Part V

Matchings

18 Bipartite Matching via Flows

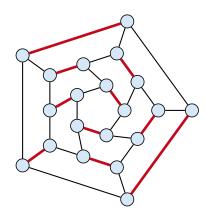
Which flow algorithm to use?

- ▶ Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- ▶ Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.
- ▶ Shortest augmenting path: $\mathcal{O}(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m\sqrt{n})$.

Matching

- ▶ Input: undirected graph G = (V, E).
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



19 Augmenting Paths for Matchings

Definitions.

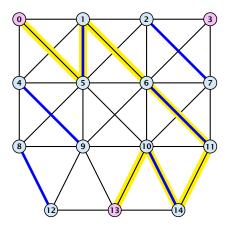
- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- ► An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

Ernst Mayr, Harald Räcke

A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.

Augmenting Paths in Action

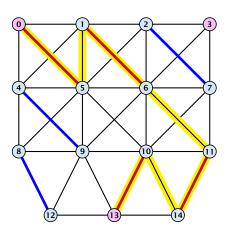


Ernst Mayr, Harald Räcke

19 Augmenting Paths for Matchings

544

Augmenting Paths in Action



Ernst Mayr, Harald Räcke

19 Augmenting Paths for Matchings

544

546

19 Augmenting Paths for Matchings

Proof.

Ernst Mavr. Harald Räcke

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

19 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex $w.r.t.\ M$. Further let P denote an augmenting path $w.r.t.\ M$ and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

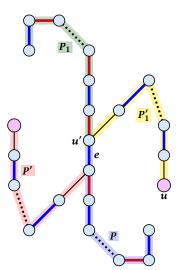
The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from \boldsymbol{u} we don't have to check for such paths in future rounds.

545

19 Augmenting Paths for Matchings

Proof

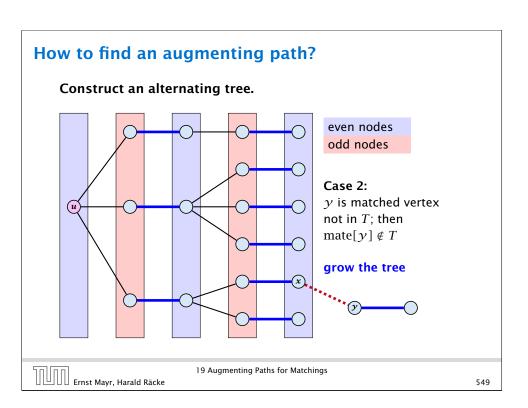
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ▶ If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (\$\xi\$).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P' from u to u' with P'_1 .
- ▶ $P_1 \circ P_1'$ is augmenting path in M (\$).

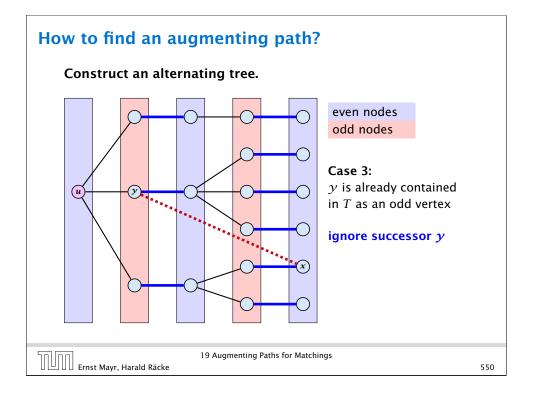


19 Augmenting Paths for Matchings

547

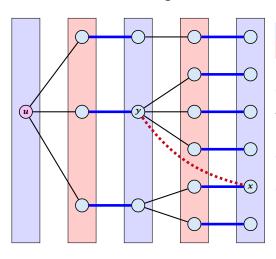
Construct an alternating tree. even nodes odd nodes Case 1: y is free vertex not contained in T you found alternating path





How to find an augmenting path?

Construct an alternating tree.



even nodes odd nodes

Case 4:

 ν is already contained in T as an even vertex

can't ignore γ

does not happen in bipartite graphs

Ernst Mayr, Harald Räcke

19 Augmenting Paths for Matchings

551

Algorithm 25 BiMatch(*G*, *match*)

```
1: for x \in V do mate[x] \leftarrow 0;
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
    r \leftarrow r + 1
       if mate[r] = 0 then
           for i = 1 to n do parent[i'] \leftarrow 0
6:
           Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
7:
           while aug = false and O \neq \emptyset do
8:
9:
               x \leftarrow Q. dequeue();
10:
               for y \in A_x do
11:
                   if mate[v] = 0 then
12:
                      augm(mate, parent, y);
13:
                      aug ← true;
14:
                      free \leftarrow free - 1;
15:
                   else
16:
                      if parent[y] = 0 then
17:
                         parent[y] \leftarrow x;
```

```
graph G = (S \cup S', E)
    S = \{1, ..., n\}
  S' = \{1', \dots, n'\}
```

The lecture version of the slides contains a step-by-step explanation of the algorithm.

20 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- ▶ Input: undirected, bipartite graph $G = L \cup R$, E.
- ▶ an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- ightharpoonup assume that |L| = |R| = n
- ▶ assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$
- can assume goal is to construct maximum weight perfect matching

Weighted Bipartite Matching

18:

Theorem 3 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

Q. enqueue(mate[y]);