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Matching
ñ Input: undirected graph G = (V , E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality

18 Bipartite Matching via Flows

Which flow algorithm to use?

ñ Generic augmenting path: O(m val(f∗)) = O(mn).
ñ Capacity scaling: O(m2 logC) = O(m2).
ñ Shortest augmenting path: O(mn2).

For unit capacity simple graphs shortest augmenting path can be

implemented in time O(m√n).
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19 Augmenting Paths for Matchings

Definitions.

ñ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

ñ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

ñ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.

19 Augmenting Paths for Matchings
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Augmenting Paths in Action
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19 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because

we could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.
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19 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching

using this path. When you arrive at a matching for which no

augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex

w.r.t. M. Further let P denote an augmenting path w.r.t. M and

let M′ = M ⊕ P denote the matching resulting from augmenting

M with P . If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M′.

The above theorem allows for an easier implementation of an augment-
ing path algorithm. Once we checked for augmenting paths starting
from u we don’t have to check for such paths in future rounds.
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19 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P′

P

P1

P′1

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 547

How to find an augmenting path?

Construct an alternating tree.

u

y

x

even nodes

odd nodes

Case 1:
y is free vertex not
contained in T

you found
alternating path
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 2:
y is matched vertex
not in T ; then
mate[y] ∉ T

grow the tree
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 3:
y is already contained
in T as an odd vertex

ignore successor y
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

does not happen in
bipartite graphs
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Algorithm 25 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← �; Q. append(r); aug ← false;
8: while aug = false and Q ≠ � do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]); The lecture version of the slides

contains a step-by-step explana-
tion of the algorithm.

graph G = (S ∪ S′, E)
S = {1, . . . , n}
S′ = {1′, . . . , n′}

20 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

ñ Input: undirected, bipartite graph G = L∪ R,E.

ñ an edge e = (`, r) has weight we ≥ 0

ñ find a matching of maximum weight, where the weight of a

matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

ñ assume that |L| = |R| = n
ñ assume that there is an edge between every pair of nodes

(`, r) ∈ V × V
ñ can assume goal is to construct maximum weight perfect

matching
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Weighted Bipartite Matching

Theorem 3 (Halls Theorem)

A bipartite graph G = (L∪ R,E) has a perfect matching if and

only if for all sets S ⊆ L, |Γ(S)| ≥ |S|, where Γ(S) denotes the set

of nodes in R that have a neighbour in S.
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20 Weighted Bipartite Matching
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S

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.
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Algorithm Outline

Idea:

We introduce a node weighting ~x. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

ñ Suppose that the node weights dominate the edge-weights

in the following sense:

xu + xv ≥ we for every edge e = (u,v).

ñ Let H(~x) denote the subgraph of G that only contains

edges that are tight w.r.t. the node weighting ~x, i.e. edges

e = (u,v) for which we = xu + xv .

ñ Try to compute a perfect matching in the subgraph H(~x). If

you are successful you found an optimal matching.
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Algorithm Outline

Reason:

ñ The weight of your matching M∗ is∑
(u,v)∈M∗

w(u,v) =
∑

(u,v)∈M∗
(xu + xv) =

∑
v
xv .

ñ Any other perfect matching M (in G, not necessarily in

H(~x)) has ∑
(u,v)∈M

w(u,v) ≤
∑

(u,v)∈M
(xu + xv) =

∑
v
xv .
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Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L,

with |Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(~x).

Idea: reweight such that:

ñ the total weight assigned to nodes decreases

ñ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).
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Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

ñ Total node-weight decreases.

ñ Only edges from S to R − Γ(S)
decrease in their weight.

ñ Since, none of these edges is

tight (otw. the edge would be

contained in H(~x), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.
L R

S

Γ(S)

−δ

+δ
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Weighted Bipartite Matching

Edges not drawn have weight 0.
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Analysis

How many iterations do we need?

ñ One reweighting step increases the number of edges out of

S by at least one.

ñ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

ñ This matching is still contained in the new graph, because

all its edges either go between Γ(S) and S or between L− S
and R − Γ(S).

ñ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.
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Analysis

ñ We will show that after at most n reweighting steps the size

of the maximum matching can be increased by finding an

augmenting path.

ñ This gives a polynomial running time.
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How to find an augmenting path?

Construct an alternating tree.

u

y
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Analysis

How do we find S?

ñ Start on the left and compute an alternating tree, starting at

any free node u.

ñ If this construction stops, there is no perfect matching in

the tight subgraph (because for a perfect matching we need

to find an augmenting path starting at u).

ñ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

ñ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.
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Analysis

ñ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we obtain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).
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How to find an augmenting path?

Construct an alternating tree.

u

x

y

w

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.
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Flowers and Blossoms

Definition 4

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

ñ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

ñ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base

of the blossom.
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Flowers and Blossoms
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Flowers and Blossoms

Properties:

1. A stem spans 2` + 1 nodes and contains ` matched edges

for some integer ` ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r ).
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Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable

from the root (or from the base of the blossom) through two

distinct alternating paths; one with even and one with odd

length.

5. The even alternating path to x terminates with a matched

edge and the odd path with an unmatched edge.
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Flowers and Blossoms
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Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

ñ Delete all vertices in B (and its incident edges) from G.

ñ Add a new (pseudo-)vertex b. The new vertex b is

connected to all vertices in V \ B that had at least one edge

to a vertex from B.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 573

Shrinking Blossoms

ñ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

ñ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become

matching edges in M′.
ñ Nodes that are connected in G to

at least one node in B become

connected to b in G′.

w

x y
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Shrinking Blossoms

ñ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

ñ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become

matching edges in M′.
ñ Nodes that are connected in G to

at least one node in B become

connected to b in G′.
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Example: Blossom Algorithm

Animation of Blossom Shrinking

algorithm is only available in the

lecture version of the slides.
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Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be

the root, B the blossom, and w the base. Let graph G′ = G/B
with pseudonode b. Let M′ be the matching in the contracted

graph.

Lemma 5

If G′ contains an augmenting path P ′ starting at r (or the

pseudo-node containing r ) w.r.t. the matching M′ then G
contains an augmenting path starting at r w.r.t. matching M.
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Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

ñ Next suppose that the stem is non-empty.

P1 P3
r i b ` q

P1

P3

r i w

k ` q
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Correctness

ñ After the expansion ` must be incident to some node in the

blossom. Let this node be k.

ñ If k ≠ w there is an alternating path P2 from w to k that

ends in a matching edge.

ñ P1 ◦ (i,w) ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.

ñ If k = w then P1 ◦ (i,w) ◦ (w, `) ◦ P3 is an alternating path.
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Correctness

Proof.

Case 2: empty stem

ñ If the stem is empty then after expanding the blossom,

w = r .
P3

b ` q

P3

w

k ` q

ñ The path r ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.
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Correctness

Lemma 6

If G contains an augmenting path P from r to q w.r.t. matching

M then G′ contains an augmenting path from r (or the

pseudo-node containing r ) to q w.r.t. M′.
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Correctness

Proof.

ñ If P does not contain a node from B there is nothing to

prove.

ñ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.
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Correctness

Illustration for Case 1:

r

i

j q

b j q
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Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.
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Algorithm 26 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ � do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

The lecture version
of the slides has a
step by step expla-
nation.

Search for an augmenting path
starting at r .

Algorithm 27 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

The lecture version
of the slides has a
step by step expla-
nation.

Examine the neighbours of a node i



Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Contract blossom identified by
nodes i and j

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Get all nodes of the blossom.

Time: O(m)

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Identify all neighbours of b.

Time: O(m) (how?)

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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b will be an even node, and it has
unexamined neighbours.



Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Every node that was adjacent to a node
in B is now adjacent to b

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Only for making a blossom
expansion easier.

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
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Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O(m).

Analysis

ñ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

ñ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
ñ There are at most n contractions as each contraction

reduces the number of vertices.

ñ The expansion can trivially be done in the same time as

needed for all contractions.

ñ An augmentation requires time O(n). There are at most n
of them.

ñ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .
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Example: Blossom Algorithm

Animation of Blossom Shrinking

algorithm is only available in the

lecture version of the slides.
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A Fast Matching Algorithm

Algorithm 29 Bimatch-Hopcroft-Karp(G)
1: M ← �
2: repeat

3: let P = {P1, . . . , Pk} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.

5: M ← M ⊕ (P1 ∪ · · · ∪ Pk)
6: until P = �
7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 589

Analysis Hopcroft-Karp

Lemma 7

Given a matching M and a maximal matching M∗ there exist

|M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting path.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in

this graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting

paths w.r.t. M.
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ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).
ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.
ñ Let P be an augmenting path in M′.

Lemma 8

The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.
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Proof.

ñ The set describes exactly the symmetric difference between

matchings M and M′ ⊕ P .

ñ Hence, the set contains at least k+ 1 vertex-disjoint

augmenting paths w.r.t. M as |M′| = |M| + k+ 1.

ñ Each of these paths is of length at least `.
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Lemma 9

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows

from the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.
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If the shortest augmenting path w.r.t. a matching M has ` edges

then the cardinality of the maximum matching is of size at most

|M| + |V |
`+1 .

Proof.

The symmetric difference between M and M∗ contains

|M∗| − |M| vertex-disjoint augmenting paths. Each of these

paths contains at least ` + 1 vertices. Hence, there can be at

most |V |
`+1 of them.
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Lemma 10

The Hopcroft-Karp algorithm requires at most 2
√|V | phases.

Proof.

ñ After iteration b√|V |c the length of a shortest augmenting

path must be at least b√|V |c + 1 ≥ √|V |.
ñ Hence, there can be at most |V |/(√|V | + 1) ≤ √|V |

additional augmentations.
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Lemma 11

One phase of the Hopcroft-Karp algorithm can be implemented

in time O(m).
construct a “level graph” G′:
ñ construct Level 0 that includes all free vertices on left side L
ñ construct Level 1 containing all neighbors of Level 0

ñ construct Level 2 containing matching neighbors of Level 1

ñ construct Level 3 containing all neighbors of Level 2

ñ . . .

ñ stop when a level (apart from Level 0) contains a free vertex

can be done in time O(m) by a modified BFS
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ñ a shortest augmenting path must go from Level 0 to the last

layer constructed

ñ it can only use edges between layers

ñ construct a maximal set of vertex disjoint augmenting path

connecting the layers

ñ for this, go forward until you either reach a free vertex or

you reach a “dead end” v
ñ if you reach a free vertex delete the augmenting path and

all incident edges from the graph

ñ if you reach a dead end backtrack and delete v together

with its incident edges
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See lecture versions of the slides.

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is O(mn)
ñ a search (successful or unsuccessful) takes time O(n)
ñ a search deletes at least one edge from the level graph

there are at most n phases

Time: O(mn2).
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Analysis for Unit-capacity Simple Networks

cost for searches during a phase is O(m)
ñ an edge/vertex is traversed at most twice

need at most O(√n) phases

ñ after
√
n phases there is a cut of size at most

√
n in the

residual graph

ñ hence at most
√
n additional augmentations required

Time: O(m√n).

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 600


	Matchings
	Definition
	Bipartite Matching via Flows
	Augmenting Paths for Matchings
	Weighted Bipartite Matching
	Maximum Matching in General Graphs
	The Hopcroft-Karp Algorithm


