Part IV

Flows and Cuts

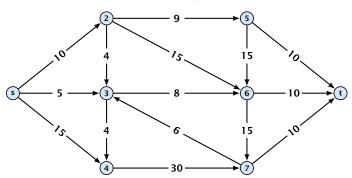
Ernst Ma<u>yr,</u> Harald Räcke

391

10 Introduction

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- ▶ two special nodes: source *s*; target *t*;
- ▶ no edges entering *s* or leaving *t*;
- at least for now: no parallel edges;



The following slides are partially based on slides by Kevin Wayne.

Ernst Mayr, Harald Räcke

Cuts

Definition 1

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

Definition 2

The capacity of a cut *A* is defined as

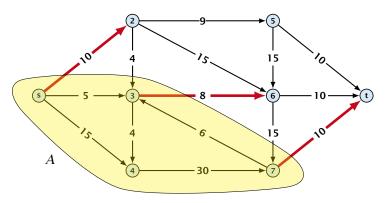
$$\operatorname{cap}(A, V \setminus A) := \sum_{e \in \operatorname{out}(A)} c(e)$$
,

where $\operatorname{out}(A)$ denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

Cuts

Example 3



The capacity of the cut is $cap(A, V \setminus A) = 28$.

Ernst Mayr, Harald Räcke

10 Introduction

395

Flows

Definition 5

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{e \in out(s)} f(e)$$
.

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

Flows

Definition 4

An (s, t)-flow is a function $f : E \rightarrow \mathbb{R}^+$ that satisfies

1. For each edge *e*

$$0 \le f(e) \le c(e)$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \text{out}(v)} f(e) = \sum_{e \in \text{into}(v)} f(e) .$$

(flow conservation constraints)

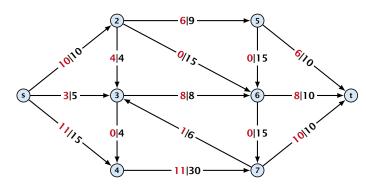
Ernst Mayr, Harald Räcke

10 Introduction

396

Flows

Example 6



The value of the flow is val(f) = 24.

Ernst Mayr, Harald Räcke

10 Introduction

397

Flows

Lemma 7 (Flow value lemma)

Let f be a flow, and let $A \subseteq V$ be an (s,t)-cut. Then the net-flow across the cut is equal to the amount of flow leaving s, i.e.,

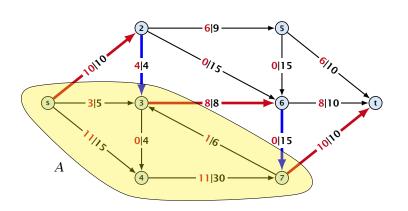
$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
.

Ernst Mayr, Harald Räcke

10 Introduction

399

Example 8



Proof.

$$val(f) = \sum_{e \in out(s)} f(e)$$

$$= \sum_{e \in out(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in out(v)} f(e) - \sum_{e \in in(v)} f(e) \right)$$

$$= \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$

The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

Ernst Mayr, Harald Räcke

10 Introduction

400

Corollary 9

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$val(f) = cap(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

$$cap(A, V \setminus A) < val(f')$$

$$= \sum_{e \in out(A)} f'(e) - \sum_{e \in into(A)} f'(e)$$

$$\leq \sum_{e \in out(A)} f'(e)$$

$$\leq cap(A, V \setminus A)$$

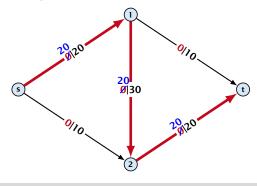
Ernst Mayr, Harald Räcke

10 Introduction

11 Augmenting Path Algorithms

Greedy-algorithm:

- ightharpoonup start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



 $|\dot{|}\dot{|}\dot{|}\dot{|}\dot{|}\dot{|}\dot{|}\dot{|}$ Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

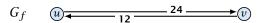
403

405

The Residual Graph

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- ▶ Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.



Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

Augmenting Path Algorithm

Definition 10

An augmenting path with respect to flow f, is a path from s to tin the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 1 FordFulkerson(G = (V, E, c))

- 1: Initialize $f(e) \leftarrow 0$ for all edges.
- 2: while \exists augmenting path p in G_f do
- augment as much flow along p as possible.

Augmenting Path Algorithm

Animation for augmenting path algorithms is only available in the lecture version of the slides.

Augmenting Path Algorithm

Theorem 11

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 12

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- **2.** Flow f is a maximum flow.
- 3. There is no augmenting path w.r.t. f.

П

11.1 The Generic Augmenting Path Algorithm

407

Augmenting Path Algorithm

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

Augmenting Path Algorithm

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let *f* be a flow with no augmenting paths.
 - Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.

11.1 The Generic Augmenting Path Algorithm

40

Analysis

Assumption:

All capacities are integers between 1 and \mathcal{C} .

Invariant:

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

Lemma 13

The algorithm terminates in at most $val(f^*) \leq nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of $\mathcal{O}(nmC)$.

Theorem 14

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

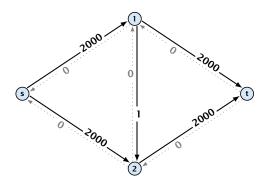
Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

411

A Bad Input

Problem: The running time may not be polynomial.



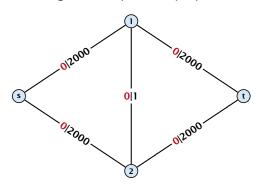
Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

> See the lecture-version of the slides for the animation.

A Bad Input

Problem: The running time may not be polynomial.



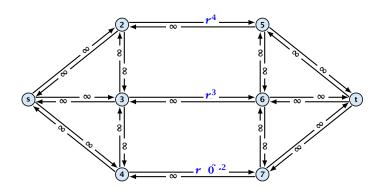
Ouestion:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

A Pathological Input

Let $r = \frac{1}{2}(\sqrt{5} - 1)$. Then $r^{n+2} = r^n - r^{n+1}$.



Running time may be infinite!!!

See the lecture-version of the slides for the animation.

11.1 The Generic Augmenting Path Algorithm

How to choose augmenting paths?

- ▶ We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

Several possibilities:

- ▶ Choose path with maximum bottleneck capacity.
- ▶ Choose path with sufficiently large bottleneck capacity.
- ► Choose the shortest augmenting path.

Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

415

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 17

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. This gives a running time of $\mathcal{O}(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- $ightharpoonup \mathcal{O}(m)$ augmentations for paths of exactly k < n edges.

Overview: Shortest Augmenting Paths

Lemma 15

The length of the shortest augmenting path never decreases.

Lemma 16

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

Ernst Mayr, Harald Räcke

Ernst Mayr, Harald Räcke

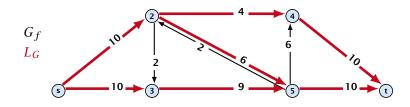
11.2 Shortest Augmenting Paths

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f .

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest s-u path in G_f if it is a an s-u path in L_G .



11.2 Shortest Augmenting Paths

11.2 Shortest Augmenting Paths

418

In the following we assume that the residual graph G_f does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.

|||||||| Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

419

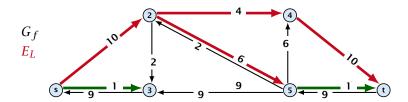
Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that uses edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .



Shortest Augmenting Path

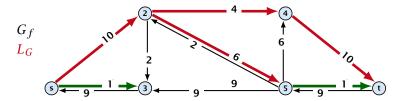
First Lemma:

The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:

- Bottleneck edges on the chosen path are deleted.
- ► Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.



Shortest Augmenting Paths

Theorem 18

The shortest augmenting path algorithm performs at most O(mn) augmentations. Each augmentation can be performed in time O(m).

Theorem 19 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn)augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow (why?).

11.2 Shortest Augmenting Paths

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

423

Suppose that the initial distance between s and t in G_f is k.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_{L} .

Either you find t after at most n steps, or you end at a node vthat does not have any outgoing edges.

You can delete incoming edges of v from E_L .

Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and tstrictly increases.

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2)$.

425

11.2 Shortest Augmenting Paths Ernst Mayr, Harald Räcke

How to choose augmenting paths?

- ▶ We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

Several possibilities:

- ▶ Choose path with maximum bottleneck capacity.
- ▶ Choose path with sufficiently large bottleneck capacity.
- ▶ Choose the shortest augmenting path.

Ernst Mayr, Harald Räcke

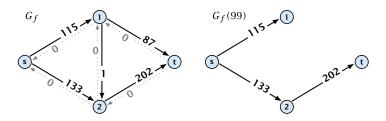
11.3 Capacity Scaling

427

Capacity Scaling

Intuition:

- ▶ Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .



Ernst Mayr, Harald Räcke

11.3 Capacity Scaling

428

Capacity Scaling

5:

Algorithm 2 maxflow(G, s, t, c)

```
1: foreach e \in E do f_e \leftarrow 0;
```

2: $\Delta \leftarrow 2^{\lceil \log_2 C \rceil}$

3: while $\Delta \geq 1$ do

 $G_f(\Delta) \leftarrow \Delta$ -residual graph

while there is augmenting path P in $G_f(\Delta)$ **do**

 $f \leftarrow \operatorname{augment}(f, c, P)$

 $update(G_f(\Delta))$

 $\Delta \leftarrow \Delta/2$

9: return f

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

Capacity Scaling

Lemma 20

There are $\lceil \log C \rceil$ *iterations over* Δ .

Proof: obvious.

Lemma 21

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + m\Delta$.

Proof: less obvious, but simple:

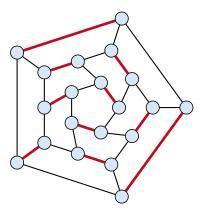
- ▶ There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- ▶ In G_f this cut can have capacity at most $m\Delta$.
- ▶ This gives me an upper bound on the flow that I can still add.

11.3 Capacity Scaling

431

Matching

- ▶ Input: undirected graph G = (V, E).
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Capacity Scaling

Lemma 22

There are at most 2m augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $ightharpoonup val(f^*) \le val(f) + 2m\Delta$
- ▶ Each augmentation increases flow by Δ .

Theorem 23

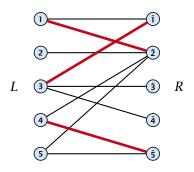
We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $\mathcal{O}(m^2 \log C)$.

11.3 Capacity Scaling

432

Bipartite Matching

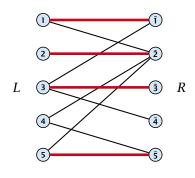
- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- $ightharpoonup M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



12.1 Matching

Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Ernst Mayr, Harald Räcke

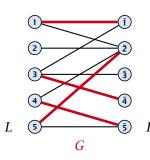
12.1 Matching

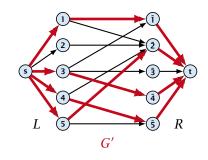
435

Proof

Max cardinality matching in $G \leq \text{value of maxflow in } G'$

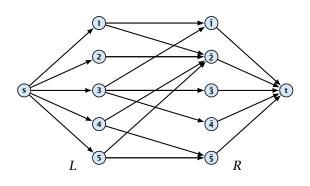
- Given a maximum matching M of cardinality k.
- \blacktriangleright Consider flow f that sends one unit along each of k paths.
- \blacktriangleright f is a flow and has cardinality k.





Maxflow Formulation

- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- ▶ Direct all edges from *L* to *R*.
- Add source s and connect it to all nodes on the left.
- Add t and connect all nodes on the right to t.
- All edges have unit capacity.



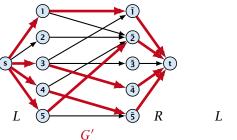
Ernst Mayr, Harald Räcke

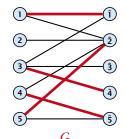
12.1 Matching

Proof

Max cardinality matching in $G \ge \text{value of maxflow in } G'$

- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ▶ Consider M= set of edges from L to R with f(e) = 1.
- \blacktriangleright Each node in L and R participates in at most one edge in M.
- ightharpoonup |M| = k, as the flow must use at least k middle edges.





|||||||| Ernst Mayr, Harald Räcke

12.1 Matching

437

Ernst Mayr, Harald Räcke 12.1 Matching

12.1 Matching

Which flow algorithm to use?

- ▶ Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- ► Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.
- ▶ Shortest augmenting path: $O(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m\sqrt{n})$.

A graph is a unit capacity simple graph if

- every edge has capacity 1
- a node has either at most one leaving edge **or** at most one entering edge

Ernst Mayr, Harald Räcke

12.1 Matching

439

Baseball Elimination

Formal definition of the problem:

- ▶ Given a set S of teams, and one specific team $z \in S$.
- ▶ Team x has already won w_x games.
- ▶ Team x still has to play team y, r_{xy} times.
- ▶ Does team z still have a chance to finish with the most number of wins.

Baseball Elimination

team	wins	losses	remaining games			
i	w_i	ℓ_i	Atl	Phi	NY	Mon
Atlanta	83	71	_	1	6	1
Philadelphia	80	79	1	_	0	2
New York	78	78	6	0	_	0
Montreal	77	82	1	2	0	_

Which team can end the season with most wins?

- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?

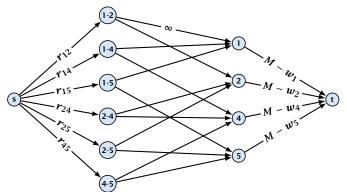
Ernst Mayr, Harald Räcke

12.2 Baseball Elimination

Baseball Elimination

Ernst Mayr, Harald Räcke

Flow network for z = 3. M is number of wins Team 3 can still obtain.



Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

$$w(T) := \sum_{i \in T} w_i, \qquad r(T) := \sum_{i,j \in T, i < j} r_{ij}$$
 wins of teams in T

If $\frac{w(T)+r(T)}{|T|} > M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

Ernst Mayr, Harald Räcke

12.2 Baseball Elimination

443

Baseball Elimination

Proof (⇒)

- Suppose we have a flow that saturates all source edges.
- ▶ We can assume that this flow is integral.
- ightharpoonup For every pairing x-y it defines how many games team xand team γ should win.
- \rightarrow The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_x$ because of capacity constraints.
- ▶ Hence, we found a set of results for the remaining games. such that no team obtains more than *M* wins in total.

12.2 Baseball Elimination

▶ Hence, team *z* is not eliminated.

Theorem 24

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} \gamma_{ij}$.

Proof (⇐)

- ► Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node x-y not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- ▶ We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$

$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

▶ This gives M < (w(T) + r(T))/|T|, i.e., z is eliminated.

Project Selection

Project selection problem:

- \triangleright Set P of possible projects. Project v has an associated profit p_{ν} (can be positive or negative).
- Some projects have requirements (taking course EA2) requires course EA1).
- ▶ Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- ▶ A subset A of projects is feasible if the prerequisites of every project in A also belong to A.

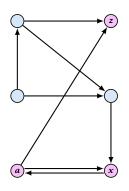
Goal: Find a feasible set of projects that maximizes the profit.

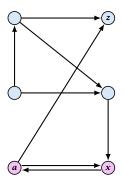
445

Project Selection

The prerequisite graph:

- \rightarrow {x, a, z} is a feasible subset.
- \blacktriangleright {x, a} is infeasible.





Ernst Mayr, Harald Räcke

12.3 Project Selection

447

Theorem 25

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.

 $\sum_{v \in A: p_v > 0} p_v = 0.$ Note that minimizing the capacity of the cut $(A, V \setminus A)$ corresponds to maximizing profits

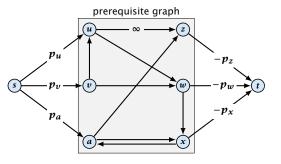
of projects in A.

- ► *A* is feasible because of capacity infinity edges.
- $cap(A, V \setminus A) = \sum_{v \in \bar{A}: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v)$ prerequisite graph For the formula we define $p_s := 0$. The step follows by adding $\sum_{v \in A: p_v > 0} p_v$ –

Project Selection

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_v for nodes v with positive profit.
- Create edge (v,t) with capacity $-p_v$ for nodes v with negative profit.



12.3 Project Selection

Preflows

Definition 26

An (s,t)-preflow is a function $f:E\mapsto \mathbb{R}^+$ that satisfies

1. For each edge *e*

$$0 \le f(e) \le c(e)$$
.

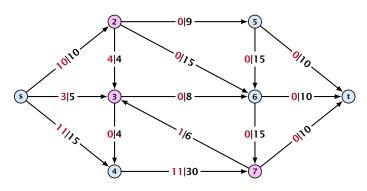
(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \text{out}(v)} f(e) \le \sum_{e \in \text{into}(v)} f(e) .$$

Preflows

Example 27



A node that has $\sum_{e \in \text{out}(v)} f(e) < \sum_{e \in \text{into}(v)} f(e)$ is called an active node.

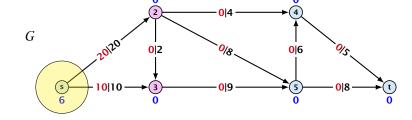
Ernst Mayr, Harald Räcke

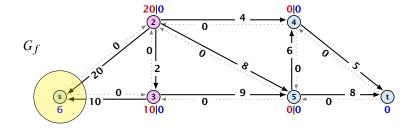
13.1 Generic Push Relabel

451

453

Preflows





13.1 Generic Push Relabel

Preflows

Definition:

A labelling is a function $\ell: V \to \mathbb{N}$. It is valid for preflow f if

- $\ell(u) \leq \ell(v) + 1$ for all edges (u, v) in the residual graph G_f (only non-zero capacity edges!!!)
- $\blacktriangleright \ell(s) = n$
- $ightharpoonup \ell(t) = 0$

Intuition:

The labelling can be viewed as a height function. Whenever the height from node u to node v decreases by more than 1 (i.e., it goes very steep downhill from u to v), the corresponding edge must be saturated.

Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

452

Preflows

Lemma 28

A preflow that has a valid labelling saturates a cut.

Proof:

- ▶ There are n nodes but n + 1 different labels from $0, \ldots, n$.
- ▶ There must exist a label $d \in \{0, ..., n\}$ such that none of the nodes carries this label.
- ▶ Let $A = \{v \in V \mid \ell(v) > d\}$ and $B = \{v \in V \mid \ell(v) < d\}$.
- ▶ We have $s \in A$ and $t \in B$ and there is no edge from A to Bin the residual graph G_f ; this means that (A, B) is a saturated cut.

Lemma 29

A flow that has a valid labelling is a maximum flow.

Push Relabel Algorithms

Idea:

- start with some preflow and some valid labelling
- successively change the preflow while maintaining a valid labelling
- stop when you have a flow (i.e., no more active nodes)

Note that this is somewhat dual to an augmenting path algorithm. The former maintains the property that it has a feasible flow. It successively changes this flow until it saturates some cut in which case we conclude that the flow is maximum. A preflow push algorithm maintains the property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation! constraints in which case we can conclude that we have a maximum flow.

∏∐∐∐ Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

457

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing admissible arc.

Increasing the label of u by 1 results in a valid labelling.

- \blacktriangleright Edges (w, u) incoming to u still fulfill their constraint $\ell(w) \leq \ell(u) + 1$.
- ▶ An outgoing edge (u, w) had $\ell(u) < \ell(w) + 1$ before since it was not admissible. Now: $\ell(u) \leq \ell(w) + 1$.

Changing a Preflow

An arc (u, v) with $c_f(u, v) > 0$ in the residual graph is admissible if $\ell(u) = \ell(v) + 1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node u with excess flow $f(u) = \sum_{e \in \text{into}(u)} f(e) - \sum_{e \in \text{out}(u)} f(e)$ and suppose e = (u, v)is an admissible arc with residual capacity $c_f(e)$.

We can send flow $\min\{c_f(e), f(u)\}\$ along e and obtain a new preflow. The old labelling is still valid (!!!).

- saturating push: $\min\{f(u), c_f(e)\} = c_f(e)$ the arc e is deleted from the residual graph
- ▶ non-saturating push: $\min\{f(u), c_f(e)\} = f(u)$ the node u becomes inactive

Note that a push-operation may be saturating **and** non-saturating at the same time.

Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a height/label of n and the target a height/label of 0. If we see an active node u with an admissible arc we push the flow at utowards the other end-point that has a lower height/label. If we do not have an admissible arc but excess flow into u it should roughly mean that the level/height/label of u should rise. (If we consider the flow to be water then this would be natural.)

Note that the above intuition is very incorrect as the labels are integral, i.e., they cannot really be seen as the height of a node.

Reminder

- ▶ In a preflow nodes may not fulfill conservation constraints; a node may have more incoming flow than outgoing flow.
- Such a node is called active.
- ightharpoonup A labelling is valid if for every edge (u, v) in the residual graph $\ell(u) \leq \ell(v) + 1$.
- \blacktriangleright An arc (u, v) in residual graph is admissible if $\ell(u) = \ell(v) + 1.$
- ightharpoonup A saturating push along e pushes an amount of c(e) flow along the edge, thereby saturating the edge (and making it dissappear from the residual graph).
- A non-saturating push along e = (u, v) pushes a flow of f(u), where f(u) is the excess flow of u. This makes u inactive.

Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

Preflow Push Algorithm

Animation for push relabel algorithms is only available in the lecture version of the slides.

Push Relabel Algorithms

```
Algorithm 3 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do
        if there is admiss, arc e out of u then
             push(G, e, f, c)
4:
        else
5:
             relabel(u)
6:
7: return f
```

In the following example we always stick to the same active node *u* until it becomes inactive but this is not required.

13.1 Generic Push Relabel

Analysis

Note that the lemma is almost trivial. A node v having excess flow means that the current preflow ships something to v. The residual graph allows to undo flow. Therefore, there must exist a path that can undo the shipment and move it back to s. However, a formal proof is required.

Lemma 30

An active node has a path to s in the residual graph.

Proof.

Ernst Mayr, Harald Räcke

- ▶ Let A denote the set of nodes that can reach s, and let B denote the remaining nodes. Note that $s \in A$.
- ▶ In the following we show that a node $b \in B$ has excess flow f(b) = 0 which gives the lemma.
- ▶ In the residual graph there are no edges into A, and, hence, no edges leaving A/entering B can carry any flow.
- ▶ Let $f(B) = \sum_{v \in B} f(v)$ be the excess flow of all nodes in B.

Let $f: E \to \mathbb{R}_0^+$ be a preflow. We introduce the notation

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

We have

$$f(B) = \sum_{b \in B} f(b)$$

$$= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right)$$

$$= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right)$$

$$= -\sum_{b \in B} \sum_{v \in A} f(b, v)$$

$$< 0$$

Hence, the excess flow f(b) must be 0 for every node $b \in B$.

]]][]]] Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

463

Analysis

Lemma 33

The number of saturating pushes performed is at most O(mn).

Proof.

- \triangleright Suppose that we just made a saturating push along (u, v).
- \blacktriangleright Hence, the edge (u, v) is deleted from the residual graph.
- ightharpoonup For the edge to appear again, a push from v to u is required.
- Currently, $\ell(u) = \ell(v) + 1$, as we only make pushes along admissible edges.
- For a push from v to u the edge (v, u) must become admissible. The label of v must increase by at least 2.
- Since the label of v is at most 2n-1, there are at most npushes along (u, v).

Analysis

Lemma 31

The label of a node cannot become larger than 2n-1.

Proof.

▶ When increasing the label at a node *u* there exists a path from u to s of length at most n-1. Along each edge of the path the height/label can at most drop by 1, and the label of the source is n.

Lemma 32

There are only $\mathcal{O}(n^2)$ relabel operations.

13.1 Generic Push Relabel

Lemma 34

The number of non-saturating pushes performed is at most $\mathcal{O}(n^2m)$.

Proof.

- ▶ Define a potential function $\Phi(f) = \sum_{\text{active nodes } v} \ell(v)$
- A saturating push increases Φ by $\leq 2n$ (when the target node becomes active it may contribute at most 2n to the sum).
- \blacktriangleright A relabel increases Φ by at most 1.
- \blacktriangleright A non-saturating push decreases Φ by at least 1 as the node that is pushed from becomes inactive and has a label that is strictly larger than the target.
- Hence,

#non-saturating_pushes \leq #relabels + $2n \cdot$ #saturating_pushes $< \mathcal{O}(n^2m)$.

Analysis

Theorem 35

There is an implementation of the generic push relabel algorithm with running time $O(n^2m)$.

| | | Ernst Mayr, Harald Räcke

13.1 Generic Push Relabel

467

Analysis

For special variants of push relabel algorithms we organize the neighbours of a node into a linked list (possible neighbours in the residual graph G_f). Then we use the discharge-operation:

Algorithm 20 discharge(u)

```
1: while u is active do
        v \leftarrow u.current-neighbour
        if v = \text{null then}
3:
4:
             relabel(u)
             u.current-neighbour \leftarrow u.neighbour-list-head
5:
        else
6:
             if (u, v) admissible then push(u, v)
7:
             else u.current-neighbour \leftarrow v.next-in-list
8:
```

Note that *u.current-neighbour* is a global variable. It is only changed within the discharge routine, but keeps its value between consecutive calls to discharge.

Analysis

Proof:

For every node maintain a list of admissible edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- check whether edge (v, u) needs to be added to G_f
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time O(n)

- check for all outgoing edges if they become admissible
- check for all incoming edges if they become non-admissible

13.1 Generic Push Relabel

Lemma 36

If v = null in Line 3, then there is no in the residual graph). For this the label outgoing admissible edge from u.

In order for e to become admissible the other end-point say v has to push flow to u (so that the edge (u, v) re-appears of v needs to be larger than the label of u. Then in order to make (u, v) admissible the label of u has to increase.

Proof.

- \triangleright While pushing from u the current-neighbour pointer is only advanced if the current edge is not admissible.
- ▶ The only thing that could make the edge admissible again would be a relabel at u.
- If we reach the end of the list (v = null) all edges are not admissible.

This shows that discharge(u) is correct, and that we can perform a relabel in Line 4.

13.1 Generic Push Relabel

13.2 Relabel to Front

```
Algorithm 21 relabel-to-front(G, s, t)
1: initialize preflow
2: initialize node list L containing V \setminus \{s, t\} in any order
3: foreach u \in V \setminus \{s, t\} do
         u.current-neighbour ← u.neighbour-list-head
 5: u \leftarrow L.head
6: while u \neq \text{null do}
         old-height \leftarrow \ell(u)
         discharge(u)
8:
         if \ell(u) > old-height then // relabel happened
9:
               move u to the front of L
10:
11:
         u \leftarrow u.next
```


|||||||| Ernst Mayr, Harald Räcke

13.2 Relabel to Front

471

Proof:

- Initialization:
 - 1. In the beginning s has label $n \ge 2$, and all other nodes have label 0. Hence, no edge is admissible, which means that any ordering *L* is permitted.
 - 2. We start with u being the head of the list; hence no node before u can be active
- Maintenance:
 - 1. Pushes do no create any new admissible edges. Therefore, if discharge() does not relabel u, L is still topologically sorted.
 - ▶ After relabeling, *u* cannot have admissible incoming edges as such an edge (x, u) would have had a difference $\ell(x) - \ell(u) \ge 2$ before the re-labeling (such edges do not exist in the residual graph).

Hence, moving u to the front does not violate the sorting property for any edge; however it fixes this property for all admissible edges leaving u that were generated by the relabeling.

13.2 Relabel to Front

Lemma 37 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant holds.

- 1. The sequence L is topologically sorted w.r.t. the set of admissible edges; this means for an admissible edge (x, y)the node x appears before γ in sequence L.
- **2.** No node before u in the list L is active.

13.2 Relabel to Front

472

13.2 Relabel to Front

Proof:

- Maintenance:
 - 2. If we do a relabel there is nothing to prove because the only node before u' (u in the next iteration) will be the current u; the discharge(u) operation only terminates when u is not active anymore.

For the case that we do not relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissible arc. However, all admissible arc point to successors of u.

Note that the invariant means that for u = null we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.

13.2 Relabel to Front

13.2 Relabel to Front

Lemma 38

There are at most $\mathcal{O}(n^3)$ calls to discharge(u).

Every discharge operation without a relabel advances u (the current node within list L). Hence, if we have n discharge operations without a relabel we have u = null and the algorithm terminates.

Therefore, the number of calls to discharge is at most $n(\#relabels + 1) = O(n^3).$

| | | Ernst Mayr, Harald Räcke

13.2 Relabel to Front

475

477

13.2 Relabel to Front

Note that by definition a saturating push operation $(\min\{c_f(e), f(u)\} = c_f(e))$ can at the same time be a non-saturating push operation (min $\{c_f(e), f(u)\} = f(u)$).

Lemma 40

The cost for all saturating push-operations that are **not** also non-saturating push-operations is only O(mn).

Note that such a push-operation leaves the node u active but makes the edge e disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer *u.current-neighbour*.

This pointer can traverse the neighbour-list at most $\mathcal{O}(n)$ times (upper bound on number of relabels) and the neighbour-list has only degree(u) + 1 many entries (+1 for null-entry).

13.2 Relabel to Front

Lemma 39

The cost for all relabel-operations is only $\mathcal{O}(n^2)$.

A relabel-operation at a node is constant time (increasing the label and resetting *u.current-neighbour*). In total we have $O(n^2)$ relabel-operations.

13.2 Relabel to Front

476

13.2 Relabel to Front

Lemma 41

The cost for all non-saturating push-operations is only $\mathcal{O}(n^3)$.

A non-saturating push-operation takes constant time and ends the current call to discharge(). Hence, there are only $\mathcal{O}(n^3)$ such operations.

Theorem 42

The push-relabel algorithm with the rule relabel-to-front takes time $\mathcal{O}(n^3)$.

13.3 Highest Label

Algorithm 6 highest-label (G, s, t)

- 1: initialize preflow
- 2: **foreach** $u \in V \setminus \{s, t\}$ **do**
- *u.current-neighbour* ← *u.neighbour-list-head*
- 4: **while** \exists active node u **do**
- select active node u with highest label
- discharge(u)

Ernst Mayr, Harald Räcke

13.3 Highest Label

13.3 Highest Label

Since a discharge-operation is terminated by a non-saturating push this gives an upper bound of $\mathcal{O}(n^3)$ on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

Ouestion:

How do we find the next node for a discharge operation?

13.3 Highest Label

Lemma 43

When using highest label the number of non-saturating pushes is only $\mathcal{O}(n^3)$.

A push from a node on level ℓ can only "activate" nodes on levels strictly less than ℓ .

This means, after a non-saturating push from u a relabel is required to make u active again.

Hence, after n non-saturating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most $n(\#relabels + 1) = \mathcal{O}(n^3).$

13.3 Highest Label

Maintain lists L_i , $i \in \{0, ..., 2n\}$, where list L_i contains active nodes with label i (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node u with label k, traverse the lists L_k, L_{k-1}, \dots, L_0 , (in that order) until you find a non-empty list.

Unless the last (non-saturating) push was to s or t the list k-1must be non-empty (i.e., the search takes constant time).

482

13.3 Highest Label

Hence, the total time required for searching for active nodes is at most

 $\mathcal{O}(n^3) + n(\#non\text{-}saturating\text{-}pushes\text{-}to\text{-}s\text{-}or\text{-}t)$

Lemma 44

The number of non-saturating pushes to s or t is at most $\mathcal{O}(n^2)$.

With this lemma we get

Theorem 45

The push-relabel algorithm with the rule highest-label takes time $\mathcal{O}(n^3)$.

Ernst Mayr, Harald Räcke

13.3 Highest Label

483

485

Mincost Flow

Problem Definition:

$$\begin{aligned} & \min & & \sum_{e} c(e) f(e) \\ & \text{s.t.} & & \forall e \in E: & 0 \leq f(e) \leq u(e) \\ & & \forall v \in V: & f(v) = b(v) \end{aligned}$$

- ightharpoonup G = (V, E) is a directed graph.
- $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$ is the capacity function.
- $ightharpoonup c: E
 ightharpoonup \mathbb{R}$ is the cost function (note that c(e) may be negative).
- ▶ $b: V \to \mathbb{R}$, $\sum_{v \in V} b(v) = 0$ is a demand function.

13.3 Highest Label

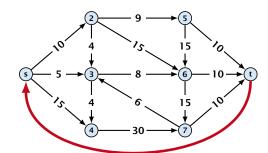
Proof of the Lemma.

- ▶ We only show that the number of pushes to the source is at most $\mathcal{O}(n^2)$. A similar argument holds for the target.
- After a node v (which must have $\ell(v) = n + 1$) made a non-saturating push to the source there needs to be another node whose label is increased from $\leq n+1$ to n+2 before ν can become active again.
- \blacktriangleright This happens for every push that v makes to the source. Since, every node can pass the threshold n + 2 at most once, v can make at most n pushes to the source.
- As this holds for every node the total number of pushes to the source is at most $\mathcal{O}(n^2)$.

Ernst Mayr, Harald Räcke

13.3 Highest Label

Solve Maxflow Using Mincost Flow



- Given a flow network for a standard maxflow problem.
- Set b(v) = 0 for every node. Keep the capacity function ufor all edges. Set the cost c(e) for every edge to 0.
- \blacktriangleright Add an edge from t to s with infinite capacity and cost -1.
- ▶ Then, $val(f^*) = -cost(f_{min})$, where f^* is a maxflow, and f_{\min} is a mincost-flow.

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- ▶ Given a flow network for a standard maxflow problem, and a value k.
- ▶ Set b(v) = 0 for every node apart from s or t. Set b(s) = -kand b(t) = k.
- ▶ Set edge-costs to zero, and keep the capacities.
- ▶ There exists a maxflow of value at least *k* if and only if the mincost-flow problem is feasible.

Ernst Mayr, Harald Räcke

14 Mincost Flow

Generalization

Differences

- Flow along an edge e may have non-zero lower bound $\ell(e)$.
- Flow along e may have negative upper bound u(e).
- ightharpoonup The demand at a node v may have lower bound a(v) and upper bound b(v) instead of just lower bound = upper bound = b(v).

Generalization

Our model:

$$\begin{aligned} & \min & & \sum_{e} c(e) f(e) \\ & \text{s.t.} & & \forall e \in E: & 0 \leq f(e) \leq u(e) \\ & & \forall v \in V: & f(v) = b(v) \end{aligned}$$

where
$$b: V \to \mathbb{R}$$
, $\sum_{v} b(v) = 0$; $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$; $c: E \to \mathbb{R}$;

A more general model?

$$\begin{aligned} & \min & & \sum_{e} c(e) f(e) \\ & \text{s.t.} & & \forall e \in E: & \ell(e) \leq f(e) \leq u(e) \\ & & \forall v \in V: & a(v) \leq f(v) \leq b(v) \end{aligned}$$

where
$$a: V \to \mathbb{R}$$
, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$;

14 Mincost Flow

Reduction I

$$\begin{aligned} & \text{min} & & \sum_{e} c(e) f(e) \\ & \text{s.t.} & & \forall e \in E : & \ell(e) \leq f(e) \leq u(e) \\ & & \forall v \in V : & a(v) \leq f(v) \leq b(v) \end{aligned}$$

We can assume that a(v) = b(v):

Add new node γ .

Add edge (r, v) for all $v \in V$.

Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

Set a(v) = b(v) for all $v \in V$.

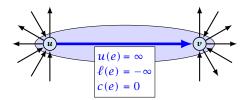
Set $b(r) = -\sum_{v \in V} b(v)$.

 $-\sum_{v} b(v)$ is negative; hence r is only sending flow.

Reduction II

min $\sum_{e} c(e) f(e)$ s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$ $\forall v \in V : f(v) = b(v)$

We can assume that either $\ell(e) \neq -\infty$ or $u(e) \neq \infty$:



If c(e) = 0 we can contract the edge/identify nodes u and v.

If $c(e) \neq 0$ we can transform the graph so that c(e) = 0.

14 Mincost Flow

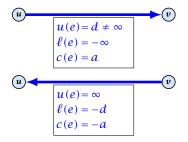
491

493

Reduction III

min $\sum_{e} c(e) f(e)$ s.t. $\forall e \in E : \ell(e) \leq f(e) \leq u(e)$ $\forall v \in V : f(v) = b(v)$

We can assume that $\ell(e) \neq -\infty$:

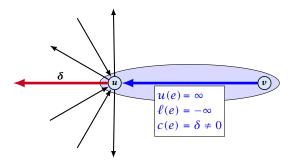


Replace the edge by an edge in opposite direction.

∐∐∐ Ernst Mayr, Harald Räcke

Reduction II

We can transform any network so that a particular edge has cost c(e) = 0:



Additionally we set b(u) = 0.

Ernst Mayr, Harald Räcke

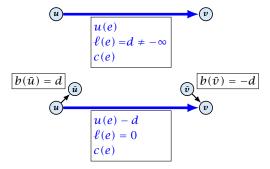
14 Mincost Flow

492

Reduction IV

min $\sum_{e} c(e) f(e)$ s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$ $\forall v \in V : f(v) = b(v)$

We can assume that $\ell(e) = 0$:



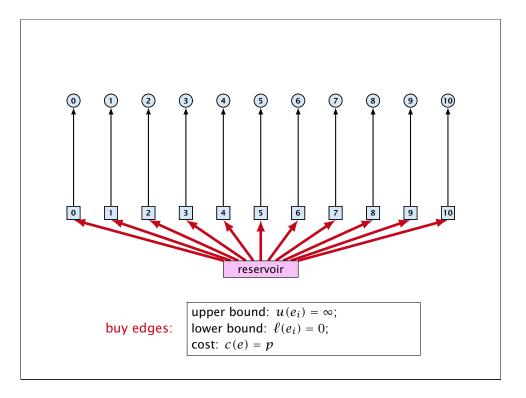
The added edges have infinite capacity and cost c(e)/2.

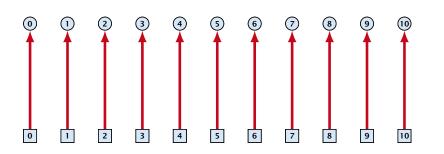
Applications

Caterer Problem

- ightharpoonup She needs to supply r_i napkins on N successive days.
- ▶ She can buy new napkins at *p* cents each.
- ▶ She can launder them at a fast laundry that takes *m* days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- ▶ At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

14 Mincost Flow

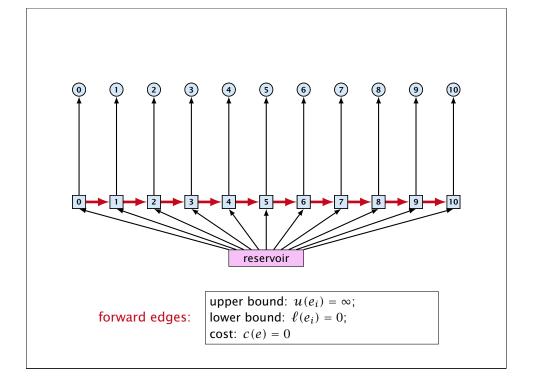


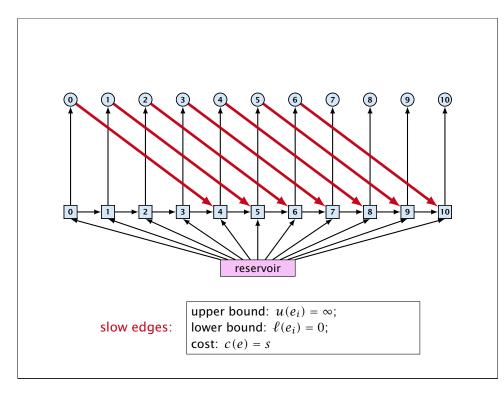


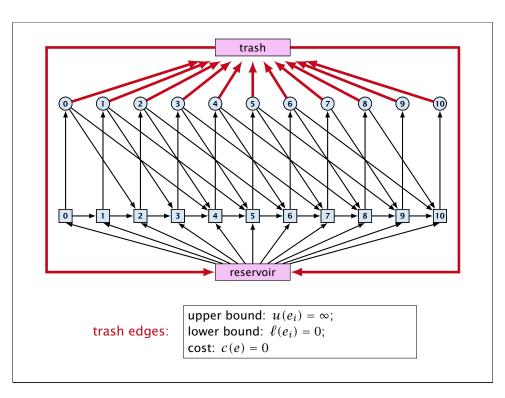
day edges:

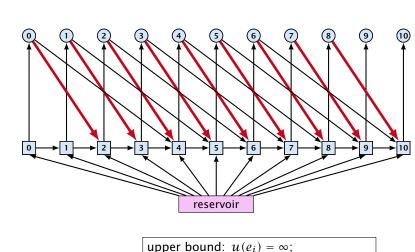
upper bound: $u(e_i) = \infty$; lower bound: $\ell(e_i) = r_i$;

cost: c(e) = 0









fast edges:

lower bound: $\ell(e_i) = 0$;

cost: c(e) = f

Residual Graph

Version A:

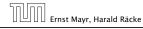
The residual graph G' for a mincost flow is just a copy of the graph G.

If we send f(e) along an edge, the corresponding edge e' in the residual graph has its lower and upper bound changed to $\ell(e') = \ell(e) - f(e)$ and u(e') = u(e) - f(e).

Version B:

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, u) has capacity z and a cost of -c((u, v)).



14 Mincost Flow

A circulation in a graph G = (V, E) is a function $f : E \to \mathbb{R}^+$ that has an excess flow f(v) = 0 for every node $v \in V$.

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \le u(e)$ for every edge of G.

||||||||| Ernst Mayr, Harald Räcke

14 Mincost Flow

For previous slide:

 $g = f^* - f$ is obtained by computing $\Delta(e) = f^*(e) - f(e)$ for every edge e = (u, v). If the result is positive set $g((u, v)) = \Delta(e)$ and g((v,u)) = 0. Otherwise set g((u,v)) = 0 and $g((v,u)) = -\Delta(e)$.

Lemma 46

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

 \Rightarrow Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

 \Leftarrow Let f be a non-mincost flow, and let f^* be a min-cost flow. We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending -f in the residual graph (pushing all flow back) we arrive at the original graph; for this f^* is clearly feasible)

14 Mincost Flow

Lemma 47

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \to \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.

14 Mincost Flow

Algorithm 22 CycleCanceling(G = (V, E), c, u, b)

- 1: establish a feasible flow f in G
- 2: while G_f contains negative cycle do
- use Bellman-Ford to find a negative circuit Z
- $\delta \leftarrow \min\{u_f(e) \mid e \in Z\}$ 4:
- augment δ units along Z and update G_f

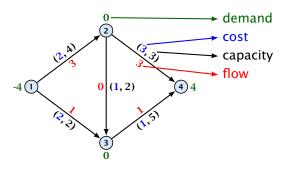
Ernst Mayr, Harald Räcke

14 Mincost Flow

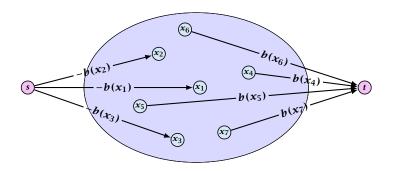
501

503

14 Mincost Flow



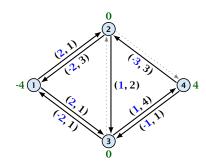
How do we find the initial feasible flow?

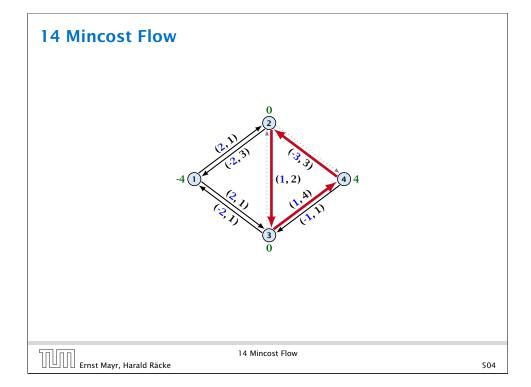


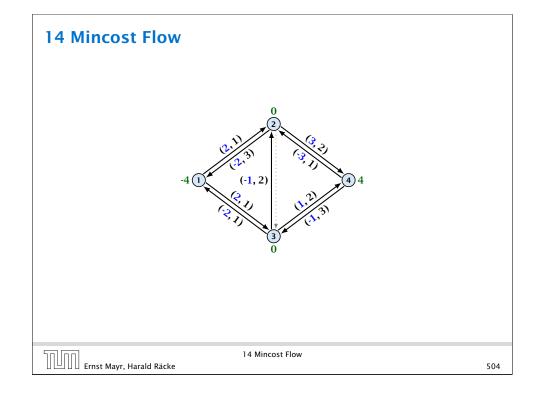
- Connect new node s to all nodes with negative b(v)-value.
- ▶ Connect nodes with positive b(v)-value to a new node t.
- ▶ There exist a feasible flow in the original graph iff in the resulting graph there exists an s-t flow of value

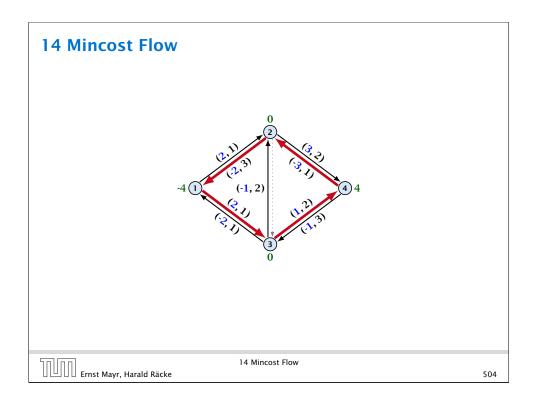
$$\sum_{v:b(v)<0} (-b(v)) = \sum_{v:b(v)>0} b(v) \ .$$

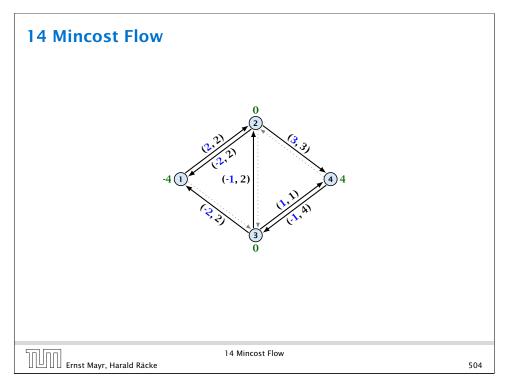
14 Mincost Flow











14 Mincost Flow

Lemma 48

The improving cycle algorithm runs in time $O(nm^2CU)$, for integer capacities and costs, when for all edges e, $|c(e)| \leq C$ and $|u(e)| \leq U$.

- Running time of Bellman-Ford is O(mn).
- ▶ Pushing flow along the cycle can be done in time $\mathcal{O}(n)$.
- ▶ Each iteration decreases the total cost by at least 1.
- ▶ The true optimum cost must lie in the interval $[-mCU, \ldots, +mCU].$

Note that this lemma is weak since it does not allow for edges with infinite capacity.

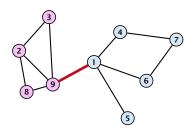
14 Mincost Flow

505

507

15 Global Mincut

Given an undirected, capacitated graph G = (V, E, c) find a partition of V into two non-empty sets $S, V \setminus S$ s.t. the capacity of edges between both sets is minimized.



14 Mincost Flow

A general mincost flow problem is of the following form:

$$\begin{aligned} & \min & & \sum_{e} c(e) f(e) \\ & \text{s.t.} & & \forall e \in E: & \ell(e) \leq f(e) \leq u(e) \\ & & \forall v \in V: & a(v) \leq f(v) \leq b(v) \end{aligned}$$

where
$$a: V \to \mathbb{R}$$
, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$;

Lemma 49 (without proof)

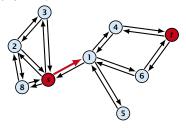
A general mincost flow problem can be solved in polynomial time.

14 Mincost Flow

15 Global Mincut

We can solve this problem using standard maxflow/mincut.

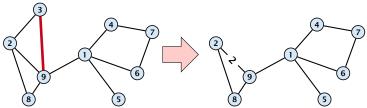
- Construct a directed graph G' = (V, E') that has edges (u, v) and (v, u) for every edge $\{u, v\} \in E$.
- Fix an arbitrary node $s \in V$ as source. Compute a minimum s-t cut for all possible choices $t \in V$, $t \neq s$. (Time: $\mathcal{O}(n^4)$)
- Let $(S, V \setminus S)$ be a minimum global mincut. The above algorithm will output a cut of capacity $cap(S, V \setminus S)$ whenever $|\{s,t\} \cap S| = 1$.



Edge Contractions

- ▶ Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- ▶ Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 50



• Edge-contractions do no decrease the size of the mincut.

││∐∐∐∐ Ernst Mayr, Harald Räcke

15 Global Mincut

509

Edge Contractions

We can perform an edge-contraction in time $\mathcal{O}(n)$.

Ernst Mayr, Harald Räcke

15 Global Mincut

Randomized Mincut Algorithm

Algorithm 23 KargerMincut(G = (V, E, c))

1: **for** $i = 1 \rightarrow n - 2$ **do**

choose $e \in E$ randomly with probability c(e)/c(E)

 $G \leftarrow G/e$

4: **return** only cut in *G*

- ▶ Let G_t denote the graph after the (n-t)-th iteration, when t nodes are left.
- ightharpoonup Note that the final graph G_2 only contains a single edge.
- ightharpoonup The cut in G_2 corresponds to a cut in the original graph Gwith the same capacity.
- ▶ What is the probability that this algorithm returns a mincut?

510

Example: Randomized Mincut Algorithm

Animation only available in the lecture version of the slides.

Analysis

What is the probability that a given mincut A is still possible after round i?

▶ It is still possible to obtain cut A in the end if so far no edge in $(A, V \setminus A)$ has been contracted.

Ernst Mayr, Harald Räcke

15 Global Mincut

513

Analysis

The probability that we do not choose an edge from the cut in iteration i is

$$1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1} .$$

The probability that the cut is alive after iteration n-t (after which t nodes are left) is

$$\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} = \frac{t(t-1)}{n(n-1)} .$$

Choosing t = 2 gives that with probability $1/\binom{n}{2}$ the algorithm computes a mincut.

Analysis

What is the probability that we select an edge from A in iteration i?

- Let $min = cap(A, V \setminus A)$ denote the capacity of a mincut.
- \blacktriangleright Let cap(v) be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- ▶ Clearly, $cap(v) \ge min$.
- \triangleright Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

▶ Hence, the probability of choosing an edge from the cut is

```
at n-i+1 is the number of nodes in graph G_{n-i+1}=(V_{n-i+1},E_{n-i+1}), the graph at the start of iteration i.
```


15 Global Mincut

514

Analysis

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le n^{-c} ,$$

where we used $1 - x \le e^{-x}$.

Theorem 51

Ernst Mayr, Harald Räcke

The randomized mincut algorithm computes an optimal cut with high probability. The total running time is $O(n^4 \log n)$.

Improved Algorithm

Algorithm 24 RecursiveMincut(G = (V, E, c))

- 1: **for** $i = 1 \to n n/\sqrt{2}$ **do**
- choose $e \in E$ randomly with probability c(e)/c(E)
- $G \leftarrow G/e$
- 4: **if** |V| = 2 **return** cut-value;
- 5: *cuta* ← RecursiveMincut(G):
- 6: *cutb* ← RecursiveMincut(G);
- 7: **return** min{*cuta*, *cutb*}

Running time:

- $T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + \mathcal{O}(n^2)$
- ► This gives $T(n) = \mathcal{O}(n^2 \log n)$.

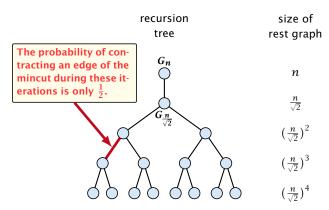
Note that the above implementation only works for very special values of n.

||||||||| Ernst Mayr, Harald Räcke

15 Global Mincut

517

Probability of Success



We can estimate the success probability by using the following game on the recursion tree. Delete every edge with probability $\frac{1}{2}$. If in the end you have a path from the root to at least one leaf node you are successful.

15 Global Mincut

Probability of Success

The probability of contracting an edge from the mincut during one iteration through the for-loop is only

$$\frac{t(t-1)}{n(n-1)} \le \frac{t^2}{n^2} = \frac{1}{2} ,$$

as
$$t = \frac{n}{\sqrt{2}}$$
.

Ernst Mayr, Harald Räcke

15 Global Mincut

518

Probability of Success

Let for an edge e in the recursion tree, h(e) denote the height (distance to leaf level) of the parent-node of *e* (end-point that is higher up in the tree). Let h denote the height of the root node.

Call an edge *e* alive if there exists a path from the parent-node of e to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn't been deleted.

Lemma 52

The probability that an edge e is alive is at least $\frac{1}{h(e)+1}$.

Probability of Success

Proof.

- ▶ An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- ► This happens with probability

$$p_{d} = \frac{1}{2} \left(2p_{d-1} - p_{d-1}^{2} \right) \left[\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B] \right]$$

$$= p_{d-1} - \frac{p_{d-1}^{2}}{2}$$

||||||||| | Ernst Mayr, Harald Räcke

15 Global Mincut

521

16 Gomory Hu Trees

Given an undirected, weighted graph G = (V, E, c) a cut-tree T = (V, F, w) is a tree with edge-set F and capacities w that fulfills the following properties.

- 1. Equivalent Flow Tree: For any pair of vertices $s, t \in V$, f(s,t) in G is equal to $f_T(s,t)$.
- **2. Cut Property:** A minimum *s-t* cut in *T* is also a minimum cut in G.

Here, f(s,t) is the value of a maximum s-t flow in G, and $f_T(s,t)$ is the corresponding value in T.

15 Global Mincut

Lemma 53

One run of the algorithm can be performed in time $O(n^2 \log n)$ and has a success probability of $\Omega(\frac{1}{\log n})$.

Doing $\Theta(\log^2 n)$ runs gives that the algorithm succeeds with high probability. The total running time is $O(n^2 \log^3 n)$.

Ernst Mayr, Harald Räcke

15 Global Mincut

522

Overview of the Algorithm

Ernst Mayr, Harald Räcke

The algorithm maintains a partition of V, (sets S_1, \ldots, S_t), and a spanning tree T on the vertex set $\{S_1, \ldots, S_t\}$.

Initially, there exists only the set $S_1 = V$.

Then the algorithm performs n-1 split-operations:

- ▶ In each such split-operation it chooses a set S_i with $|S_i| \ge 2$ and splits this set into two non-empty parts X and Y.
- \triangleright S_i is then removed from T and replaced by X and Y.
- ▶ X and Y are connected by an edge, and the edges that before the split were incident to S_i are attached to either X or Y.

In the end this gives a tree on the vertex set V.

Details of the Split-operation

- Select S_i that contains at least two nodes a and b.
- ▶ Compute the connected components of the forest obtained from the current tree T after deleting S_i . Each of these components corresponds to a set of vertices from V.
- ▶ Consider the graph *H* obtained from *G* by contracting these connected components into single nodes.
- ▶ Compute a minimum *a-b* cut in *H*. Let *A*, and *B* denote the two sides of this cut.
- ▶ Split S_i in T into two sets/nodes $S_i^a = S_i \cap A$ and $S_i^b = S_i \cap B$ and add edge $\{S_i^a, S_i^b\}$ with capacity $f_H(a, b)$.
- ▶ Replace an edge $\{S_i, S_x\}$ by $\{S_i^a, S_x\}$ if $S_x \subset A$ and by $\{S_i^b, S_X\}$ if $S_X \subset B$.

16 Gomorv Hu Trees

525

Analysis

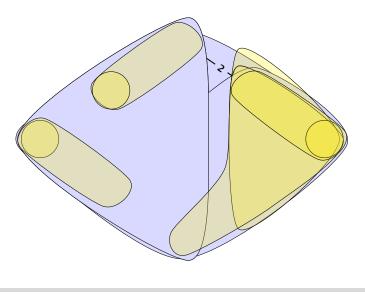
Lemma 54

For nodes $s, t, x \in V$ we have $f(s, t) \ge \min\{f(s, x), f(x, t)\}$

Lemma 55

For nodes $s, t, x_1, \dots, x_k \in V$ we have $f(s,t) \ge \min\{f(s,x_1), f(x_1,x_2), \dots, f(x_{k-1},x_k), f(x_k,t)\}\$

Example: Gomory-Hu Construction



Ernst Mayr, Harald Räcke 16 Gomorv Hu Trees

Lemma 56

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let $v, w \in S$. Then there is a minimum $v \cdot w$ -cut T with $T \subset S$.

Proof: Let X be a minimum v - w cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $s \in X$.

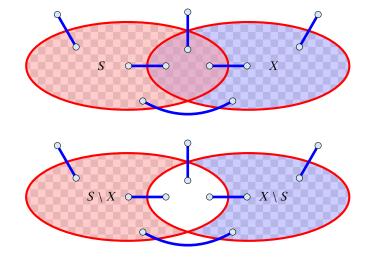
First case $r \in X$.

- $ightharpoonup \operatorname{cap}(X \setminus S) + \operatorname{cap}(S \setminus X) \le \operatorname{cap}(S) + \operatorname{cap}(X).$
- ▶ $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- ▶ This gives $cap(S \setminus X) \le cap(X)$.

Second case $r \notin X$.

- $ightharpoonup \operatorname{cap}(X \cup S) + \operatorname{cap}(S \cap X) \leq \operatorname{cap}(S) + \operatorname{cap}(X).$
- ▶ $cap(X \cup S) \ge cap(S)$ because $X \cup S$ is an r-s cut.
- ▶ This gives $cap(S \cap X) \le cap(X)$.

$cap(S \setminus X) + cap(X \setminus S) \le cap(S) + cap(X)$

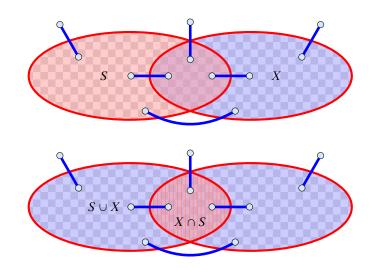


Ernst Mayr, Harald Räcke

16 Gomory Hu Trees

529

$cap(X \cup S) + cap(S \cap X) \le cap(S) + cap(X)$



Ernst Mayr, Harald Räcke

16 Gomory Hu Trees

530

Analysis

Lemma 56 tells us that if we have a graph G = (V, E) and we contract a subset $X \subset V$ that corresponds to some mincut, then the value of f(s,t) does not change for two nodes $s,t\notin X$.

We will show (later) that the connected components that we contract during a split-operation each correspond to some mincut and, hence, $f_H(s,t) = f(s,t)$, where $f_H(s,t)$ is the value of a minimum s-t mincut in graph H.

Analysis

Ernst Mayr, Harald Räcke

Invariant [existence of representatives]:

For any edge $\{S_i, S_i\}$ in T, there are vertices $a \in S_i$ and $b \in S_i$ such that $w(S_i, S_j) = f(a, b)$ and the cut defined by edge $\{S_i, S_i\}$ is a minimum a-b cut in G.

531

Analysis

We first show that the invariant implies that at the end of the algorithm ${\cal T}$ is indeed a cut-tree.

- Let $s = x_0, x_1, \dots, x_{k-1}, x_k = t$ be the unique simple path from s to t in the final tree T. From the invariant we get that $f(x_i, x_{i+1}) = w(x_i, x_{i+1})$ for all j.
- Then

$$\begin{split} f_T(s,t) &= \min_{i \in \{0,\dots,k-1\}} \{w(x_i,x_{i+1})\} \\ &= \min_{i \in \{0,\dots,k-1\}} \{f(x_i,x_{i+1})\} \leq f(s,t) \ . \end{split}$$

- Let $\{x_j, x_{j+1}\}$ be the edge with minimum weight on the path.
- Since by the invariant this edge induces an s-t cut with capacity $f(x_j, x_{j+1})$ we get $f(s,t) \le f(x_j, x_{j+1}) = f_T(s,t)$.

Ernst Mayr, Harald Räcke

16 Gomory Hu Trees

533

535

Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it was true before the operation.

Let S_i denote our selected cluster with nodes a and b. Because of the invariant all edges leaving $\{S_i\}$ in T correspond to some mincuts.

Therefore, contracting the connected components does not change the mincut btw. a and b due to Lemma 56.

After the split we have to choose representatives for all edges. For the new edge $\{S_i^a, S_i^b\}$ with capacity $w(S_i^a, S_i^b) = f_H(a, b)$ we can simply choose a and b as representatives.

Analysis

- ▶ Hence, $f_T(s,t) = f(s,t)$ (flow equivalence).
- ▶ The edge $\{x_i, x_{i+1}\}$ is a mincut between s and t in T.
- ▶ By invariant, it forms a cut with capacity $f(x_j, x_{j+1})$ in G (which separates s and t).
- ► Since, we can send a flow of value $f(x_j, x_{j+1})$ btw. s and t, this is an s-t mincut (cut property).

16 Gomory Hu Trees

534

Proof of Invariant

For edges that are not incident to S_i we do not need to change representatives as the neighbouring sets do not change.

Consider an edge $\{X, S_i\}$, and suppose that before the split it used representatives $x \in X$, and $s \in S_i$. Assume that this edge is replaced by $\{X, S_i^a\}$ in the new tree (the case when it is replaced by $\{X, S_i^b\}$ is analogous).

If $s \in S_i^a$ we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to show that f(x,a) = f(x,s).

Proof of Invariant

Because the invariant was true before the split we know that the edge $\{X, S_i\}$ induces a cut in G of capacity f(x, s). Since, x and a are on opposite sides of this cut, we know that $f(x, a) \leq f(x, s)$.

The set B forms a mincut separating a from b. Contracting all nodes in this set gives a new graph G' where the set B is represented by node v_B . Because of Lemma 56 we know that f'(x,a) = f(x,a) as $x, a \notin B$.

We further have $f'(x, a) \ge \min\{f'(x, v_B), f'(v_B, a)\}.$

Since $s \in B$ we have $f'(v_B, x) \ge f(s, x)$.

Also, $f'(a, v_B) \ge f(a, b) \ge f(x, s)$ since the *a-b* cut that splits S_i into S_i^a and S_i^b also separates s and x.

16 Gomory Hu Trees

537

