

18 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.
- Shortest augmenting path: $\mathcal{O}(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m\sqrt{n})$.

Matching

- Input: undirected graph G = (V, E).
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



19 Augmenting Paths for Matchings

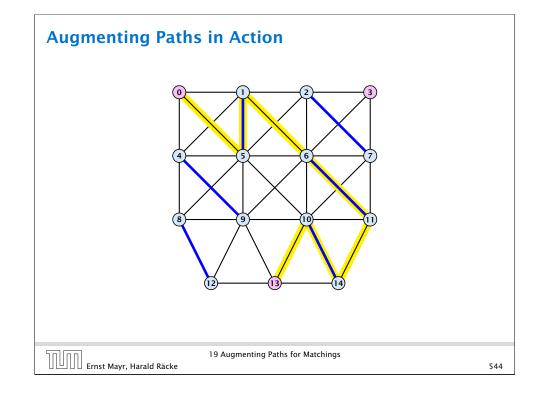
Definitions.

- Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- ▶ For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 1

Ernst Mayr, Harald Räcke

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.



19 Augmenting Paths for Matchings

Proof.

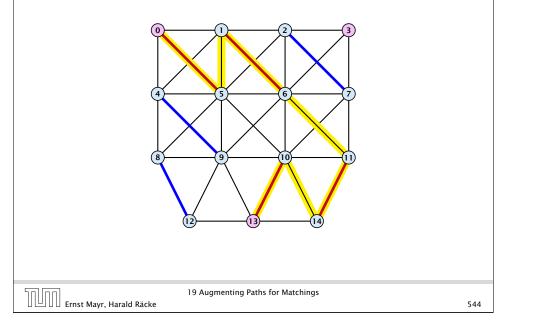
- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching $M' = M \oplus P$ with larger cardinality.
- $\Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set M' \oplus M (i.e., only edges that are in either M or M' but not in both).$

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

545

Augmenting Paths in Action



19 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

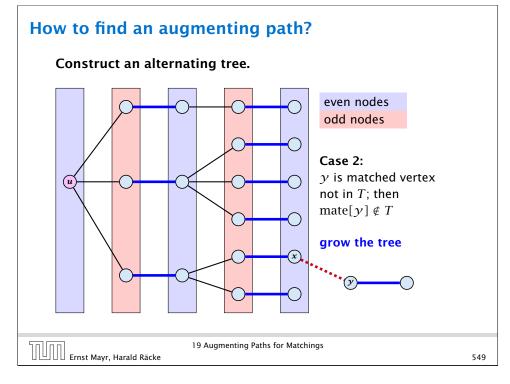
19 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (£).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.
- $P_1 \circ P'_1$ is augmenting path in M (4).

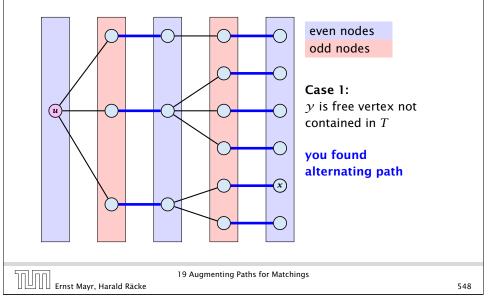
Ernst Mayr, Harald Räcke	19 Augmenting Paths for Matchings	547

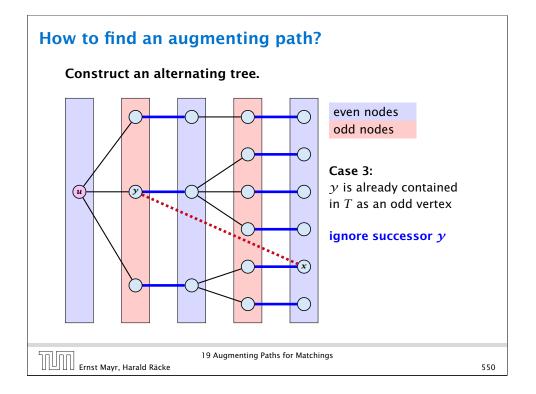
P'

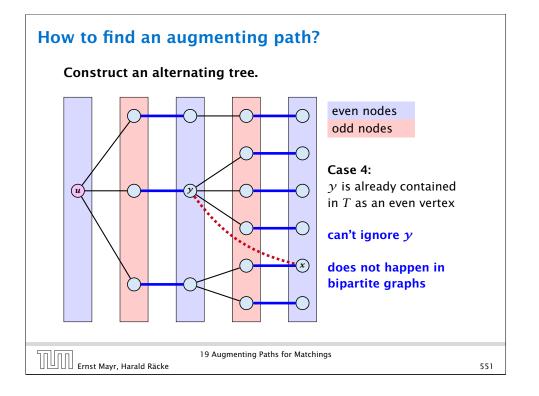


How to find an augmenting path?

Construct an alternating tree.







20 Weighted Bipartite Matching

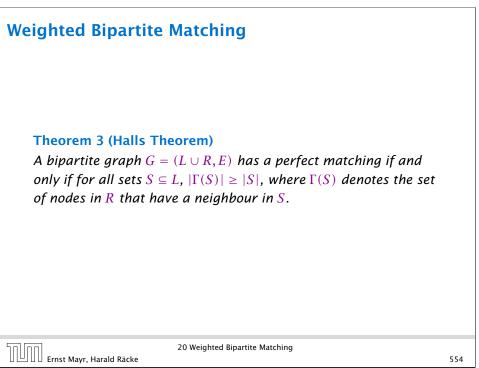
Weighted Bipartite Matching/Assignment

- ▶ Input: undirected, bipartite graph $G = L \cup R, E$.
- an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

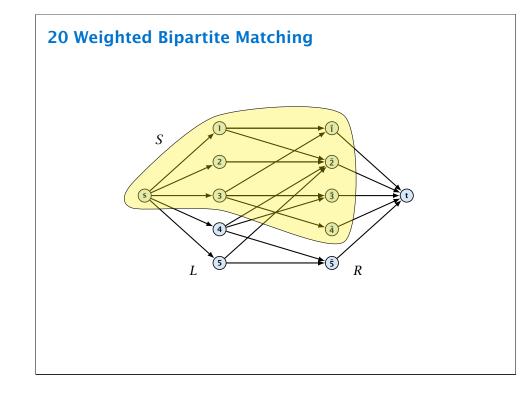
Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- assume that there is an edge between every pair of nodes $(\ell, \gamma) \in V \times V$
- can assume goal is to construct maximum weight perfect matching

	orithm 25 BiMatch(G, match)	
	for $x \in V$ do mate $[x] \leftarrow 0$;	
2: 1	$r \leftarrow 0$; free $\leftarrow n$;	
3: \	while $free \ge 1$ and $r < n$ do	graph $G = (S \cup S', E)$
4:	$\gamma \leftarrow \gamma + 1$	
5:	if $mate[r] = 0$ then	$S = \{1, \dots, n\}$
6:	for $i = 1$ to n do $parent[i'] \leftarrow 0$	$S' = \{1',, n'\}$
7:	$Q \leftarrow \emptyset$; Q . append (r) ; $aug \leftarrow$ false;	
8:	while $aug = false$ and $Q \neq \emptyset$ do	
9:	$x \leftarrow Q$. dequeue();	
10:	for $y \in A_x$ do	
11:	if $mate[y] = 0$ then	
12:	augm(<i>mate</i> , <i>parent</i> , <i>y</i>);	
13:	<i>aug</i> ← true;	
14:	free \leftarrow free -1 ;	
15:	else	
16:	if parent[y] = 0 then	
17:	$parent[y] \leftarrow x;$	
18:	Q.enqueue(<i>mate</i> [y]);	The lecture version of the slides contains a step-by-step explana-
		tion of the algorithm.



20 Weighted Bipartite Matching



Halls Theorem

Proof:

- Gf course, the condition is necessary as otherwise not all nodes in *S* could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \cong L \cap S$ and $R_S \cong R \cap S$ denote the portion of S inside L and R, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - This gives $R_S \ge |\Gamma(L_S)|$.
 - The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

Ernst Mayr, Harald Räcke

20 Weighted Bipartite Matching

556

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \in \mathbb{R}$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

- Let $H(\vec{x})$ denote the subgraph of *G* that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = x_u + x_v$.
- Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Ernst Mayr, Harald Räcke	20 Weighted Bipartite
💾 🛛 🖉 Ernst Mayr, Harald Räcke	

557

Algorithm Outline

Reason:

• The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v \ .$$

• Any other perfect matching *M* (in *G*, not necessarily in $H(\vec{x})$) has

$$\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u + x_v) = \sum_v x_v \ .$$

 $x_u + x_v \ge w_e$ for every edge e = (u, v).

Algorithm Outline

What if you don't find a perfect matching?

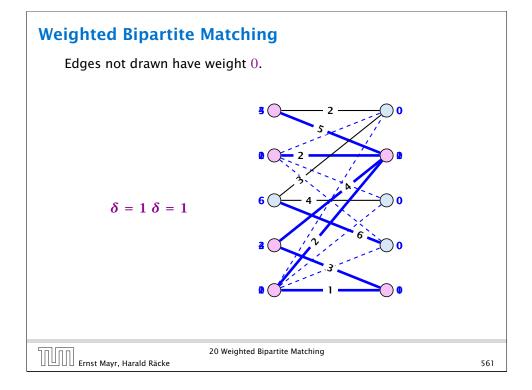
Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

החוחה	20 Weighted Bipartite Matching	
🛛 🕒 🔲 Ernst Mayr, Harald Räcke		559



Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- ► Only edges from S to R − Γ(S) decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in H(x
), and hence would go between S and Γ(S)) we can do this decrement for small enough δ > 0 until a new edge gets tight.

20 Weighted Bipartite Matching

 $S = \delta$

560

 $+\delta \Gamma(S)$

R

Analysis

How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L S and $R \Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

Ernst Mayr, Harald Räcke	20 Weighted Bipartite Matching

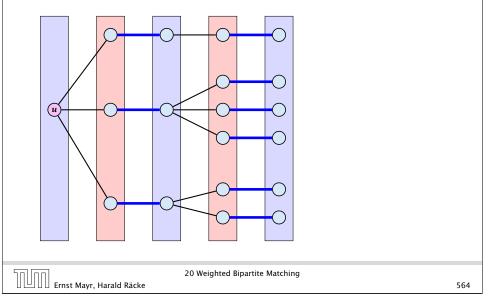
Analysis

How do we find S?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*.
 Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

How to find an augmenting path?

Construct an alternating tree.



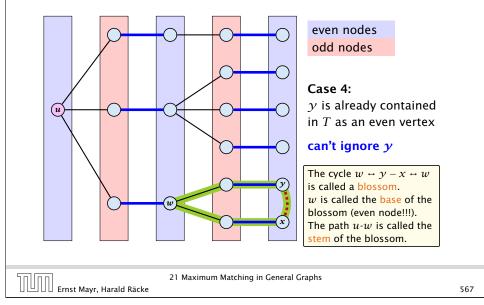
Analysis

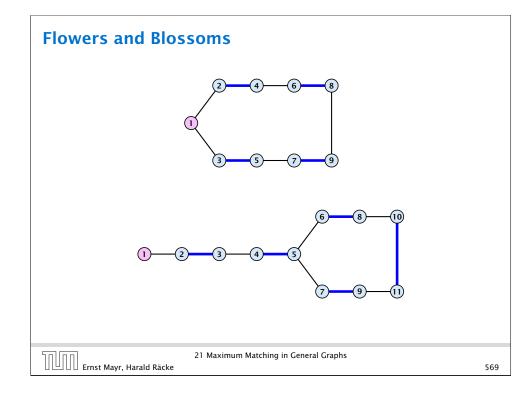
Ernst Mayr, Harald Räcke

- ► The current matching does not have any edges from V_{odd} to L \ V_{even} (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- ► A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we obtain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

How to find an augmenting path?

Construct an alternating tree.





Flowers and Blossoms

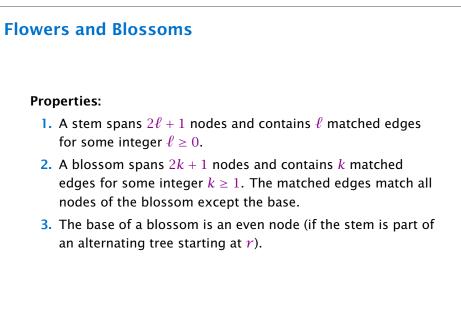
Definition 4

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs



Flowers and Blossoms

Properties:

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Ernst Mayr, Harald Räcke

21 Maximum Matching in General Graphs

Shrinking Blossoms

When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by G' = G/B, which is obtained from *G* by contracting the blossom *B*.

- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in V \ B that had at least one edge to a vertex from B.

Flowers and Blossoms	
21 Maximum Matching in General Graphs Ernst Mayr, Harald Räcke	572

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

ากปกก	Ernst Mayr,	Harald	Päcko
	Ernst Mayr,	Haraid	каске

21 Maximum Matching in General Graphs

Correctness

Assume that in *G* we have a flower w.r.t. matching *M*. Let r be the root, *B* the blossom, and *w* the base. Let graph G' = G/B with pseudonode *b*. Let *M'* be the matching in the contracted graph.

Lemma 5

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

Example: Bl	ossom Algorithm	
	Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.	
Ernst Mayr, Har	21 Maximum Matching in General Graphs rald Räcke	575

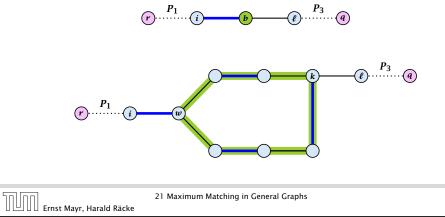
Correctness

Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.



576

Correctness

- ► After the expansion *ℓ* must be incident to some node in the blossom. Let this node be *k*.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- ▶ If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

החוחר	21 Maximum Matching in General Graphs	
🛛 🛄 🔲 Ernst Mayr, Harald Räcke		578

Correctness

Lemma 6

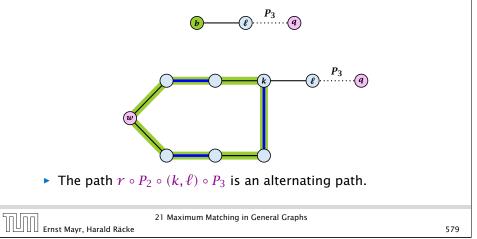
If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Correctness

Proof.

Case 2: empty stem

• If the stem is empty then after expanding the blossom, w = r.



Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that *r* and *q* are the only free nodes in *G*.

Case 1: empty stem

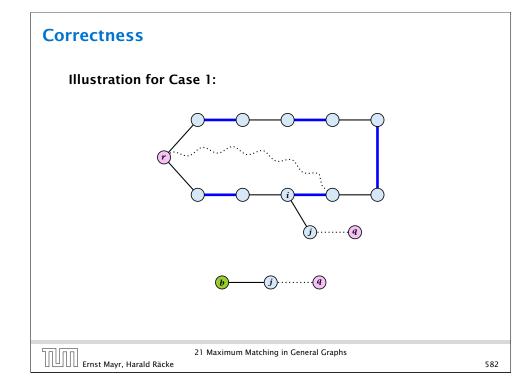
Ernst Mayr, Harald Räcke

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i,j) \circ P_2$, for some node j and (i,j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Ernst Mayr, Harald Räcke	21 Maximum Matching in General Graphs
」└──│	



Algorithm 26 search(r, found)

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* \leftarrow false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize *list* \leftarrow {r}
- 5: while $list \neq \emptyset$ do
- 6: delete a node *i* from *list*
- 7: examine(i, found)
- 8: **if** *found* = true **then return**

Search for an augmenting path starting at r.

The lecture version of the slides has a step by step explanation.

Correctness

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

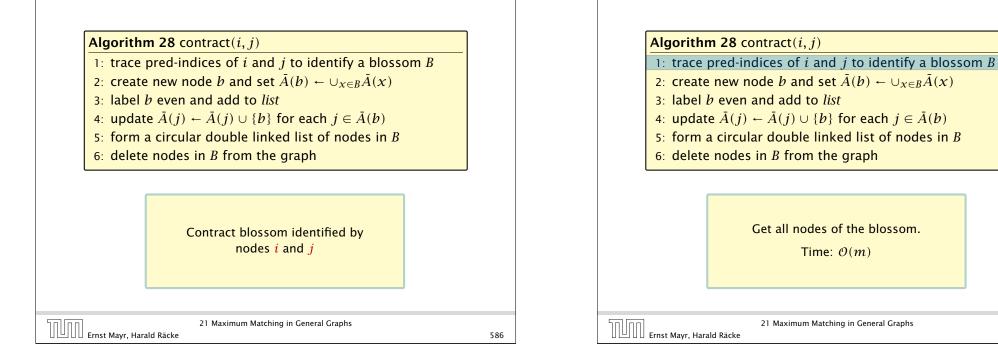
This path must go between r and q.

 21 Maximum Matching in General Graphs

 Ernst Mayr, Harald Räcke
 583

	rithm 27 examine(<i>i</i> , <i>found</i>)	
1: f	or all $j\in ar{A}(i)$ do	
2:	if j is even then contract (i, j) and return	
3:	if <i>j</i> is unmatched then	
4:	$q \leftarrow j;$	
5:	$\operatorname{pred}(q) \leftarrow i;$	
6:	<i>found</i> ← true;	
7:	return	
8:	if <i>j</i> is matched and unlabeled then	
9:	$\operatorname{pred}(j) \leftarrow i;$	
10:	$pred(mate(j)) \leftarrow j;$	
11:	add mate(j) to <i>list</i>	

Examine the neighbours of a node i



2: create new node b and set $\overline{A}(b) \leftarrow \bigcup_{x \in B} \overline{A}(x)$ 3: label b even and add to <i>list</i> 4: update $\overline{A}(j) \leftarrow \overline{A}(j) \cup \{b\}$ for each $j \in \overline{A}(b)$ 5: form a circular double linked list of nodes in B 6: delete nodes in B from the graph	
Get all nodes of the blossom. Time: $\mathcal{O}(m)$	
21 Maximum Matching in General Graphs Ernst Mayr, Harald Räcke	586
Algorithm 28 contract (i, j)	-
1: trace pred-indices of <i>i</i> and <i>j</i> to identify a blossom <i>B</i>	
2: create new node <i>b</i> and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$	
3: label b even and add to list 4: undata $\overline{A}(i) = \overline{A}(i) + \{b\}$ for each $i \in \overline{A}(b)$	
4: update $\overline{A}(j) \leftarrow \overline{A}(j) \cup \{b\}$ for each $j \in \overline{A}(b)$ 5: form a circular double linked list of nodes in <i>B</i>	

6: delete nodes in *B* from the graph

Ernst Mayr, Harald Räcke

b will be an even node, and it has unexamined neighbours.

Algorithm 28 contract(*i*, *j*)

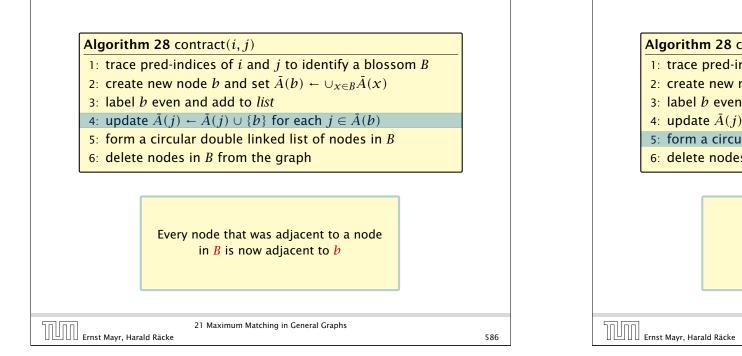
- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

Identify all neighbours of \boldsymbol{b} .

Time: $\mathcal{O}(m)$ (how?)

ת הח	Ernst Mayr, Harald Räcke	21	Maximum Match
	Ernst Mayr, Harald Räcke		

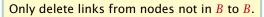
hing in General Graphs



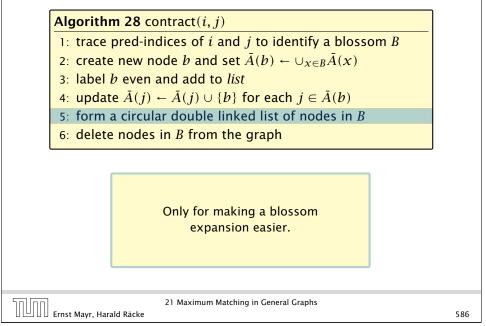
Algorithm 28 contract(*i*, *j*)

1: trace pred-indices of i and j to identify a blossom B

- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph



When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.



Analysis

Ernst Mayr, Harald Räcke

- ► A contraction operation can be performed in time O(m). Note, that any graph created will have at most m edges.
- ► The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time O(m).
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

```
n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2).
```

Example	e: Blossom Algorithm	
	Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.	
הח הר	21 Maximum Matching in General Graphs ayr, Harald Räcke	588

Analysis Hopcroft-Karp

Lemma 7

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ► The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.

Ernst Mayr, Harald Räcke	22 The Hopcroft-Karp Algorithm
🛛 🗌 Ernst Mayr, Harald Räcke	

A Fast Matching Algorithm

Algorithm 29 Bimatch-Hopcroft-Karp(G)1: $M \leftarrow \emptyset$ 2: repeat3: let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of4: vertex-disjoint, shortest augmenting path w.r.t. M.5: $M \leftarrow M \oplus (P_1 \cup \dots \cup P_k)$ 6: until $\mathcal{P} = \emptyset$ 7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

589

Analysis Hopcroft-Karp • Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$). • $M' \cong M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k$. • Let P be an augmenting path in M'. Lemma 8 The set $A \cong M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k + 1)\ell$ edges. 22 The Hopcroft-Karp Algorithm

Analysis Hopcroft-Karp

Proof.

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ► Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Analysis Hopcroft-Karp

Lemma 9

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- ► Otherwise, at least one edge from *P* coincides with an edge from paths {*P*₁,...,*P_k*}.
- This edge is not contained in A.
- Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

593

Analysis Hopcroft-Karp

Lemma 10

Ernst Mayr, Harald Räcke

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- ► After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

Analysis Hopcroft-Karp

Lemma 11

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

construct a "level graph" G':

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- ▶ ...

stop when a level (apart from Level 0) contains a free vertex can be done in time $\mathcal{O}(m)$ by a modified BFS

Ernst Mayr, Harald Räcke	22 The Hopcroft-Karp Algorithm	FOC
L L L L Ernst Mayr, Harald Racke		596

Analysis Hopcroft-Karp

- a shortest augmenting path **must** go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a "dead end" v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- if you reach a dead end backtrack and delete v together with its incident edges

Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

