ▶ The root of B_k has degree k.
- ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- ▶ Deleting the root of B_k gives trees B_0, B_1, \dots, B_{k-1} .

Ernst Mayr, Harald Räcke

8.2 Binomial Heaps

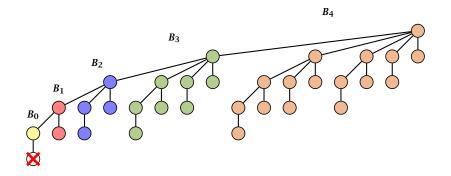
Binomial Trees

Ernst Mayr, Harald Räcke



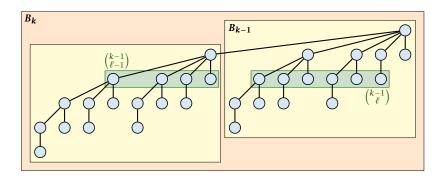
Deleting the root of B_5 leaves sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 .

Binomial Trees



Deleting the leaf furthest from the root (in B_5) leaves a path that connects the roots of sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 .

Binomial Trees



The number of nodes on level ℓ in tree B_k is therefore

$$\begin{pmatrix} k-1\\ \ell-1 \end{pmatrix} + \begin{pmatrix} k-1\\ \ell \end{pmatrix} = \begin{pmatrix} k\\ \ell \end{pmatrix}$$

Ernst Mayr, Harald Räcke

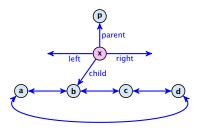
8.2 Binomial Heaps

327

8.2 Binomial Heaps

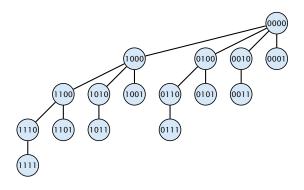
How do we implement trees with non-constant degree?

- ▶ The children of a node are arranged in a circular linked list.
- ▶ A child-pointer points to an arbitrary node within the list.
- ▶ A parent-pointer points to the parent node.
- \triangleright Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x).



8.2 Binomial Heaps

Binomial Trees



The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_n, \ldots, b_1, b_0 is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.

Ernst Mayr, Harald Räcke

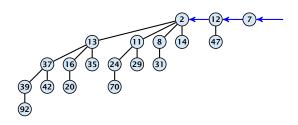
8.2 Binomial Heaps

328

8.2 Binomial Heaps

- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- ▶ We can add a child-tree *T* to a node *x* in constant time if we are given a pointer to x and a pointer to the root of T.

Binomial Heap



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .

|||||||| Ernst Mayr, Harald Räcke

8.2 Binomial Heaps

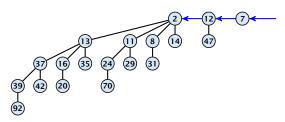
331

333

Binomial Heap

Properties of a heap with n keys:

- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ▶ Hence, at most $|\log n| + 1$ trees.
- ▶ The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- ▶ The trees are stored in a single-linked list; ordered by dimension/size.



Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_{i} 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n.

8.2 Binomial Heaps

332

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

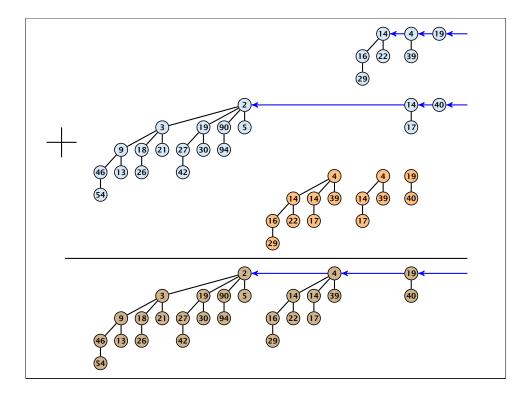
Note that we do not just do a concatenation as we want to keep the trees in the list sorted according to size.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous to binary addition.

8.2 Binomial Heaps



8.2 Binomial Heaps

All other operations can be reduced to merge().

S. insert(x):

- ▶ Create a new heap S' that contains just the element x.
- **Execute** S. merge(S').
- ▶ Time: $O(\log n)$.

8.2 Binomial Heaps

S_1 . merge(S_2):

- Analogous to binary addition.
- ▶ Time is proportional to the number of trees in both heaps.
- ▶ Time: $O(\log n)$.

337

8.2 Binomial Heaps

336

8.2 Binomial Heaps

S. minimum():

- Find the minimum key-value among all roots.
- ▶ Time: $O(\log n)$.

8.2 Binomial Heaps

8.2 Binomial Heaps
Ernst Mayr, Harald Räcke

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- ightharpoonup Remove the corresponding tree T_{\min} from the heap.
- ightharpoonup Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- ightharpoonup Compute S. merge(S').
- ▶ Time: $\mathcal{O}(\log n)$.

Ernst Mayr, Harald Räcke

8.2 Binomial Heaps

339

8.2 Binomial Heaps

S. decrease-key(handle *h*):

- ightharpoonup Decrease the key of the element pointed to by h.
- ▶ Bubble the element up in the tree until the heap property is fulfilled.
- ▶ Time: $\mathcal{O}(\log n)$ since the trees have height $\mathcal{O}(\log n)$.

Ernst Mayr, Harald Räcke

8.2 Binomial Heaps

340

8.2 Binomial Heaps

S. delete(handle h):

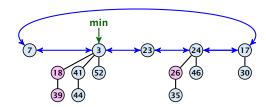
- ▶ Execute *S*. decrease-key(h, $-\infty$).
- ► Execute S. delete-min().
- ▶ Time: $O(\log n)$.

8.3 Fibonacci Heaps

Ernst Mayr, Harald Räcke

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.



8.3 Fibonacci Heaps

Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x. marked that specifies whether x is marked or not.

Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

343

8.3 Fibonacci Heaps

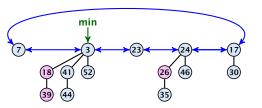
We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use c to denote the amount of work that a unit of potential can pay for.

8.3 Fibonacci Heaps

The potential function:

- \blacktriangleright t(S) denotes the number of trees in the heap.
- $\rightarrow m(S)$ denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.



The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

8.3 Fibonacci Heaps

344

8.3 Fibonacci Heaps

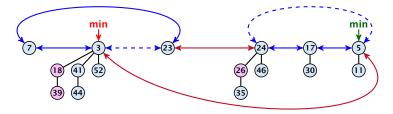
S. minimum()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ightharpoonup Amortized cost $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. merge(S')

- Merge the root lists.
- Adjust the min-pointer
- In the figure below the dashed edges are replaced by red edges.
- The minimum of the left heap becomes the new minimum of the merged heap.



Running time:

- ightharpoonup Actual cost $\mathcal{O}(1)$.
- ▶ No change in potential.
- ▶ Hence, amortized cost is $\mathcal{O}(1)$.

Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

347

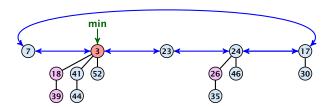
349

8.3 Fibonacci Heaps

 $D(\min)$ is the number of children of the node that stores the minimum.

S. delete-min(x)

- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.

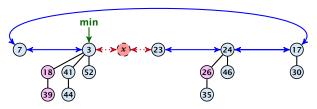


8.3 Fibonacci Heaps

x is inserted next to the min-pointer as this is our entry point into the root-list.

S. insert(x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.



Running time:

- ▶ Actual cost $\mathcal{O}(1)$.
- \triangleright Change in potential is +1.
- Amortized cost is c + O(1) = O(1).

8.3 Fibonacci Heaps

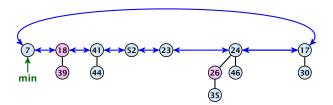
348

8.3 Fibonacci Heaps

 $D(\min)$ is the number of children of the node that stores the minimum.

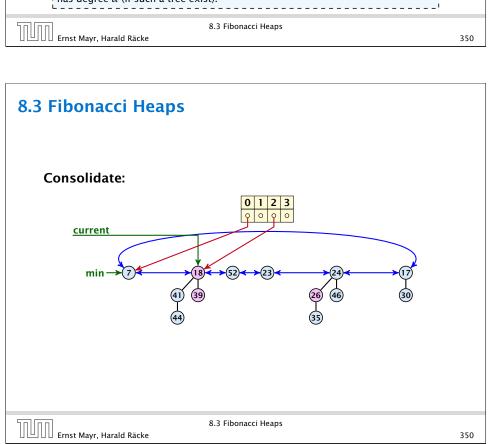
S. delete-min(x)

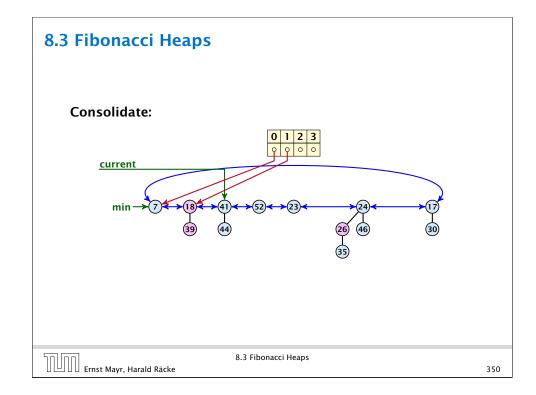
- Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.

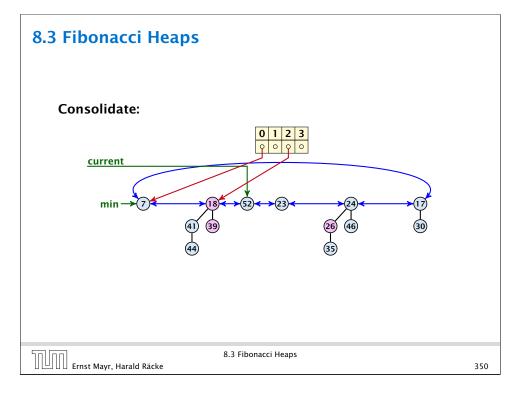


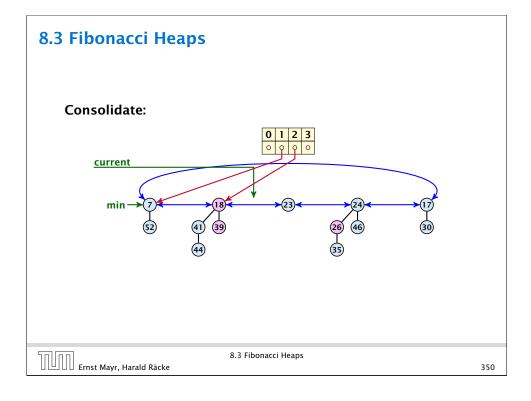
Consolidate root-list so that no roots have the same degree. Time $t \cdot \mathcal{O}(1)$ (see next slide).

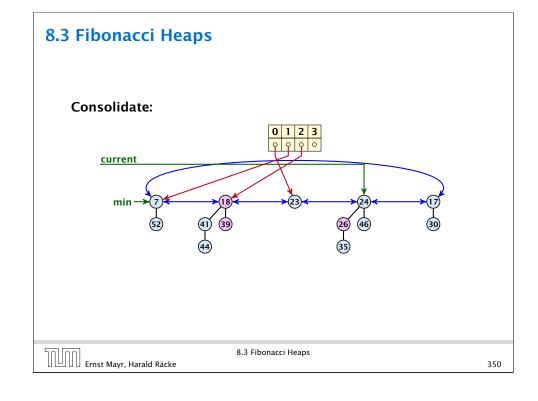
8.3 Fibonacci Heaps Consolidate: current During the consolidation we traverse the root list. Whenever we discover two trees that have the same degree we merge these trees. In order to efficiently † check whether two trees have the same degree, we use an array that contains † for every degree value d a pointer to a tree left of the current pointer whose root has degree d (if such a tree exist).

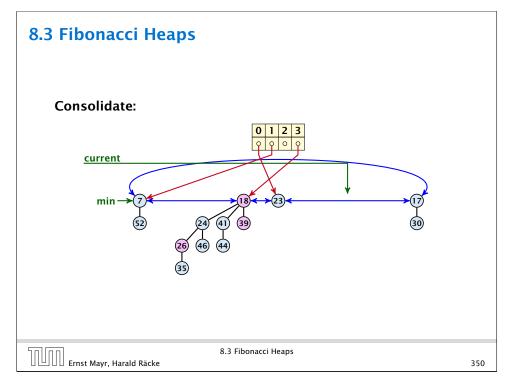


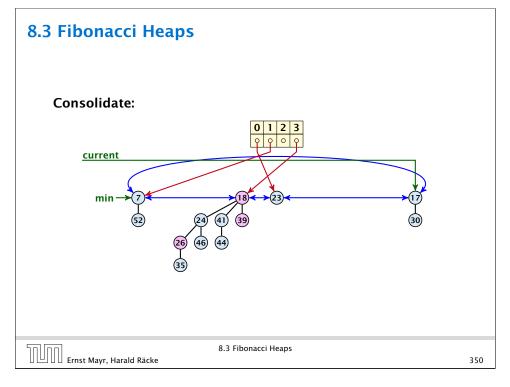






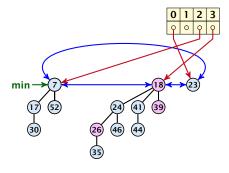






8.3 Fibonacci Heaps

Consolidate:



|||||||| Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

350

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

8.3 Fibonacci Heaps

t and t' denote the number of trees before and after the delete-min() operation, respectively. D_n is an upper bound on the degree (i.e., number of children) of a tree node.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- $t' \le D_n + 1$ as degrees are different after consolidating.
- ▶ Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (\mathbf{t} D_n 1)$ from the potential decrease.
- ▶ The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

$$\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$$

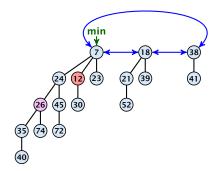
for $c \geq c_1$.

Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

351

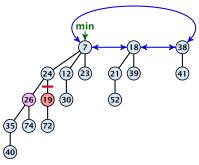
Fibonacci Heaps: decrease-key(handle h, v)



Case 1: decrease-key does not violate heap-property

▶ Just decrease the key-value of element referenced by h. Nothing else to do.

Fibonacci Heaps: decrease-key(handle h, v)



Case 2: heap-property is violated, but parent is not marked

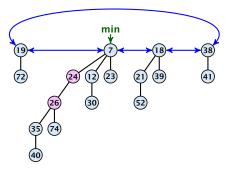
- \blacktriangleright Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- \blacktriangleright Mark the (previous) parent of x (unless it's a root).

||∐||||| Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

353

Fibonacci Heaps: decrease-key(handle h, v)



Case 2: heap-property is violated, but parent is not marked

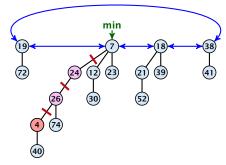
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

353

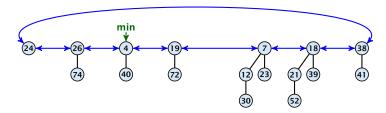
Fibonacci Heaps: decrease-key(handle h, v)



Case 3: heap-property is violated, and parent is marked

- ightharpoonup Decrease key-value of element x reference by h.
- ▶ Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- ▶ Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)



Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

8.3 Fibonacci Heaps

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- ightharpoonup Decrease key-value of element x reference by h.
- \triangleright Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- **Execute the following:**

 $p \leftarrow parent[x];$ while (p is marked)

! Marking a node can be viewed as a first step towards becoming a root. The first time x loses a child ! it is marked; the second time it loses a child it is made into a root.

 $pp \leftarrow parent[p];$

cut of p; make it into a root; unmark it;

 $p \leftarrow pp$;

if p is unmarked and not a root mark it:

8.3 Fibonacci Heaps

354

Delete node

H. delete(x):

- ▶ decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D_n)$

- \triangleright $\mathcal{O}(1)$ for decrease-key.
- $\triangleright \mathcal{O}(D_n)$ for delete-min.

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2 = \mathcal{O}(1)$$

if $c \ge c_2$.

t and t': number of trees before and after operation.

m and m': number of marked nodes before and after operation.

Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

355

8.3 Fibonacci Heaps

Lemma 34

Ernst Mayr, Harald Räcke

Let x be a node with degree k and let y_1, \dots, y_k denote the children of x in the order that they were linked to x. Then

$$degree(y_i) \ge \begin{cases} 0 & if i = 1\\ i - 2 & if i > 1 \end{cases}$$

The marking process is very important for the proof of this lemma. It ensures that a node can have lost at most one child since the last time it became a non-root node. When losing a first child the node gets marked: when losing the second child it is cut from the parent and made into a root.

8.3 Fibonacci Heaps

Proof

- When y_i was linked to x, at least y_1, \dots, y_{i-1} were already linked to x.
- ▶ Hence, at this time degree(x) $\geq i 1$, and therefore also $degree(y_i) \ge i - 1$ as the algorithm links nodes of equal degree only.
- \triangleright Since, then y_i has lost at most one child.
- ▶ Therefore, degree(γ_i) ≥ i-2.

Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

358

8.3 Fibonacci Heaps

 $\phi = \frac{1}{2}(1 + \sqrt{5})$ denotes the *golden ratio*. Note that $\phi^2 = 1 + \phi$.

Definition 35

Consider the following non-standard Fibonacci type sequence:

$$F_k = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

- 1. $F_k \geq \phi^k$.
- **2.** For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

∐|∐∐ Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$

$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

$$= 2 + \sum_{i=0}^{k-2} s_i$$

Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

k=0:
$$1 = F_0 \ge \Phi^0 = 1$$

k=1: $2 = F_1 \ge \Phi^1 \approx 1.61$
k-2,k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} \ge \Phi^{k-1} + \Phi^{k-2} = \Phi^{k-2}(\Phi + 1) = \Phi^k$

k=2:
$$3 = F_2 = 2 + 1 = 2 + F_0$$

k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$

Priority Queues

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.),

MIT Press and McGraw-Hill, 2009

Kurt Mehlhorn, Peter Sanders:

Algorithms and Data Structures — The Basic Toolbox,

Springer, 2008

Binary heaps are covered in [CLRS90] in combination with the heapsort algorithm in Chapter 6. Fibonacci heaps are covered in detail in Chapter 19. Problem 19-2 in this chapter introduces Binomial

Chapter 6 in [MS08] covers Priority Queues. Chapter 6.2.2 discusses Fibonacci heaps. Binomial heaps are dealt with in Exercise 6.11.

8.3 Fibonacci Heaps

|| | | | | | | | Ernst Mayr, Harald Räcke

362

363

9 Union Find

Applications:

- ► Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

9 Union Find

Union Find Data Structure P: Maintains a partition of disjoint sets over elements.

- \mathcal{P} . makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- \mathcal{P} . find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- \mathcal{P} . union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_{χ} and S_{γ} by $S_{\chi} \cup S_{\gamma}$ and returns an identifier for the new set.

9 Union Find

362

9 Union Find

```
Algorithm 16 Kruskal-MST(G = (V, E), w)
```

```
1: A ← Ø;
```

2: for all $v \in V$ do

 $v. set \leftarrow P. makeset(v. label)$

4: sort edges in non-decreasing order of weight w

5: **for all** $(u, v) \in E$ in non-decreasing order **do**

if \mathcal{P} . find(u. set) $\neq \mathcal{P}$. find(v. set) then

7: $A \leftarrow A \cup \{(u,v)\}$

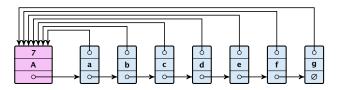
8: \mathcal{P} . union(u. set, v. set)

9 Union Find

9 Union Find

List Implementation

- ▶ The elements of a set are stored in a list; each node has a backward pointer to the head.
- ▶ The head of the list contains the identifier for the set and a field that stores the size of the set.



- ightharpoonup makeset(x) can be performed in constant time.
- $ightharpoonup \operatorname{find}(x)$ can be performed in constant time.

Ernst Mayr, Harald Räcke

9 Union Find

365

List Implementation

union(x, y)

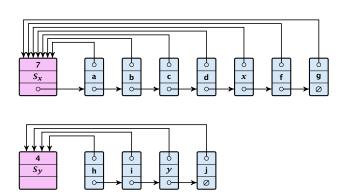
- ▶ Determine sets S_X and S_V .
- ▶ Traverse the smaller list (say S_{ν}), and change all backward pointers to the head of list S_x .
- ▶ Insert list $S_{\mathcal{V}}$ at the head of $S_{\mathcal{X}}$.
- Adjust the size-field of list S_x .
- ▶ Time: $\min\{|S_x|, |S_y|\}$.

Ernst Mayr, Harald Räcke

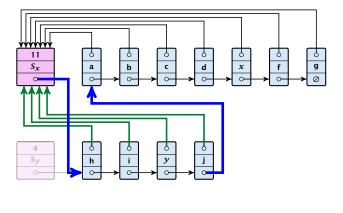
9 Union Find

366

List Implementation



List Implementation



Ernst Mayr, Harald Räcke

9 Union Find

List Implementation

Running times:

- \blacktriangleright find(x): constant
- ightharpoonup makeset(x): constant
- union(x, y): $\mathcal{O}(n)$, where n denotes the number of elements contained in the set system.

Ernst Mayr, Harald Räcke

9 Union Find

368

The Accounting Method for Amortized Time Bounds

- ▶ There is a bank account for every element in the data structure.
- ▶ Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- ▶ Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- ▶ If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

List Implementation

Lemma 36

The list implementation for the ADT union find fulfills the following amortized time bounds:

- find(x): $\mathcal{O}(1)$.
- ▶ makeset(x): $\mathcal{O}(\log n)$.
- union(x, y): $\mathcal{O}(1)$.

9 Union Find

369

List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- ▶ We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

371

List Implementation

makeset(x): The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $O(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

union(x, y):

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- ightharpoonup Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_x|$.
- ▶ Charge c to every element in set S_x .

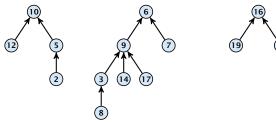
| | | Ernst Mayr, Harald Räcke

9 Union Find

372

Implementation via Trees

- Maintain nodes of a set in a tree.
- ▶ The root of the tree is the label of the set.
- ▶ Only pointer to parent exists; we cannot list all elements of a given set.
- Example:



Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.

List Implementation

Lemma 37

An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in x's set doubles. This can happen at most $\lfloor \log n \rfloor$ times.

9 Union Find

373

Implementation via Trees

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ightharpoonup Time: $\mathcal{O}(1)$.

find(x)

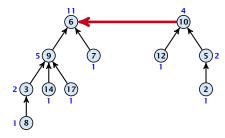
- Start at element x in the tree. Go upwards until you reach the root.
- ▶ Time: $\mathcal{O}(\text{level}(x))$, where level(x) is the distance of element x to the root in its tree. Not constant.

Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- \blacktriangleright link(a, b) attaches the smaller tree as the child of the larger.
- ▶ In addition it updates the size-field of the new root.



▶ Time: constant for link(a, b) plus two find-operations.

🖳 📗 Ernst Mayr, Harald Räcke

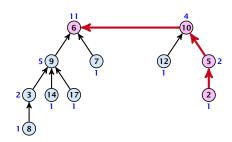
9 Union Find

376

Path Compression

find(x):

- ▶ Go upward until you find the root.
- ▶ Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



Note that the size-fields now only give an upper bound on the size of a sub-tree.

Implementation via Trees

Lemma 38

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

- \triangleright When we attach a tree with root c to become a child of a tree with root p, then $size(p) \ge 2 size(c)$, where sizedenotes the value of the size-field right after the operation.
- \blacktriangleright After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ▶ Hence, at any point in time a tree fulfills $size(p) \ge 2 size(c)$, for any pair of nodes (p, c), where p is a parent of c.

Ernst Mayr, Harald Räcke

9 Union Find

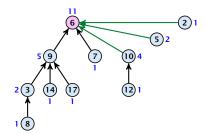
377

Path Compression

Ernst Mayr, Harald Räcke

find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



One could change the algorithm to update the size-fields. This could be done without asymptotically affecting the running time.

However, the only size-field that is actually required is the field at the root, which is always correct.

We will only use the other sizefields for the proof of Theorem 41.

Note that the size-fields now only give an upper bound on the size of a sub-tree.

Path Compression

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.

Ernst Mayr, Harald Räcke

9 Union Find

379

Amortized Analysis

Lemma 40

There are at most $n/2^s$ nodes of rank s.

Proof.

- Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.
- \blacktriangleright A node ν sees at most one node of rank s during the running time of the algorithm.
- ▶ This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.
- ▶ Hence, every node sees at most one rank s node, but every rank s node is seen by at least 2^s different nodes.

Amortized Analysis

Definitions:

 \rightarrow size(v) = the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v's subtree in the case that there are no find-operations.

- $ightharpoonup rank(v) = |\log(\operatorname{size}(v))|.$
- \rightarrow size $(v) \ge 2^{\operatorname{rank}(v)}$.

Lemma 39

The rank of a parent must be strictly larger than the rank of a child.

9 Union Find

380

Amortized Analysis

We define

tow(i) :=
$$\begin{cases} 1 & \text{if } i = 0 \\ 2^{\text{tow}(i-1)} & \text{otw.} \end{cases}$$
 tow(i) = $2^{2^{2^{2^2}}}$ i times

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\} .$$

Theorem 41

Union find with path compression fulfills the following amortized running times:

- ightharpoonup makeset(x) : $\mathcal{O}(\log^*(n))$
- $ightharpoonup find(x) : \mathcal{O}(\log^*(n))$
- ightharpoonup union(x, y): $\mathcal{O}(\log^*(n))$

Amortized Analysis

In the following we assume $n \ge 2$.

rank-group:

- ▶ A node with rank rank(v) is in rank group $\log^*(\operatorname{rank}(v))$.
- ▶ The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g - 1) + 1, ..., tow(g).
- ▶ The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \le \log^*(n) - 1$ (which holds for $n \ge 2$).
- \blacktriangleright Hence, the total number of rank-groups is at most $\log^* n$.

9 Union Find

383

385

Amortized Analysis

Observations:

- ▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) - 1$ times when increasing the rank-group).
- ightharpoonup After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- ightharpoonup After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ▶ The total charge made to a node in rank-group *g* is at most $tow(g) - tow(g - 1) - 1 \le tow(g)$.

Amortized Analysis

Accounting Scheme:

- create an account for every find-operation
- ightharpoonup create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent [v] as follows:

- ▶ If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

9 Union Find

384

Amortized Analysis

What is the total charge made to nodes?

► The total charge is at most

$$\sum_{g} n(g) \cdot \text{tow}(g) ,$$

where n(g) is the number of nodes in group g.

Amortized Analysis

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)}.$$

Hence.

$$\sum_{g} n(g) \operatorname{tow}(g) \le n(0) \operatorname{tow}(0) + \sum_{g \ge 1} n(g) \operatorname{tow}(g) \le n \log^*(n)$$

Ernst Mayr, Harald Räcke

9 Union Find

387

Amortized Analysis

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

Amortized Analysis

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

9 Union Find

388

Amortized Analysis

$$A(x,y) = \begin{cases} y+1 & \text{if } x = 0\\ A(x-1,1) & \text{if } y = 0\\ A(x-1,A(x,y-1)) & \text{otw.} \end{cases}$$

$$\alpha(m, n) = \min\{i \ge 1 : A(i, \lfloor m/n \rfloor) \ge \log n\}$$

- A(0, v) = v + 1
- $A(1, \nu) = \nu + 2$
- $A(2, \nu) = 2\nu + 3$
- $A(3, y) = 2^{y+3} 3$
- ► $A(4, y) = 2^{2^{2^2}}$ -3

390

Union Find

Bibliography

[CLRS90a] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest: Introduction to Algorithms (1st ed.),

MIT Press and McGraw-Hill, 1990

[CLRS90b] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to Algorithms (2nd ed.),

MIT Press and McGraw-Hill, 2001

[CLRS90c] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to Algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009

[AHU74] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:

The Design and Analysis of Computer Algorithms,

Addison-Wesley, 1974

Union find data structures are discussed in Chapter 21 of [CLRS90b] and [CLRS90c] and in Chapter 22 of [CLRS90a]. The analysis of union by rank with path compression can be found in [CLRS90a] but neither in [CLRS90b] in nor in [CLRS90c]. The latter books contains a more involved analysis that gives a better bound than $\mathcal{O}(\log^* n)$.

A description of the $\mathcal{O}(\log^*)$ -bound can also be found in Chapter 4.8 of [AHU74].

9 Union Find

391

The following slides are partially based on slides by Kevin Wayne.

Part IV

Flows and Cuts

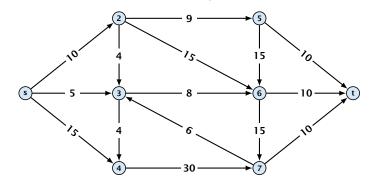
Ernst Mayr, Harald Räcke

391

10 Introduction

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- ▶ no edges entering *s* or leaving *t*;
- at least for now: no parallel edges;



10 Introduction

Ernst Mayr, Harald Räcke

Cuts

Definition 42

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

Definition 43

The capacity of a cut A is defined as

$$\operatorname{cap}(A, V \setminus A) := \sum_{e \in \operatorname{out}(A)} c(e)$$
,

where $\operatorname{out}(A)$ denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

10 Introduction

394

Flows

Definition 45

An (s,t)-flow is a function $f: E \mapsto \mathbb{R}^+$ that satisfies

1. For each edge *e*

$$0 \le f(e) \le c(e)$$
.

(capacity constraints)

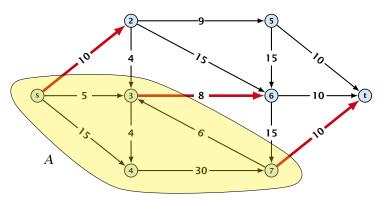
2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \text{out}(v)} f(e) = \sum_{e \in \text{into}(v)} f(e) .$$

(flow conservation constraints)

Cuts

Example 44



The capacity of the cut is $cap(A, V \setminus A) = 28$.

Ernst Mayr, Harald Räcke

10 Introduction

395

Flows

Definition 46

Ernst Mayr, Harald Räcke

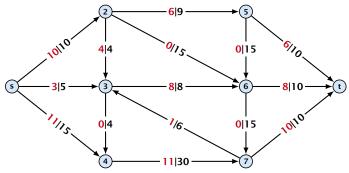
The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{e \in out(s)} f(e)$$
.

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

Flows

Example 47



The value of the flow is val(f) = 24.

Ernst Mayr, Harald Räcke

10 Introduction

398

400

Flows

Lemma 48 (Flow value lemma)

Let f be a flow, and let $A \subseteq V$ be an (s,t)-cut. Then the net-flow across the cut is equal to the amount of flow leaving s, i.e.,

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$
.

Ernst Mayr, Harald Räcke

10 Introduction

399

Proof.

$$val(f) = \sum_{e \in out(s)} f(e)$$

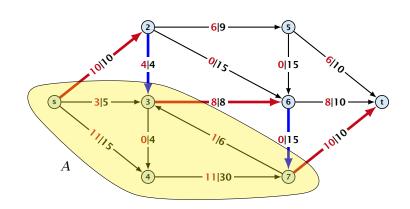
$$= \sum_{e \in out(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in out(v)} f(e) - \sum_{e \in in(v)} f(e) \right)$$

$$= \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$

The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

10 Introduction

Example 49



Corollary 50

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$val(f) = cap(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

$$cap(A, V \setminus A) < val(f')$$

$$= \sum_{e \in out(A)} f'(e) - \sum_{e \in into(A)} f'(e)$$

$$\leq \sum_{e \in out(A)} f'(e)$$

$$\leq cap(A, V \setminus A)$$

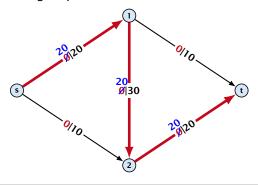
10 Introduction

402

11 Augmenting Path Algorithms

Greedy-algorithm:

- start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



Ernst Mayr, Harald Räcke

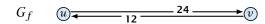
11.1 The Generic Augmenting Path Algorithm

403

The Residual Graph

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- ▶ Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.



Augmenting Path Algorithm

Definition 51

An augmenting path with respect to flow f, is a path from s to tin the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 1 FordFulkerson(G = (V, E, c))

- 1: Initialize $f(e) \leftarrow 0$ for all edges.
- 2: **while** \exists augmenting path p in G_f **do**
- augment as much flow along p as possible.

Augmenting Path Algorithm

Animation for augmenting path algorithms is only available in the lecture version of the slides.

Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

. . .

Augmenting Path Algorithm

1. ⇒ 2.

This we already showed.

$2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let *f* be a flow with no augmenting paths.
 - Let *A* be the set of vertices reachable from *s* in the residual graph along non-zero capacity edges.
- ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.

Augmenting Path Algorithm

Theorem 52

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 53

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- **2.** Flow f is a maximum flow.
- **3.** There is no augmenting path w.r.t. f.

11.1 The Generic Augmenting Path Algorithm

40

Augmenting Path Algorithm

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

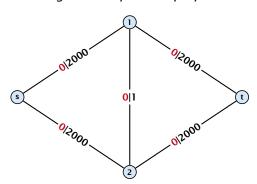
Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

410

A Bad Input

Problem: The running time may not be polynomial.



Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

Lemma 54

The algorithm terminates in at most $val(f^*) \leq nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of $\mathcal{O}(nmC)$.

Theorem 55

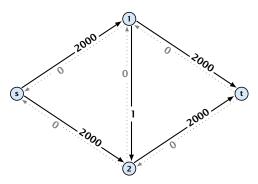
If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

A Bad Input

Problem: The running time may not be polynomial.



Question:

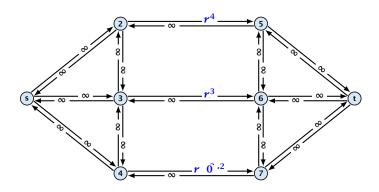
Can we tweak the algorithm so that the running time is polynomial in the input length?

> See the lecture-version of the slides for the animation.

11.1 The Generic Augmenting Path Algorithm Ernst Mayr, Harald Räcke

A Pathological Input

Let $r = \frac{1}{2}(\sqrt{5} - 1)$. Then $r^{n+2} = r^n - r^{n+1}$.



Running time may be infinite!!!

See the lecture-version of the slides for the animation.

||||||||| | Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

Overview: Shortest Augmenting Paths

Lemma 56

The length of the shortest augmenting path never decreases.

Lemma 57

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

11.2 Shortest Augmenting Paths

How to choose augmenting paths?

- We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 58

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. This gives a running time of $\mathcal{O}(m^2n)$.

Proof.

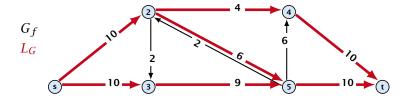
- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- $\mathcal{O}(m)$ augmentations for paths of exactly k < n edges.

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f .

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest s-u path in G_f if it is a an s-u path in L_G .



| | | Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

418

In the following we assume that the residual graph G_f does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

Shortest Augmenting Path

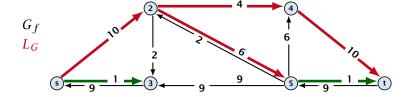
First Lemma:

The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:

- ▶ Bottleneck edges on the chosen path are deleted.
- ▶ Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.



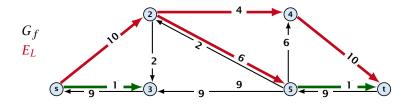
Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that uses edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .



Shortest Augmenting Paths

Theorem 59

The shortest augmenting path algorithm performs at most O(mn) augmentations. Each augmentation can be performed in time O(m).

Theorem 60 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn)augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow (why?).

11.2 Shortest Augmenting Paths

422

424

Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $O(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

423

Suppose that the initial distance between s and t in G_f is k.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_{L} .

Either you find t after at most n steps, or you end at a node vthat does not have any outgoing edges.

You can delete incoming edges of v from E_L .

11.2 Shortest Augmenting Paths

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between \emph{s} and \emph{t} strictly increases.

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2)$.

Ernst Mayr, Harald Räcke

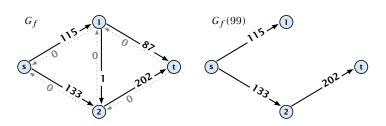
11.2 Shortest Augmenting Paths

426

Capacity Scaling

Intuition:

- ► Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- ▶ Don't worry about finding the exact bottleneck.
- \blacktriangleright Maintain scaling parameter $\Delta.$
- ▶ $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .



How to choose augmenting paths?

- We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Ernst Mayr, Harald Räcke

11.3 Capacity Scaling

427

Capacity Scaling

9: return f

```
Algorithm 2 maxflow(G, s, t, c)

1: foreach e \in E do f_e \leftarrow 0;

2: \Delta \leftarrow 2^{\lceil \log_2 C \rceil}

3: while \Delta \geq 1 do

4: G_f(\Delta) \leftarrow \Delta-residual graph

5: while there is augmenting path P in G_f(\Delta) do

6: f \leftarrow \text{augment}(f, c, P)

7: update(G_f(\Delta))

8: \Delta \leftarrow \Delta/2
```

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- **because of integrality we have** $G_f(1) = G_f$
- ▶ therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

11.3 Capacity Scaling

Capacity Scaling

Lemma 63

There are at most 2m augmentations per scaling-phase.

Proof:

- ▶ Let *f* be the flow at the end of the previous phase.
- $ightharpoonup val(f^*) \le val(f) + 2m\Delta$
- **Each** augmentation increases flow by Δ .

Theorem 64

We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $\mathcal{O}(m^2 \log C)$.

Capacity Scaling

Lemma 61

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

Lemma 62

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + m\Delta$.

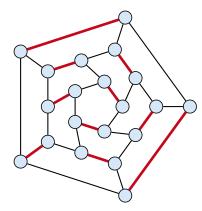
Proof: less obvious, but simple:

- ▶ There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- ▶ In G_f this cut can have capacity at most $m\Delta$.
- ▶ This gives me an upper bound on the flow that I can still add.

11.3 Capacity Scaling

Matching

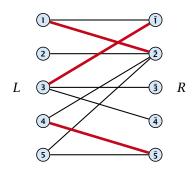
- ▶ Input: undirected graph G = (V, E).
- $ightharpoonup M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



11.3 Capacity Scaling

Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Ernst Mayr, Harald Räcke

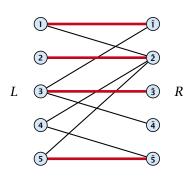
12.1 Matching

434

436

Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- $ightharpoonup M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

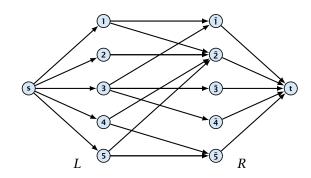


Ernst Mayr, Harald Räcke

12.1 Matching

Maxflow Formulation

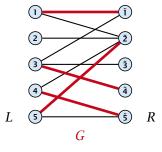
- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- ▶ Direct all edges from *L* to *R*.
- ▶ Add source *s* and connect it to all nodes on the left.
- Add t and connect all nodes on the right to t.
- All edges have unit capacity.

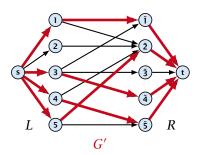


Proof

Max cardinality matching in $G \leq \text{value of maxflow in } G'$

- Given a maximum matching M of cardinality k.
- \triangleright Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.





12.1 Matching Ernst Mayr, Harald Räcke

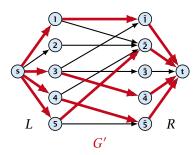
12.1 Matching

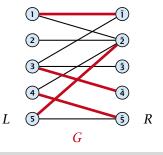
Ernst Mayr, Harald Räcke

Proof

Max cardinality matching in $G \ge \text{value of maxflow in } G'$

- \blacktriangleright Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ▶ Consider M= set of edges from L to R with f(e) = 1.
- \blacktriangleright Each node in L and R participates in at most one edge in M.
- ightharpoonup |M| = k, as the flow must use at least k middle edges.





Ernst Mayr, Harald Räcke

12.1 Matching

438

Baseball Elimination

team	wins	losses	remaining games			
i	w_i	ℓ_i	Atl	Phi	NY	Mon
Atlanta	83	71	_	1	6	1
Philadelphia	80	79	1	_	0	2
New York	78	78	6	0	_	0
Montreal	77	82	1	2	0	_

Which team can end the season with most wins?

- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- ▶ But also Philadelphia is eliminated. Why?

12.1 Matching

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- ► Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.
- Shortest augmenting path: $\mathcal{O}(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m\sqrt{n})$.

A graph is a unit capacity simple graph if

- every edge has capacity 1
- a node has either at most one leaving edge or at most one entering edge

12.1 Matching

439

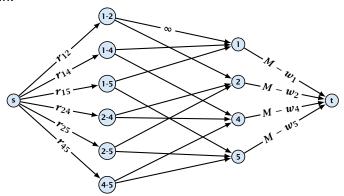
Baseball Elimination

Formal definition of the problem:

- ▶ Given a set S of teams, and one specific team $z \in S$.
- ▶ Team x has already won w_x games.
- ▶ Team x still has to play team y, r_{xy} times.
- ▶ Does team z still have a chance to finish with the most number of wins.

Baseball Elimination

Flow network for z = 3. M is number of wins Team 3 can still obtain.



Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

12.2 Baseball Elimination

442

Theorem 65

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \setminus \{z\}, i < j} \gamma_{ij}$.

Proof (⇐)

- ► Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- ▶ We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$

$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

▶ This gives M < (w(T) + r(T))/|T|, i.e., z is eliminated.

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

$$w(T) := \sum_{i \in T} w_i, \qquad r(T) := \sum_{i,j \in T, i < j} r_{ij}$$
 wins of teams in T

If $\frac{w(T)+r(T)}{|T|} > M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

Ernst Mayr, Harald Räcke

12.2 Baseball Elimination

Baseball Elimination

Proof (⇒)

- Suppose we have a flow that saturates all source edges.
- ▶ We can assume that this flow is integral.
- For every pairing x-y it defines how many games team xand team γ should win.
- ▶ The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_x$ because of capacity constraints.
- ▶ Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team z is not eliminated.

Project Selection

Project selection problem:

- ightharpoonup Set P of possible projects. Project v has an associated profit p_{ν} (can be positive or negative).
- ► Some projects have requirements (taking course EA2 requires course EA1).
- ightharpoonup Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- ▶ A subset A of projects is feasible if the prerequisites of every project in *A* also belong to *A*.

Goal: Find a feasible set of projects that maximizes the profit.

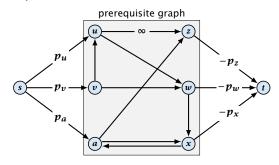
Ernst Mayr, Harald Räcke

12.3 Project Selection

Project Selection

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_v for nodes v with positive profit.
- Create edge (v,t) with capacity $-p_v$ for nodes v with negative profit.

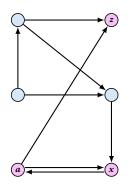


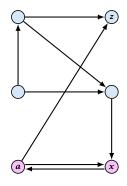
12.3 Project Selection

Project Selection

The prerequisite graph:

- $\{x, a, z\}$ is a feasible subset.
- \blacktriangleright {x, a} is infeasible.





Ernst Mayr, Harald Räcke

12.3 Project Selection

Theorem 66

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.

- ▶ *A* is feasible because of capacity infinity edges.
- prerequisite graph For the formula we define $p_s := 0$. The step follows by adding $\sum_{v \in A: p_v > 0} p_v \sum_{v \in A: p_v > 0} p_v = 0.$ Note that minimizing the capacity of the cut $(A, V \setminus A)$ corresponds to maximizing profits of projects in A.

Ernst Mayr, Harald Räcke

Preflows

Definition 67

An (s,t)-preflow is a function $f:E\mapsto \mathbb{R}^+$ that satisfies

1. For each edge *e*

$$0 \le f(e) \le c(e)$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \text{out}(v)} f(e) \le \sum_{e \in \text{into}(v)} f(e) \ .$$

Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

450

Preflows

Definition:

A labelling is a function $\ell: V \to \mathbb{N}$. It is valid for preflow f if

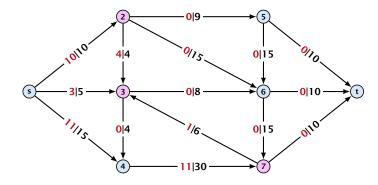
- $\ell(u) \leq \ell(v) + 1$ for all edges (u, v) in the residual graph G_f (only non-zero capacity edges!!!)
- $\blacktriangleright \ell(s) = n$
- $ightharpoonup \ell(t) = 0$

Intuition:

The labelling can be viewed as a height function. Whenever the height from node u to node v decreases by more than 1 (i.e., it goes very steep downhill from u to v), the corresponding edge must be saturated.

Preflows

Example 68

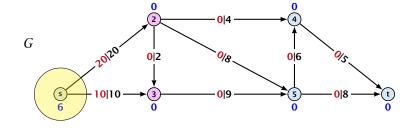


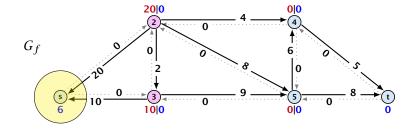
A node that has $\sum_{e \in \text{out}(v)} f(e) < \sum_{e \in \text{into}(v)} f(e)$ is called an active node.

13.1 Generic Push Relabel

451

Preflows





Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

Preflows

Lemma 69

A preflow that has a valid labelling saturates a cut.

Proof:

- ▶ There are n nodes but n+1 different labels from $0, \ldots, n$.
- ▶ There must exist a label $d \in \{0, ..., n\}$ such that none of the nodes carries this label.
- ▶ Let $A = \{v \in V \mid \ell(v) > d\}$ and $B = \{v \in V \mid \ell(v) < d\}$.
- ▶ We have $s \in A$ and $t \in B$ and there is no edge from A to Bin the residual graph G_f ; this means that (A, B) is a saturated cut.

Lemma 70

A flow that has a valid labelling is a maximum flow.

|||||||| Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

Changing a Preflow

An arc (u, v) with $c_f(u, v) > 0$ in the residual graph is admissible if $\ell(u) = \ell(v) + 1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node u with excess flow $f(u) = \sum_{e \in \text{into}(u)} f(e) - \sum_{e \in \text{out}(u)} f(e)$ and suppose e = (u, v)is an admissible arc with residual capacity $c_f(e)$.

We can send flow $\min\{c_f(e), f(u)\}\$ along e and obtain a new preflow. The old labelling is still valid (!!!).

- ▶ saturating push: $\min\{f(u), c_f(e)\} = c_f(e)$ the arc e is deleted from the residual graph
- ▶ non-saturating push: $\min\{f(u), c_f(e)\} = f(u)$ the node u becomes inactive

Note that a push-operation may be saturating and non-saturating at the same time.

Push Relabel Algorithms

Idea:

- start with some preflow and some valid labelling
- successively change the preflow while maintaining a valid labelling
- stop when you have a flow (i.e., no more active nodes)

. Note that this is somewhat dual to an augmenting path algorithm. The former maintains the $\,$ property that it has a feasible flow. It successively changes this flow until it saturates some cut $\frac{1}{2}$ in which case we conclude that the flow is maximum. A preflow push algorithm maintains the property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation constraints in which case we can conclude that we have a maximum flow.

The state of the s

13.1 Generic Push Relabel

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing admissible arc.

Increasing the label of u by 1 results in a valid labelling.

- Edges (w, u) incoming to u still fulfill their constraint $\ell(w) \leq \ell(u) + 1$.
- ▶ An outgoing edge (u, w) had $\ell(u) < \ell(w) + 1$ before since it was not admissible. Now: $\ell(u) \leq \ell(w) + 1$.

Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a height/label of n and the target a height/label of 0. If we see an active node u with an admissible arc we push the flow at utowards the other end-point that has a lower height/label. If we do not have an admissible arc but excess flow into u it should roughly mean that the level/height/label of u should rise. (If we consider the flow to be water then this would be natural.)

Note that the above intuition is very incorrect as the labels are integral, i.e., they cannot really be seen as the height of a node.

|||||||| Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

458

Push Relabel Algorithms

```
Algorithm 3 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do
        if there is admiss, arc e out of u then
             push(G, e, f, c)
4:
        else
5:
             relabel(u)
7: return f
```

In the following example we always stick to the same active node *u* until it becomes inactive but this is not required.

Reminder

- ► In a preflow nodes may not fulfill conservation constraints; a node may have more incoming flow than outgoing flow.
- Such a node is called active.
- \triangleright A labelling is valid if for every edge (u, v) in the residual graph $\ell(u) \leq \ell(v) + 1$.
- \blacktriangleright An arc (u, v) in residual graph is admissible if $\ell(u) = \ell(v) + 1.$
- A saturating push along e pushes an amount of c(e) flow along the edge, thereby saturating the edge (and making it dissappear from the residual graph).
- A non-saturating push along e = (u, v) pushes a flow of f(u), where f(u) is the excess flow of u. This makes u inactive.

13.1 Generic Push Relabel

459

Preflow Push Algorithm

Animation for push relabel algorithms is only available in the lecture version of the slides.

Analysis

Note that the lemma is almost trivial. A node v having excess flow means that the current preflow ships something to v. The residual graph allows to *undo* flow. Therefore, there must exist a path that can undo the shipment and move it back to s. However, a formal proof is required.

Lemma 71

An active node has a path to s in the residual graph.

Proof.

- ▶ Let A denote the set of nodes that can reach s, and let B denote the remaining nodes. Note that $s \in A$.
- ▶ In the following we show that a node $b \in B$ has excess flow f(b) = 0 which gives the lemma.
- ▶ In the residual graph there are no edges into A, and, hence, no edges leaving A/entering B can carry any flow.
- ▶ Let $f(B) = \sum_{v \in B} f(v)$ be the excess flow of all nodes in B.

|||||||| Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

462

464

Analysis

Lemma 72

The label of a node cannot become larger than 2n-1.

Proof.

▶ When increasing the label at a node *u* there exists a path from u to s of length at most n-1. Along each edge of the path the height/label can at most drop by 1, and the label of the source is n.

Lemma 73

There are only $\mathcal{O}(n^2)$ relabel operations.

Let $f: E \to \mathbb{R}_0^+$ be a preflow. We introduce the notation

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

We have

$$f(B) = \sum_{b \in B} f(b)$$

$$= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right)$$

$$= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right)$$

$$= -\sum_{b \in B} \sum_{v \in A} f(b, v)$$

$$< 0$$

Hence, the excess flow f(b) must be 0 for every node $b \in B$.

13.1 Generic Push Relabel

463

Analysis

Lemma 74

The number of saturating pushes performed is at most O(mn).

Proof.

- \triangleright Suppose that we just made a saturating push along (u, v).
- \blacktriangleright Hence, the edge (u, v) is deleted from the residual graph.
- For the edge to appear again, a push from v to u is required.
- Currently, $\ell(u) = \ell(v) + 1$, as we only make pushes along admissible edges.
- For a push from v to u the edge (v, u) must become admissible. The label of v must increase by at least 2.
- ▶ Since the label of v is at most 2n-1, there are at most npushes along (u, v).

Lemma 75

The number of non-saturating pushes performed is at most $O(n^2m)$.

Proof.

- ▶ Define a potential function $\Phi(f) = \sum_{\text{active nodes } v} \ell(v)$
- A saturating push increases Φ by $\leq 2n$ (when the target node becomes active it may contribute at most 2n to the sum).
- \blacktriangleright A relabel increases Φ by at most 1.
- A non-saturating push decreases Φ by at least 1 as the node that is pushed from becomes inactive and has a label that is strictly larger than the target.
- Hence,

#non-saturating_pushes \leq #relabels $+ 2n \cdot$ #saturating_pushes $\leq \mathcal{O}(n^2m)$.

Analysis

Proof:

For every node maintain a list of admissible edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- ightharpoonup check whether edge (v,u) needs to be added to G_f
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time $\mathcal{O}(n)$

- check for all outgoing edges if they become admissible
- check for all incoming edges if they become non-admissible

13.1 Generic Push Relabel

Analysis

Theorem 76

There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}(n^2m)$.

Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

467

Analysis

468

For special variants of push relabel algorithms we organize the neighbours of a node into a linked list (possible neighbours in the residual graph G_f). Then we use the discharge-operation:

```
Algorithm 20 discharge(u)

1: while u is active do
2: v \leftarrow u.current-neighbour
3: if v = \text{null then}
4: relabel(u)
5: u.current-neighbour \leftarrow u.neighbour-list-head
6: else
7: if (u,v) admissible then push(u,v)
8: else u.current-neighbour \leftarrow v.next-in-list
```

Note that *u.current-neighbour* is a global variable. It is only changed within the discharge routine, but keeps its value between consecutive calls to discharge.

Lemma 77

If v = null in Line 3, then there is no $\frac{1}{2}$ in the residual graph). For this the label outgoing admissible edge from u.

In order for e to become admissible the other end-point say v has to push flow to u (so that the edge (u, v) re-appears of v needs to be larger than the label of u. Then in order to make (u, v) admissible the label of u has to increase.

Proof.

- \blacktriangleright While pushing from u the current-neighbour pointer is only advanced if the current edge is not admissible.
- ▶ The only thing that could make the edge admissible again would be a relabel at u.
- If we reach the end of the list (v = null) all edges are not admissible.

This shows that discharge(u) is correct, and that we can perform a relabel in Line 4.

| | | Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

470

13.2 Relabel to Front

Lemma 78 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant holds.

- 1. The sequence L is topologically sorted w.r.t. the set of admissible edges; this means for an admissible edge (x, y)the node x appears before γ in sequence L.
- **2.** No node before u in the list L is active.

13.2 Relabel to Front

```
Algorithm 21 relabel-to-front(G, s, t)
1: initialize preflow
2: initialize node list L containing V \setminus \{s, t\} in any order
3: foreach u \in V \setminus \{s, t\} do
         u.current-neighbour ← u.neighbour-list-head
 5: u \leftarrow L.head
6: while u \neq \text{null do}
         old-height \leftarrow \ell(u)
         discharge(u)
8:
         if \ell(u) > old-height then // relabel happened
               move u to the front of L
10:
11:
         u \leftarrow u.next
```

Ernst Mayr, Harald Räcke

13.2 Relabel to Front

471

Proof:

- Initialization:
 - 1. In the beginning s has label $n \ge 2$, and all other nodes have label 0. Hence, no edge is admissible, which means that any ordering L is permitted.
 - 2. We start with u being the head of the list; hence no node before u can be active
- Maintenance:
 - Pushes do no create any new admissible edges. Therefore, if discharge() does not relabel u, L is still topologically sorted.
 - After relabeling, u cannot have admissible incoming edges as such an edge (x, u) would have had a difference $\ell(x) - \ell(u) \ge 2$ before the re-labeling (such edges do not exist in the residual graph).

Hence, moving u to the front does not violate the sorting property for any edge; however it fixes this property for all admissible edges leaving u that were generated by the relabeling.

13.2 Relabel to Front

Proof:

- Maintenance:
 - 2. If we do a relabel there is nothing to prove because the only node before u' (u in the next iteration) will be the current u; the discharge(u) operation only terminates when u is not active anymore.

For the case that we do not relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissible arc. However, all admissible arc point to successors of u.

Note that the invariant means that for u = null we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.

|||||||| Ernst Mayr, Harald Räcke

13.2 Relabel to Front

474

13.2 Relabel to Front

Lemma 80

The cost for all relabel-operations is only $\mathcal{O}(n^2)$.

A relabel-operation at a node is constant time (increasing the label and resetting *u.current-neighbour*). In total we have $\mathcal{O}(n^2)$ relabel-operations.

13.2 Relabel to Front

Lemma 79

There are at most $\mathcal{O}(n^3)$ calls to discharge(u).

Every discharge operation without a relabel advances u (the current node within list L). Hence, if we have n discharge operations without a relabel we have u = null and the algorithm terminates.

Therefore, the number of calls to discharge is at most $n(\#relabels + 1) = \mathcal{O}(n^3).$

13.2 Relabel to Front

475

13.2 Relabel to Front

Note that by definition a saturating push operation $(\min\{c_f(e), f(u)\} = c_f(e))$ can at the same time be a non-saturating push operation ($\min\{c_f(e), f(u)\} = f(u)$).

Lemma 81

Ernst Mayr, Harald Räcke

The cost for all saturating push-operations that are **not** also non-saturating push-operations is only O(mn).

Note that such a push-operation leaves the node u active but makes the edge e disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer *u.current-neighbour*.

This pointer can traverse the neighbour-list at most O(n) times (upper bound on number of relabels) and the neighbour-list has only degree(u) + 1 many entries (+1 for null-entry).

13.2 Relabel to Front

Lemma 82

The cost for all non-saturating push-operations is only $\mathcal{O}(n^3)$.

A non-saturating push-operation takes constant time and ends the current call to discharge(). Hence, there are only $\mathcal{O}(n^3)$ such operations.

Theorem 83

The push-relabel algorithm with the rule relabel-to-front takes time $O(n^3)$.

13.2 Relabel to Front

478

13.3 Highest Label

Lemma 84

When using highest label the number of non-saturating pushes is only $\mathcal{O}(n^3)$.

A push from a node on level ℓ can only "activate" nodes on levels strictly less than ℓ .

This means, after a non-saturating push from u a relabel is required to make u active again.

Hence, after n non-saturating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most $n(\#relabels + 1) = \mathcal{O}(n^3).$

13.3 Highest Label

Algorithm 6 highest-label(G, s, t)

- 1: initialize preflow
- 2: **foreach** $u \in V \setminus \{s, t\}$ **do**
- $u.current-neighbour \leftarrow u.neighbour-list-head$
- 4: **while** \exists active node u **do**
- select active node u with highest label
- discharge(u)

13.3 Highest Label

13.3 Highest Label

Since a discharge-operation is terminated by a non-saturating push this gives an upper bound of $\mathcal{O}(n^3)$ on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

Ouestion:

How do we find the next node for a discharge operation?

13.3 Highest Label

13.3 Highest Label

Maintain lists L_i , $i \in \{0, ..., 2n\}$, where list L_i contains active nodes with label i (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node u with label k, traverse the lists $L_k, L_{k-1}, \ldots, L_0$, (in that order) until you find a non-empty list.

Unless the last (non-saturating) push was to s or t the list k-1must be non-empty (i.e., the search takes constant time).

Ernst Mayr, Harald Räcke

13.3 Highest Label

484

13.3 Highest Label

Proof of the Lemma.

- ▶ We only show that the number of pushes to the source is at most $\mathcal{O}(n^2)$. A similar argument holds for the target.
- After a node v (which must have $\ell(v) = n + 1$) made a non-saturating push to the source there needs to be another node whose label is increased from $\leq n + 1$ to n + 2 before v can become active again.
- \blacktriangleright This happens for every push that v makes to the source. Since, every node can pass the threshold n + 2 at most once, v can make at most n pushes to the source.
- ▶ As this holds for every node the total number of pushes to the source is at most $\mathcal{O}(n^2)$.

13.3 Highest Label

Hence, the total time required for searching for active nodes is at most

$$\mathcal{O}(n^3) + n(\#non\text{-}saturating\text{-}pushes\text{-}to\text{-}s\text{-}or\text{-}t)$$

Lemma 85

The number of non-saturating pushes to s or t is at most $\mathcal{O}(n^2)$.

With this lemma we get

Theorem 86

The push-relabel algorithm with the rule highest-label takes time $\mathcal{O}(n^3)$.

13.3 Highest Label

483

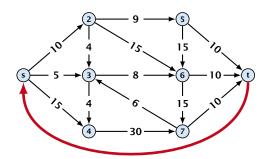
Mincost Flow

Problem Definition:

```
min \sum_{e} c(e) f(e)
s.t. \forall e \in E : 0 \le f(e) \le u(e)
       \forall v \in V : f(v) = b(v)
```

- G = (V, E) is a directed graph.
- $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$ is the capacity function.
- $ightharpoonup c: E
 ightharpoonup \mathbb{R}$ is the cost function (note that c(e) may be negative).
- ▶ $b: V \to \mathbb{R}$, $\sum_{v \in V} b(v) = 0$ is a demand function.

Solve Maxflow Using Mincost Flow



- Given a flow network for a standard maxflow problem.
- ▶ Set b(v) = 0 for every node. Keep the capacity function ufor all edges. Set the cost c(e) for every edge to 0.
- ightharpoonup Add an edge from t to s with infinite capacity and cost -1.
- ▶ Then, $val(f^*) = -cost(f_{min})$, where f^* is a maxflow, and f_{\min} is a mincost-flow.

Ernst Mayr, Harald Räcke

14 Mincost Flow

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- Given a flow network for a standard maxflow problem, and a value k.
- ▶ Set b(v) = 0 for every node apart from s or t. Set b(s) = -kand b(t) = k.
- Set edge-costs to zero, and keep the capacities.
- ▶ There exists a maxflow of value at least *k* if and only if the mincost-flow problem is feasible.

Ernst Mayr, Harald Räcke

14 Mincost Flow

Generalization

Our model:

$$\begin{array}{ll} \min & \sum_{e} c(e) f(e) \\ \text{s.t.} & \forall e \in E: \ 0 \leq f(e) \leq u(e) \\ & \forall v \in V: \ f(v) = b(v) \end{array}$$

where $b: V \to \mathbb{R}$, $\sum_{v} b(v) = 0$; $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$; $c: E \to \mathbb{R}$;

A more general model?

min
$$\sum_{e} c(e) f(e)$$

s.t. $\forall e \in E: \ \ell(e) \le f(e) \le u(e)$
 $\forall v \in V: \ a(v) \le f(v) \le b(v)$

where $a: V \to \mathbb{R}$, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$:

Generalization

Differences

- Flow along an edge e may have non-zero lower bound $\ell(e)$.
- Flow along e may have negative upper bound u(e).
- ▶ The demand at a node v may have lower bound a(v) and upper bound b(v) instead of just lower bound = upper bound = b(v).

Reduction I

min $\sum_{e} c(e) f(e)$

s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$ $\forall v \in V : a(v) \le f(v) \le b(v)$

We can assume that a(v) = b(v):

Add new node r.

Add edge (r, v) for all $v \in V$.

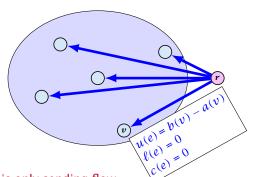
Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

Set a(v) = b(v) for all $v \in V$.

Set $b(r) = -\sum_{v \in V} b(v)$.

 $-\sum_{v} b(v)$ is negative; hence r is only sending flow.



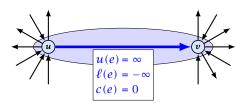
Reduction II

492

min $\sum_{e} c(e) f(e)$

s.t. $\forall e \in E : \ell(e) \leq f(e) \leq u(e)$ $\forall v \in V : f(v) = b(v)$

We can assume that either $\ell(e) \neq -\infty$ or $u(e) \neq \infty$:



If c(e) = 0 we can contract the edge/identify nodes u and v.

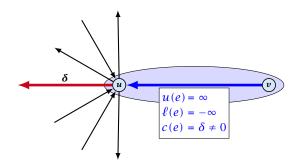
If $c(e) \neq 0$ we can transform the graph so that c(e) = 0.

14 Mincost Flow

491

Reduction II

We can transform any network so that a particular edge has cost c(e) = 0:



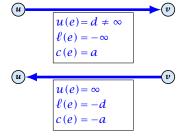
Additionally we set b(u) = 0.

Reduction III

min $\sum_{e} c(e) f(e)$

s.t. $\forall e \in E : \ell(e) \leq f(e) \leq u(e)$ $\forall v \in V : f(v) = b(v)$

We can assume that $\ell(e) \neq -\infty$:



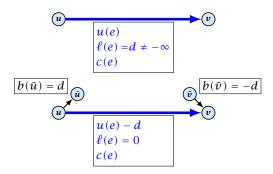
Replace the edge by an edge in opposite direction.

Reduction IV

min $\sum_{e} c(e) f(e)$

s.t. $\forall e \in E : \ell(e) \leq f(e) \leq u(e)$ $\forall v \in V : f(v) = b(v)$

We can assume that $\ell(e) = 0$:



The added edges have infinite capacity and cost c(e)/2.

Ernst Mayr, Harald Räcke

14 Mincost Flow

494

5 upper bound: $u(e_i) = \infty$; day edges: lower bound: $\ell(e_i) = r_i$; cost: c(e) = 0

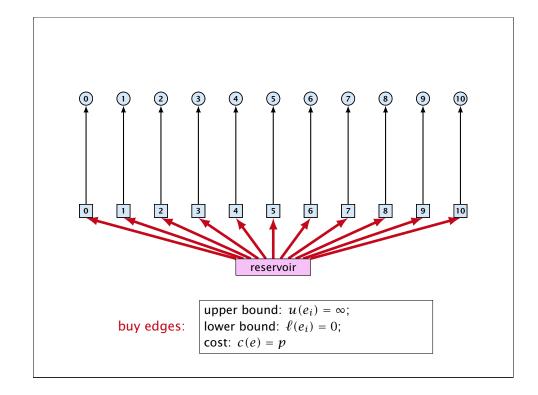
Applications

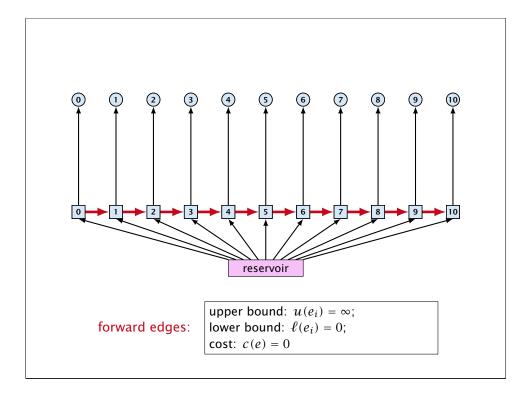
Caterer Problem

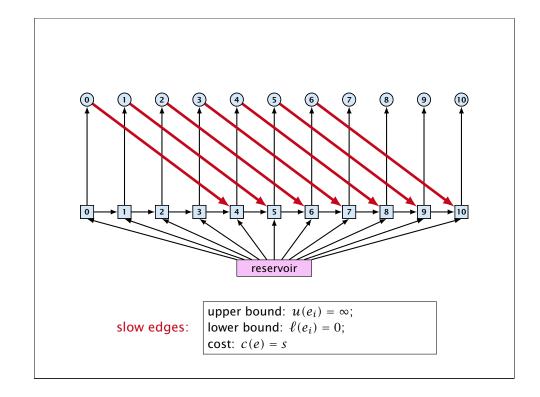
- She needs to supply r_i napkins on N successive days.
- She can buy new napkins at p cents each.
- ▶ She can launder them at a fast laundry that takes *m* days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

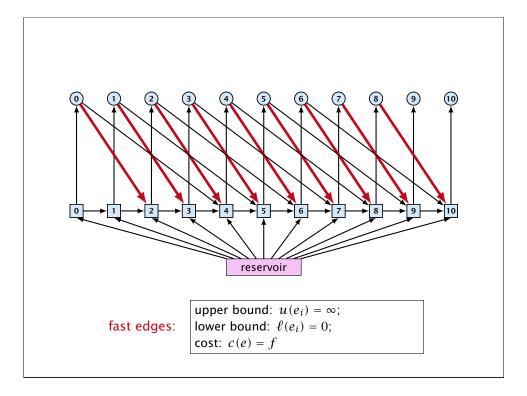
Ernst Mayr, Harald Räcke

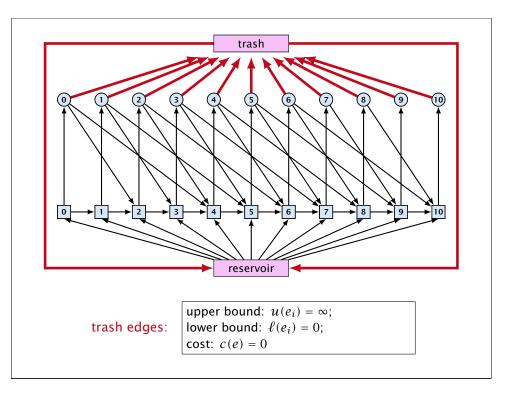
14 Mincost Flow











Residual Graph

Version A:

The residual graph G' for a mincost flow is just a copy of the graph G.

If we send f(e) along an edge, the corresponding edge e' in the residual graph has its lower and upper bound changed to $\ell(e') = \ell(e) - f(e)$ and u(e') = u(e) - f(e).

Version B:

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, u) has capacity z and a cost of -c((u,v)).

14 Mincost Flow

Ernst Mayr, Harald Räcke

Lemma 87

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

 \Rightarrow Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

 \leftarrow Let f be a non-mincost flow, and let f^* be a min-cost flow. We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending -f in the residual graph (pushing all flow back) we arrive at the original graph; for this f^* is clearly feasible)

14 Mincost Flow

A circulation in a graph G = (V, E) is a function $f : E \to \mathbb{R}^+$ that has an excess flow f(v) = 0 for every node $v \in V$.

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \le u(e)$ for every edge of G.

14 Mincost Flow

Ernst Mayr, Harald Räcke

For previous slide:

 $f(g) = f^* - f$ is obtained by computing $\Delta(e) = f^*(e) - f(e)$ for every edge e = (u, v). If the result is positive set $g((u, v)) = \Delta(e)$ and g((v,u)) = 0. Otherwise set g((u,v)) = 0 and $g((v,u)) = -\Delta(e)$.

14 Mincost Flow

Lemma 88

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \to \mathbb{R}$.

Proof.

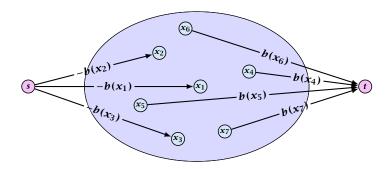
- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- ▶ If this path has negative cost you are done.
- ▶ Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- ▶ You still have a circulation with negative cost.
- Repeat.

||||||||| Ernst Mayr, Harald Räcke

14 Mincost Flow

500

How do we find the initial feasible flow?



- ▶ Connect new node s to all nodes with negative b(v)-value.
- \blacktriangleright Connect nodes with positive b(v)-value to a new node t.
- ▶ There exist a feasible flow in the original graph iff in the resulting graph there exists an s-t flow of value

$$\sum_{v:b(v)<0} (-b(v)) = \sum_{v:b(v)>0} b(v)$$

14 Mincost Flow

Algorithm 22 CycleCanceling(G = (V, E), c, u, b)

- 1: establish a feasible flow f in G
- 2: **while** G_f contains negative cycle **do**
- use Bellman-Ford to find a negative circuit Z
- $\delta \leftarrow \min\{u_f(e) \mid e \in Z\}$ 4:
- augment δ units along Z and update G_f 5:

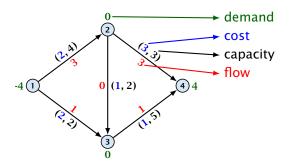
14 Mincost Flow

501

14 Mincost Flow

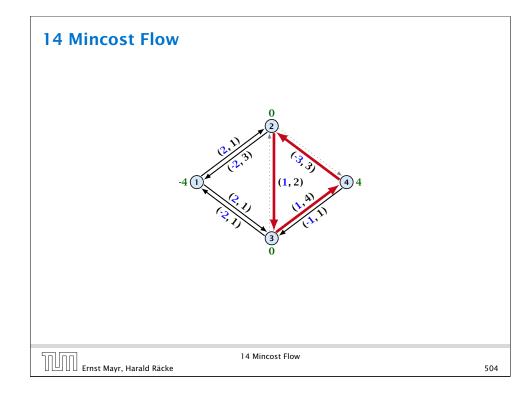
Ernst Mayr, Harald Räcke

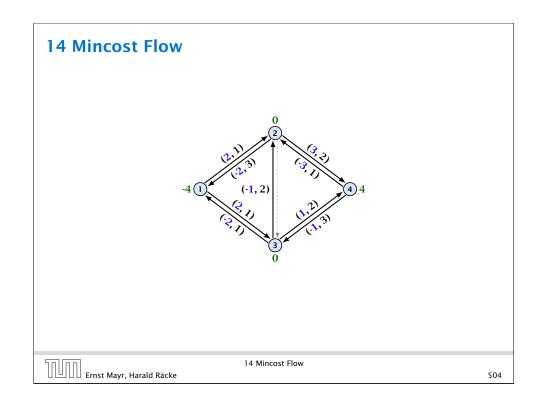
Ernst Mayr, Harald Räcke

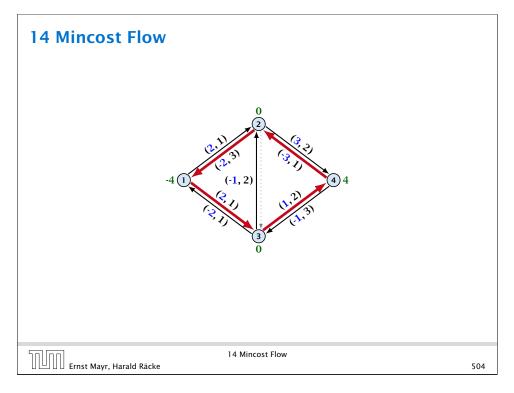


14 Mincost Flow

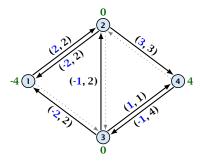
14 Mincost Flow Ernst Mayr, Harald Räcke 14 Mincost Flow







14 Mincost Flow



Ernst Mayr, Harald Räcke

14 Mincost Flow

504

14 Mincost Flow

A general mincost flow problem is of the following form:

min $\sum_{e} c(e) f(e)$ s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$ $\forall v \in V : a(v) \leq f(v) \leq b(v)$

where $a: V \to \mathbb{R}$, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R};$

Lemma 90 (without proof)

A general mincost flow problem can be solved in polynomial time.

14 Mincost Flow

Lemma 89

The improving cycle algorithm runs in time $O(nm^2CU)$, for integer capacities and costs, when for all edges e, $|c(e)| \le C$ and $|u(e)| \leq U$.

- ▶ Running time of Bellman-Ford is O(mn).
- ▶ Pushing flow along the cycle can be done in time $\mathcal{O}(n)$.
- Each iteration decreases the total cost by at least 1.
- ▶ The true optimum cost must lie in the interval $[-mCU, \ldots, +mCU].$

Note that this lemma is weak since it does not allow for edges with infinite capacity.

Ernst Mayr, Harald Räcke

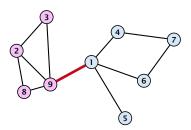
14 Mincost Flow

505

15 Global Mincut

Ernst Mayr, Harald Räcke

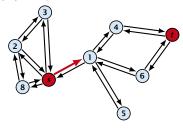
Given an undirected, capacitated graph G = (V, E, c) find a partition of V into two non-empty sets $S, V \setminus S$ s.t. the capacity of edges between both sets is minimized.



15 Global Mincut

We can solve this problem using standard maxflow/mincut.

- ▶ Construct a directed graph G' = (V, E') that has edges (u, v) and (v, u) for every edge $\{u, v\} \in E$.
- ightharpoonup Fix an arbitrary node $s \in V$ as source. Compute a minimum s-t cut for all possible choices $t \in V, t \neq s$. (Time: $\mathcal{O}(n^4)$)
- Let $(S, V \setminus S)$ be a minimum global mincut. The above algorithm will output a cut of capacity $cap(S, V \setminus S)$ whenever $|\{s,t\} \cap S| = 1$.



Ernst Mayr, Harald Räcke

15 Global Mincut

508

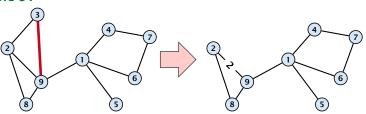
Edge Contractions

We can perform an edge-contraction in time $\mathcal{O}(n)$.

Edge Contractions

- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 91



Edge-contractions do no decrease the size of the mincut.

Ernst Mayr, Harald Räcke

15 Global Mincut

509

Randomized Mincut Algorithm

Algorithm 23 KargerMincut(G = (V, E, c))

- 1: **for** $i = 1 \rightarrow n 2$ **do**
- choose $e \in E$ randomly with probability c(e)/c(E)
- $G \leftarrow G/e$
- 4: **return** only cut in *G*
- Let G_t denote the graph after the (n-t)-th iteration, when t nodes are left.
- ▶ Note that the final graph G_2 only contains a single edge.
- ▶ The cut in G_2 corresponds to a cut in the original graph Gwith the same capacity.
- ▶ What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

Animation only available in the lecture version of the slides.

Ernst Mayr, Harald Räcke

15 Global Mincut

512

Analysis

What is the probability that a given mincut A is still possible after round i?

▶ It is still possible to obtain cut A in the end if so far no edge in $(A, V \setminus A)$ has been contracted.

Ernst Mayr, Harald Räcke

Analysis

iteration i is

which t nodes are left) is

15 Global Mincut

The probability that we do not choose an edge from the cut in

 $1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1}$.

The probability that the cut is alive after iteration n-t (after

 $\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} = \frac{t(t-1)}{n(n-1)} .$

Choosing t=2 gives that with probability $1/\binom{n}{2}$ the algorithm

513

515

Analysis

What is the probability that we select an edge from A in iteration i?

- Let $\min = \operatorname{cap}(A, V \setminus A)$ denote the capacity of a mincut.
- ightharpoonup Let cap(v) be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- ▶ Clearly, $cap(v) \ge min$.

ightharpoonup Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

▶ Hence, the probability of choosing an edge from the cut is

Ernst Mayr, Harald Räcke

514

at n-i+1 is the number of nodes in graph $G_{n-i+1}=(V_{n-i+1},E_{n-i+1})$, the graph at the start of iteration i.

computes a mincut.

Analysis

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le n^{-c} ,$$

where we used $1 - x \le e^{-x}$.

Theorem 92

The randomized mincut algorithm computes an optimal cut with high probability. The total running time is $O(n^4 \log n)$.

Ernst Mayr, Harald Räcke

15 Global Mincut

516

Probability of Success

The probability of contracting an edge from the mincut during one iteration through the for-loop is only

$$\frac{t(t-1)}{n(n-1)} \le \frac{t^2}{n^2} = \frac{1}{2} ,$$

as
$$t = \frac{n}{\sqrt{2}}$$
.

Improved Algorithm

Algorithm 24 RecursiveMincut(G = (V, E, c))

- 1: **for** $i = 1 \rightarrow n n/\sqrt{2}$ **do**
- choose $e \in E$ randomly with probability c(e)/c(E)
- $G \leftarrow G/e$
- 4: **if** |V| = 2 **return** cut-value;
- 5: cuta ← RecursiveMincut(G):
- 6: *cutb* ← RecursiveMincut(G);
- 7: **return** min{*cuta*, *cutb*}

Running time:

- $T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + \mathcal{O}(n^2)$
- ► This gives $T(n) = \mathcal{O}(n^2 \log n)$.

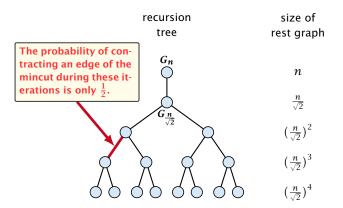
Note that the above implementation only works for very special values of n.

15 Global Mincut

517

Probability of Success

Ernst Mayr, Harald Räcke



We can estimate the success probability by using the following game on the recursion tree. Delete every edge with probability $\frac{1}{2}$. If in the end you have a path from the root to at least one leaf node you are successful.

Probability of Success

Let for an edge e in the recursion tree, h(e) denote the height (distance to leaf level) of the parent-node of *e* (end-point that is higher up in the tree). Let h denote the height of the root node.

Call an edge *e* alive if there exists a path from the parent-node of e to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn't been deleted.

Lemma 93

The probability that an edge e is alive is at least $\frac{1}{h(a)+1}$.

Ernst Mayr, Harald Räcke

15 Global Mincut

520

522

15 Global Mincut

Lemma 94

One run of the algorithm can be performed in time $O(n^2 \log n)$ and has a success probability of $\Omega(\frac{1}{\log n})$.

Doing $\Theta(\log^2 n)$ runs gives that the algorithm succeeds with high probability. The total running time is $O(n^2 \log^3 n)$.

Probability of Success

Proof.

- An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

$$\begin{split} p_d &= \frac{1}{2} \Big(2 p_{d-1} - p_{d-1}^2 \Big) \quad \boxed{\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]} \\ &= p_{d-1} - \frac{p_{d-1}^2}{2} \\ \hline \begin{bmatrix} x - x^2/2 \text{ is monotonically} \\ \text{increasing for } x \in [0,1] \end{bmatrix} \geq \frac{1}{d} - \frac{1}{2d^2} \geq \frac{1}{d} - \frac{1}{d(d+1)} = \frac{1}{d+1} \enspace . \end{split}$$

Ernst Mayr, Harald Räcke

15 Global Mincut

521

16 Gomory Hu Trees

Given an undirected, weighted graph G = (V, E, c) a cut-tree T = (V, F, w) is a tree with edge-set F and capacities w that fulfills the following properties.

- 1. Equivalent Flow Tree: For any pair of vertices $s, t \in V$, f(s,t) in G is equal to $f_T(s,t)$.
- **2. Cut Property:** A minimum *s-t* cut in *T* is also a minimum cut in G.

Here, f(s,t) is the value of a maximum s-t flow in G, and $f_T(s,t)$ is the corresponding value in T.

Overview of the Algorithm

The algorithm maintains a partition of V, (sets S_1, \ldots, S_t), and a spanning tree T on the vertex set $\{S_1, \ldots, S_t\}$.

Initially, there exists only the set $S_1 = V$.

Then the algorithm performs n-1 split-operations:

- ▶ In each such split-operation it chooses a set S_i with $|S_i| \ge 2$ and splits this set into two non-empty parts X and Y.
- $ightharpoonup S_i$ is then removed from T and replaced by X and Y.
- ▶ *X* and *Y* are connected by an edge, and the edges that before the split were incident to S_i are attached to either X or Y.

In the end this gives a tree on the vertex set V.

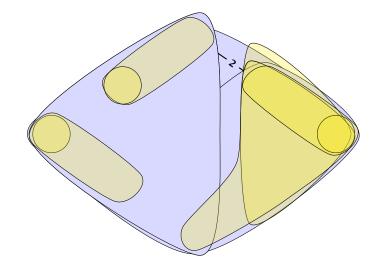
| | | Ernst Mayr, Harald Räcke

16 Gomorv Hu Trees

524

526

Example: Gomory-Hu Construction



Details of the Split-operation

- Select S_i that contains at least two nodes a and b.
- Compute the connected components of the forest obtained from the current tree T after deleting S_i . Each of these components corresponds to a set of vertices from V.
- ▶ Consider the graph *H* obtained from *G* by contracting these connected components into single nodes.
- ightharpoonup Compute a minimum a-b cut in H. Let A, and B denote the two sides of this cut.
- ▶ Split S_i in T into two sets/nodes $S_i^a = S_i \cap A$ and $S_i^b = S_i \cap B$ and add edge $\{S_i^a, S_i^b\}$ with capacity $f_H(a, b)$.
- ▶ Replace an edge $\{S_i, S_x\}$ by $\{S_i^a, S_x\}$ if $S_x \subset A$ and by $\{S_i^b, S_X\}$ if $S_X \subset B$.

16 Gomory Hu Trees

525

Analysis

Lemma 95

For nodes $s, t, x \in V$ we have $f(s, t) \ge \min\{f(s, x), f(x, t)\}$

Lemma 96

For nodes $s, t, x_1, \dots, x_k \in V$ we have $f(s,t) \ge \min\{f(s,x_1), f(x_1,x_2), \dots, f(x_{k-1},x_k), f(x_k,t)\}\$

Lemma 97

Let S be some minimum r-s cut for some nodes $r, s \in V$ $(s \in S)$, and let $v, w \in S$. Then there is a minimum v - w-cut T with $T \subset S$.

Proof: Let X be a minimum v - w cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $s \in X$.

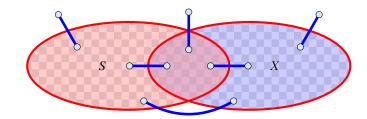
First case $r \in X$.

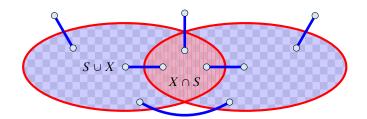
- $ightharpoonup \operatorname{cap}(X \setminus S) + \operatorname{cap}(S \setminus X) \le \operatorname{cap}(S) + \operatorname{cap}(X).$
- ▶ $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- ▶ This gives $cap(S \setminus X) \le cap(X)$.

Second case $r \notin X$.

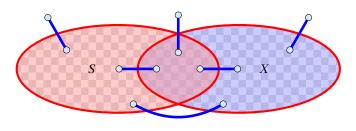
- $ightharpoonup \operatorname{cap}(X \cup S) + \operatorname{cap}(S \cap X) \le \operatorname{cap}(S) + \operatorname{cap}(X).$
- ▶ $cap(X \cup S) \ge cap(S)$ because $X \cup S$ is an r-s cut.
- ▶ This gives $cap(S \cap X) \le cap(X)$.

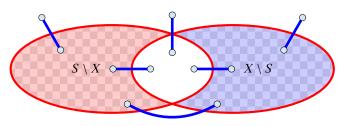
$cap(X \cup S) + cap(S \cap X) \le cap(S) + cap(X)$





 $cap(S \setminus X) + cap(X \setminus S) \le cap(S) + cap(X)$





Ernst Mayr, Harald Räcke

16 Gomory Hu Trees

529

Analysis

Lemma 97 tells us that if we have a graph G = (V, E) and we contract a subset $X \subset V$ that corresponds to some mincut, then the value of f(s,t) does not change for two nodes $s,t\notin X$.

We will show (later) that the connected components that we contract during a split-operation each correspond to some mincut and, hence, $f_H(s,t) = f(s,t)$, where $f_H(s,t)$ is the value of a minimum s-t mincut in graph H.

Analysis

Invariant [existence of representatives]:

For any edge $\{S_i, S_i\}$ in T, there are vertices $a \in S_i$ and $b \in S_i$ such that $w(S_i, S_i) = f(a, b)$ and the cut defined by edge $\{S_i, S_i\}$ is a minimum a-b cut in G.

|||||||| Ernst Mayr, Harald Räcke

16 Gomory Hu Trees

532

Analysis

- ▶ Hence, $f_T(s,t) = f(s,t)$ (flow equivalence).
- ▶ The edge $\{x_i, x_{i+1}\}$ is a mincut between s and t in T.
- **b** By invariant, it forms a cut with capacity $f(x_i, x_{i+1})$ in G(which separates s and t).
- ▶ Since, we can send a flow of value $f(x_i, x_{i+1})$ btw. s and t, this is an s-t mincut (cut property).

Analysis

We first show that the invariant implies that at the end of the algorithm *T* is indeed a cut-tree.

- Let $s = x_0, x_1, \dots, x_{k-1}, x_k = t$ be the unique simple path from s to t in the final tree T. From the invariant we get that $f(x_i, x_{i+1}) = w(x_i, x_{i+1})$ for all j.
- ▶ Then

$$\begin{split} f_T(s,t) &= \min_{i \in \{0,\dots,k-1\}} \{w(x_i,x_{i+1})\} \\ &= \min_{i \in \{0,\dots,k-1\}} \{f(x_i,x_{i+1})\} \leq f(s,t) \ . \end{split}$$

- Let $\{x_i, x_{i+1}\}$ be the edge with minimum weight on the path.
- ▶ Since by the invariant this edge induces an *s*-*t* cut with capacity $f(x_i, x_{i+1})$ we get $f(s, t) \le f(x_i, x_{i+1}) = f_T(s, t)$.

Ernst Mayr, Harald Räcke

16 Gomorv Hu Trees

533

Proof of Invariant

Ernst Mayr, Harald Räcke

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it was true before the operation.

Let S_i denote our selected cluster with nodes a and b. Because of the invariant all edges leaving $\{S_i\}$ in T correspond to some mincuts.

Therefore, contracting the connected components does not change the mincut btw. a and b due to Lemma 97.

After the split we have to choose representatives for all edges. For the new edge $\{S_i^a, S_i^b\}$ with capacity $w(S_i^a, S_i^b) = f_H(a, b)$ we can simply choose a and b as representatives.

Proof of Invariant

For edges that are not incident to S_i we do not need to change representatives as the neighbouring sets do not change.

Consider an edge $\{X, S_i\}$, and suppose that before the split it used representatives $x \in X$, and $s \in S_i$. Assume that this edge is replaced by $\{X, S_i^a\}$ in the new tree (the case when it is replaced by $\{X, S_i^b\}$ is analogous).

If $s \in S_i^a$ we can keep x and s as representatives.

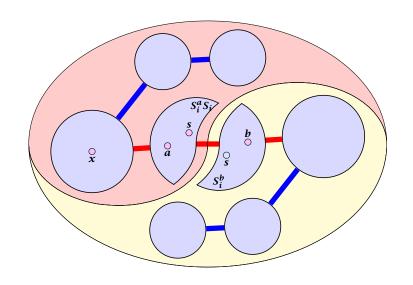
Otherwise, we choose x and a as representatives. We need to show that f(x,a) = f(x,s).

16 Gomory Hu Trees

536

538

Analysis



16 Gomory Hu Trees

Proof of Invariant

Because the invariant was true before the split we know that the edge $\{X, S_i\}$ induces a cut in G of capacity f(x, s). Since, x and a are on opposite sides of this cut, we know that $f(x,a) \leq f(x,s)$.

The set B forms a mincut separating a from b. Contracting all nodes in this set gives a new graph G' where the set B is represented by node v_B . Because of Lemma 97 we know that f'(x,a) = f(x,a) as $x, a \notin B$.

We further have $f'(x, a) \ge \min\{f'(x, v_B), f'(v_B, a)\}.$

Since $s \in B$ we have $f'(v_B, x) \ge f(s, x)$.

Also, $f'(a, v_B) \ge f(a, b) \ge f(x, s)$ since the *a-b* cut that splits S_i into S_i^a and S_i^b also separates S_i and S_i^b .

16 Gomorv Hu Trees

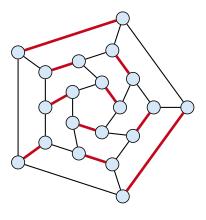
537

Part V

Matchings

Matching

- ▶ Input: undirected graph G = (V, E).
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



19 Augmenting Paths for Matchings

Definitions.

- \blacktriangleright Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ▶ For a matching *M* a path *P* in *G* is called an alternating path if edges in M alternate with edges not in M.
- ► An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 98

A matching M is a maximum matching if and only if there is no augmenting path w.r.t.M.

18 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- ► Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.
- Shortest augmenting path: $\mathcal{O}(mn^2)$.

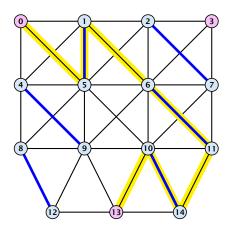
For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m\sqrt{n})$.

Ernst Mayr, Harald Räcke

18 Bipartite Matching via Flows

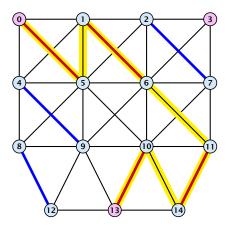
541

Augmenting Paths in Action



542

Augmenting Paths in Action



||||||||| Ernst Mayr, Harald Räcke

19 Augmenting Paths for Matchings

543

19 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 99

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

The above theorem allows for an easier implementation of an augmentling path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

19 Augmenting Paths for Matchings

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \in Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

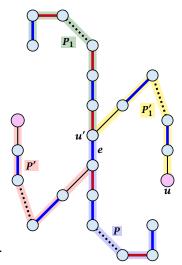
Ernst Mayr, Harald Räcke

19 Augmenting Paths for Matchings

19 Augmenting Paths for Matchings

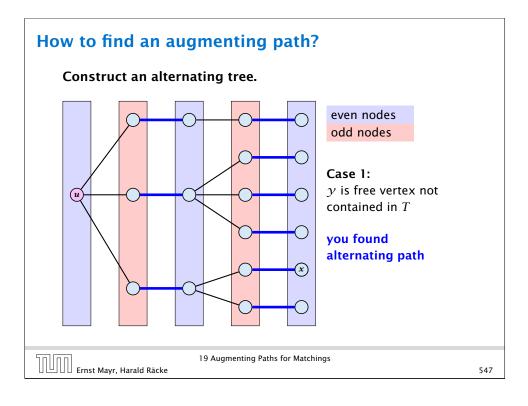
Proof

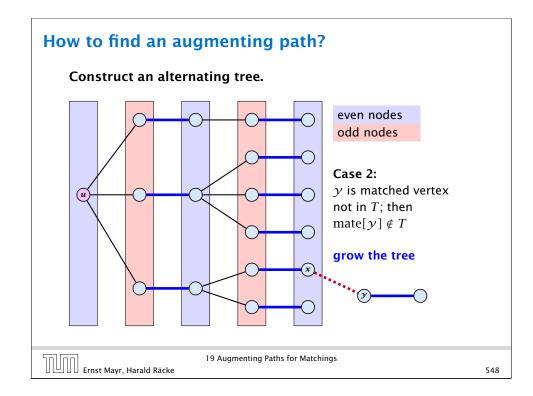
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ▶ If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- $\triangleright u'$ splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .
- ▶ $P_1 \circ P_1'$ is augmenting path in M (§).

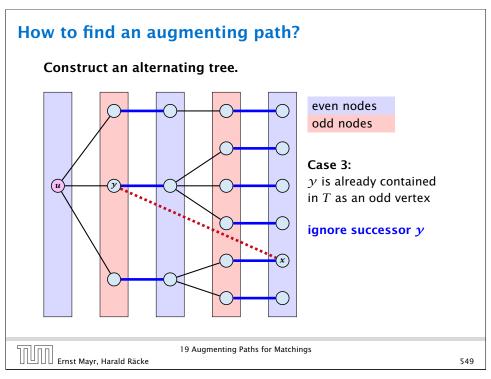


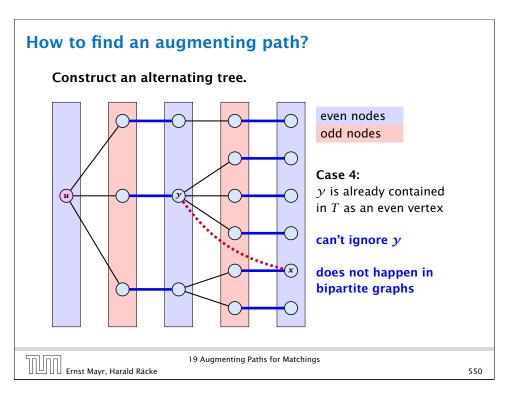
19 Augmenting Paths for Matchings

19 Augmenting Paths for Matchings









Algorithm 25 BiMatch(*G*, *match*)

```
1: for x \in V do mate[x] \leftarrow 0;
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
       r \leftarrow r + 1
       if mate[r] = 0 then
           for i = 1 to n do parent[i'] \leftarrow 0
 6:
           Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
 7:
           while auq = \text{false and } O \neq \emptyset do
 8:
              x \leftarrow Q. dequeue();
10:
               for y \in A_X do
                   if mate[v] = 0 then
11:
12:
                       augm(mate, parent, y);
13:
                       aug ← true;
14:
                      free \leftarrow free - 1;
15:
                   else
16:
                       if parent[y] = 0 then
17:
                          parent[y] \leftarrow x;
                          Q. enqueue(mate[y]);
18:
```

```
graph G = (S \cup S', E)
    S = \{1, ..., n\}
  S' = \{1', \dots, n'\}
```

The lecture version of the slides contains a step-by-step explanation of the algorithm.

20 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- ▶ Input: undirected, bipartite graph $G = L \cup R, E$.
- ▶ an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$
- can assume goal is to construct maximum weight perfect matching

Ernst Mayr, Harald Räcke

20 Weighted Bipartite Matching

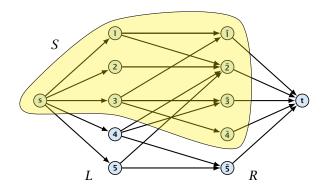
552

Weighted Bipartite Matching

Theorem 100 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

20 Weighted Bipartite Matching



Halls Theorem

Proof:

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- ⇒ For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - ▶ Let S denote a minimum cut and let $L_S \stackrel{\text{def}}{=} L \cap S$ and $R_S \stackrel{\text{\tiny def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - \triangleright Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

20 Weighted Bipartite Matching

555

Algorithm Outline

Reason:

 \blacktriangleright The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v \ .$$

▶ Any other perfect matching *M* (in *G*, not necessarily in $H(\vec{x})$) has

$$\sum_{(u,v)\in M} w_{(u,v)} \le \sum_{(u,v)\in M} (x_u + x_v) = \sum_{v} x_v.$$

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \in \mathbb{R}$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

$$x_u + x_v \ge w_e$$
 for every edge $e = (u, v)$.

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = x_u + x_v$.
- ▶ Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

20 Weighted Bipartite Matching

556

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

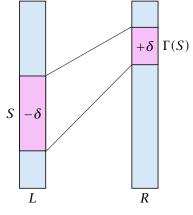
- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- ► Total node-weight decreases.
- ▶ Only edges from S to $R \Gamma(S)$ decrease in their weight.
- ► Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$ we can do this decrement for small enough $\delta > 0$ until a new edge gets tight.



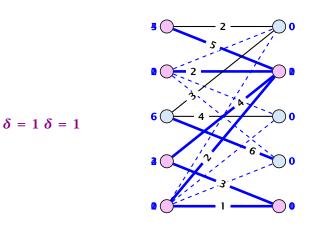
||||||||| | Ernst Mayr, Harald Räcke

20 Weighted Bipartite Matching

559

Weighted Bipartite Matching

Edges not drawn have weight 0.



Ernst Mayr, Harald Räcke

20 Weighted Bipartite Matching

560

Analysis

How many iterations do we need?

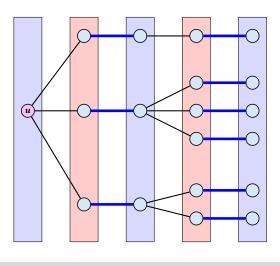
- ▶ One reweighting step increases the number of edges out of S by at least one.
- ▶ Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ▶ This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-Sand $R - \Gamma(S)$.
- ▶ Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

Analysis

- \triangleright We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- ▶ This gives a polynomial running time.

How to find an augmenting path?

Construct an alternating tree.



| | | Ernst Mayr, Harald Räcke

20 Weighted Bipartite Matching

563

565

Analysis

- ightharpoonup The current matching does not have any edges from $V_{\rm odd}$ to $L \setminus V_{\text{even}}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd} . After at most nreweights we can do an augmentation.
- ightharpoonup A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- ▶ An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we obtain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

Analysis

How do we find *S*?

- ▶ Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at u).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- ▶ All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\text{odd}}| = |\Gamma(V_{\text{even}})| < |V_{\text{even}}|$, and all odd vertices are saturated in the current matching.

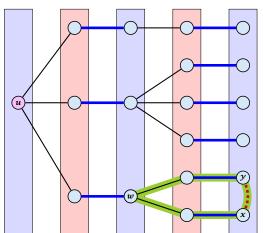
Ernst Mayr, Harald Räcke

20 Weighted Bipartite Matching

564

How to find an augmenting path?

Construct an alternating tree.



even nodes odd nodes

Case 4:

v is already contained in T as an even vertex

can't ignore γ

The cycle $w \leftrightarrow y - x \leftrightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!). The path u-w is called the stem of the blossom.

20 Weighted Bipartite Matching

21 Maximum Matching in General Graphs

Flowers and Blossoms

Definition 101

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node γ and terminates at some node w. We permit the possibility that r = w (empty stem).
- ▶ A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

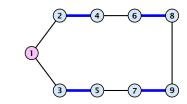
| | | Ernst Mayr, Harald Räcke

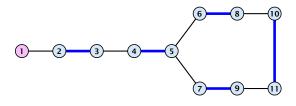
21 Maximum Matching in General Graphs

567

569

Flowers and Blossoms





Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

568

Flowers and Blossoms

Properties:

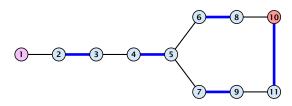
- 1. A stem spans $2\ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
- **2.** A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms

Properties:

- **4.** Every node *x* in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Flowers and Blossoms



Ernst Mayr, Harald Räcke

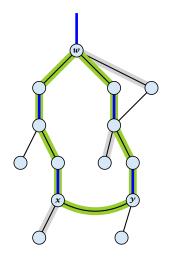
21 Maximum Matching in General Graphs

571

573

Shrinking Blossoms

- \triangleright Edges of T that connect a node unot in B to a node in B become tree edges in T' connecting u to b.
- ► Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- ▶ Nodes that are connected in *G* to at least one node in B become connected to b in G'.



Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by G' = G/B, which is obtained from *G* by contracting the blossom *B*.

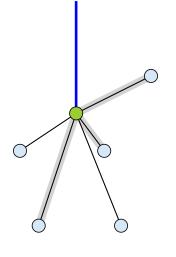
- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- \blacktriangleright Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B.

Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- ▶ Nodes that are connected in *G* to at least one node in B become connected to b in G'.



21 Maximum Matching in General Graphs

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.

Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

574

Correctness

Assume that in G we have a flower w.r.t. matching M. Let γ be the root, B the blossom, and w the base. Let graph G' = G/Bwith pseudonode b. Let M' be the matching in the contracted graph.

Lemma 102

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then Gcontains an augmenting path starting at r w.r.t. matching M.

Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

575

577

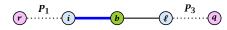
Correctness

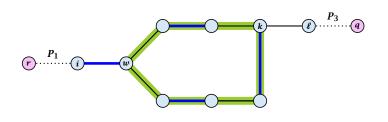
Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

▶ Next suppose that the stem is non-empty.





Correctness

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- ▶ If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- ▶ $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- ▶ If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

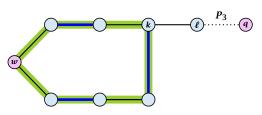
576

Correctness

Proof.

Case 2: empty stem

▶ If the stem is empty then after expanding the blossom, w = r.



▶ The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

578

Correctness

Lemma 103

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

579

Correctness

Proof.

- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- \blacktriangleright We can assume that r and q are the only free nodes in G.

Case 1: empty stem

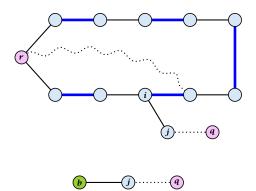
Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Correctness

Illustration for Case 1:



Correctness

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_{+} have same cardinality.

This path must go between w and a as these are the only unmatched vertices w.r.t. M_{+} .

For M'_{\perp} the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

 $\left| igcup_{\parallel}
ight| \left| igcup_{\parallel}
ight|$ Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

582

```
Algorithm 27 examine(i, found)
1: for all j \in \bar{A}(i) do
        if j is even then contract(i, j) and return
        if i is unmatched then
3:
             q \leftarrow j;
4:
5:
             pred(q) \leftarrow i;
             found ← true:
6:
7:
             return
        if j is matched and unlabeled then
8:
             pred(j) \leftarrow i;
9:
             pred(mate(j)) \leftarrow j;
10:
             add mate(j) to list
11:
```

Examine the neighbours of a node i

The lecture version of the slides has a step by step expla-

Algorithm 26 search(r, found)

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- delete a node *i* from *list*
- examine(*i*, *found*) 7:
- **if** *found* = true **then return**

Search for an augmenting path starting at r.

The lecture version of the slides has a step by step explanation.

Algorithm 28 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Contract blossom identified by nodes i and j

Algorithm 28 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Get all nodes of the blossom.

Time: $\mathcal{O}(m)$

||||||||| Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

585

585

Algorithm 28 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

b will be an even node, and it has unexamined neighbours.

Algorithm 28 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Identify all neighbours of b.

Time: $\mathcal{O}(m)$ (how?)

Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

585

Algorithm 28 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3. label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

Every node that was adjacent to a node in **B** is now adjacent to **b**

Algorithm 28 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Only for making a blossom expansion easier.

Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

585

Algorithm 28 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Only delete links from nodes not in B to B.

When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.

21 Maximum Matching in General Graphs

585

Analysis

- ightharpoonup A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- ▶ The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- ▶ There are at most *n* contractions as each contraction reduces the number of vertices.
- ▶ The expansion can trivially be done in the same time as needed for all contractions.
- ightharpoonup An augmentation requires time $\mathcal{O}(n)$. There are at most nof them.
- ► In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$
.

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.

A Fast Matching Algorithm

Algorithm 29 Bimatch-Hopcroft-Karp(*G*)

1: *M* ← Ø

2: repeat

let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of

vertex-disjoint, shortest augmenting path w.r.t. M.

 $M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k)$

6: until $\mathcal{P} = \emptyset$

7: **return** *M*

We call one iteration of the repeat-loop a phase of the algorithm.

Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

Analysis Hopcroft-Karp

- ightharpoonup Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- \blacktriangleright Let P be an augmenting path in M'.

Lemma 105

The set $A \stackrel{\text{def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

Analysis Hopcroft-Karp

Lemma 104

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- ► Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- ▶ Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ▶ The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- ▶ Hence, there are at least *k* components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.

Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

589

Analysis Hopcroft-Karp

Proof.

Ernst Mayr, Harald Räcke

- ► The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ▶ Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Analysis Hopcroft-Karp

Lemma 106

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- ▶ If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from *P* coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- ▶ This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

592

Analysis Hopcroft-Karp

Lemma 107

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ▶ Hence, there can be at most $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\rho_{+1}}$ of them.

22 The Hopcroft-Karp Algorithm

593

Analysis Hopcroft-Karp

Lemma 108

One phase of the Hopcroft-Karp algorithm can be implemented in time O(m).

construct a "level graph" G':

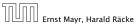
- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2

Ernst Mayr, Harald Räcke

stop when a level (apart from Level 0) contains a free vertex can be done in time $\mathcal{O}(m)$ by a modified BFS

Analysis Hopcroft-Karp

- ▶ a shortest augmenting path must go from Level 0 to the last layer constructed
- ▶ it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a "dead end" v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- ightharpoonup if you reach a dead end backtrack and delete v together with its incident edges



22 The Hopcroft-Karp Algorithm

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is O(mn)

- ightharpoonup a search (successful or unsuccessful) takes time O(n)
- ▶ a search deletes at least one edge from the level graph

22 The Hopcroft-Karp Algorithm

there are at most n phases

Time: $\mathcal{O}(mn^2)$.

Analysis Hopcroft-Karp

See lecture versions of the slides.

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is O(m)

an edge/vertex is traversed at most twice

need at most $\mathcal{O}(\sqrt{n})$ phases

- after \sqrt{n} phases there is a cut of size at most \sqrt{n} in the residual graph
- hence at most \sqrt{n} additional augmentations required

Time: $\mathcal{O}(m\sqrt{n})$.