5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not slower than f)

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f)=\Omega(f) \cap \mathcal{O}(f)$
(functions that asymptotically have the same growth as f)

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f)=\Omega(f) \cap \mathcal{O}(f)$
(functions that asymptotically have the same growth as f)
- $o(f)=\left\{g \mid \forall c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow slower than f)

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f)=\Omega(f) \cap \mathcal{O}(f)$
(functions that asymptotically have the same growth as f)
- $o(f)=\left\{g \mid \forall c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow slower than f)
- $\omega(f)=\left\{g \mid \forall c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow faster than f)

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

- $g \in \mathcal{O}(f): \quad 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

- $g \in \mathcal{O}(f): \quad 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$
- $g \in \Omega(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq \infty$

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

- $g \in \mathcal{O}(f): \quad 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$
- $g \in \Omega(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq \infty$
- $g \in \Theta(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

- $g \in \mathcal{O}(f): \quad 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$
- $g \in \Omega(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq \infty$
- $g \in \Theta(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$
- $g \in o(f): \quad \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0$

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

- $g \in \mathcal{O}(f): \quad 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$
- $g \in \Omega(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq \infty$
- $g \in \Theta(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$
- $g \in o(f): \quad \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0$
- $g \in \omega(f): \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\infty$

Asymptotic Notation

Abuse of notation

1. People write $f=\mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is not an equality (how could a function be equal to a set of functions).

Asymptotic Notation

Abuse of notation

1. People write $f=\mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is not an equality (how could a function be equal to a set of functions).
2. People write $f(n)=\mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto f(n)$, and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto g(n)$.

Asymptotic Notation

Abuse of notation

1. People write $f=\mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is not an equality (how could a function be equal to a set of functions).
2. People write $f(n)=\mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto f(n)$, and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto g(n)$.
3. People write e.g. $h(n)=f(n)+o(g(n))$ when they mean that there exists a function $z: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto z(n), z \in o(g)$ such that $h(n)=f(n)+z(n)$.

Asymptotic Notation

Abuse of notation

1. People write $f=\mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is not an equality (how could a function be equal to a set of functions).
2. People write $f(n)=\mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto f(n)$, and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto g(n)$.
3. People write e.g. $h(n)=f(n)+o(g(n))$ when they mean that there exists a function $z: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto z(n), z \in o(g)$ such that $h(n)=f(n)+z(n)$.
4. People write $\mathcal{O}(f(n))=\mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+3 n+1=2 n^{2}+\Theta(n)
$$

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+3 n+1=2 n^{2}+\Theta(n)
$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+3 n+1=2 n^{2}+\Theta(n)
$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+\mathcal{O}(n)=\Theta\left(n^{2}\right)
$$

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+\mathcal{O}(n)=\Theta\left(n^{2}\right)
$$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta\left(n^{2}\right)$ that makes the expression true.

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
\sum_{i=1}^{n} \Theta(i)=\Theta\left(n^{2}\right)
$$

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
\sum_{i=1}^{n} \Theta(i)=\Theta\left(n^{2}\right)
$$

Careful!

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
\sum_{i=1}^{n} \Theta(i)=\Theta\left(n^{2}\right)
$$

Careful!

"It is understood" that every occurence of an \mathcal{O}-symbol (or $\Theta, \Omega, o, \omega)$ on the left represents one anonymous function.

Hence, the left side is not equal to

$$
\Theta(1)+\Theta(2)+\cdots+\Theta(n-1)+\Theta(n)
$$

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as generating a set:

$$
n^{2} \cdot \mathcal{O}(n)+\mathcal{O}(\log n)
$$

represents

$$
\begin{aligned}
\left\{f: \mathbb{N} \rightarrow \mathbb{R}^{+} \mid f(n)=\right. & n^{2} \cdot g(n)+h(n) \\
& \text { with } g(n) \in \mathcal{O}(n) \text { and } h(n) \in \mathcal{O}(\log n)\}
\end{aligned}
$$

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$
n^{2} \cdot \mathcal{O}(n)+\mathcal{O}(\log n)=\Theta\left(n^{2}\right)
$$

represents

$$
n^{2} \cdot \mathcal{O}(n)+\mathcal{O}(\log n) \subseteq \Theta\left(n^{2}\right)
$$

Asymptotic Notation

Lemma 1

Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c

Asymptotic Notation

Lemma 1

Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n)+g(n))$

Asymptotic Notation

Lemma 1

Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n)+g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n))=\mathcal{O}(f(n) \cdot g(n))$

Asymptotic Notation

Lemma 1

Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n)+g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n))=\mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(\max \{f(n), g(n)\})$

Asymptotic Notation

Lemma 1

Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n)+g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n))=\mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(\max \{f(n), g(n)\})$

The expressions also hold for Ω. Note that this means that $f(n)+g(n) \in \Theta(\max \{f(n), g(n)\})$.

Asymptotic Notation

Comments

- Do not use asymptotic notation within induction proofs.

Asymptotic Notation

Comments

- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log _{a} n=\Theta\left(\log _{b} n\right)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.

Asymptotic Notation

Comments

- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log _{a} n=\Theta\left(\log _{b} n\right)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- In general $\log n=\log _{2} n$, i.e., we use 2 as the default base for the logarithm.

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
- Algorithm A. Running time $f(n)=1000 \log n=\mathcal{O}(\log n)$.

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
- Algorithm A. Running time $f(n)=1000 \log n=\mathcal{O}(\log n)$.
- Algorithm B. Running time $g(n)=\log ^{2} n$.

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
- Algorithm A. Running time $f(n)=1000 \log n=\mathcal{O}(\log n)$.
- Algorithm B. Running time $g(n)=\log ^{2} n$.

Clearly $f=o(g)$. However, as long as $\log n \leq 1000$ Algorithm B will be more efficient.

