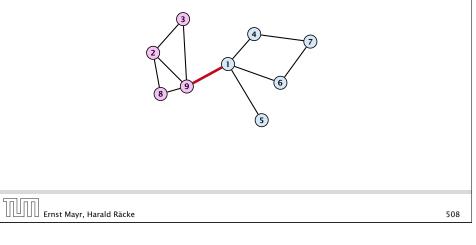
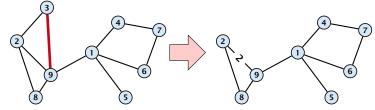
15 Global Mincut

Given an undirected, capacitated graph G = (V, E, c) find a partition of V into two non-empty sets $S, V \setminus S$ s.t. the capacity of edges between both sets is minimized.



Edge Contractions

- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

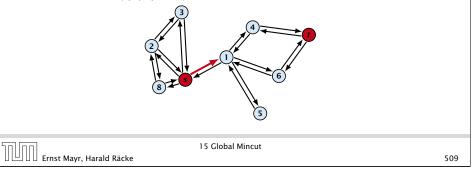


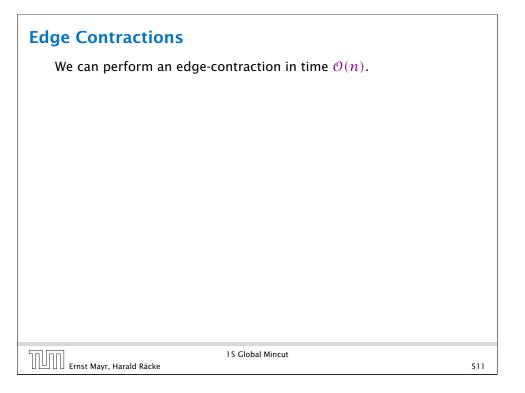
• Edge-contractions do no decrease the size of the mincut.

15 Global Mincut

We can solve this problem using standard maxflow/mincut.

- Construct a directed graph G' = (V, E') that has edges (u, v) and (v, u) for every edge {u, v} ∈ E.
- ► Fix an arbitrary node $s \in V$ as source. Compute a minimum *s*-*t* cut for all possible choices $t \in V, t \neq s$. (Time: $\mathcal{O}(n^4)$)
- ► Let $(S, V \setminus S)$ be a minimum global mincut. The above algorithm will output a cut of capacity $cap(S, V \setminus S)$ whenever $|\{s, t\} \cap S| = 1$.





Randomized Mincut Algorithm

Algorithm 23 KargerMincut(G = (V, E, c)) 1: for $i = 1 \rightarrow n - 2$ do 2: choose $e \in E$ randomly with probability c(e)/c(E)

- 3: $G \leftarrow G/e$
- 4: **return** only cut in *G*
- Let G_t denote the graph after the (n t)-th iteration, when t nodes are left.
- ▶ Note that the final graph *G*² only contains a single edge.
- The cut in G₂ corresponds to a cut in the original graph G with the same capacity.
- > What is the probability that this algorithm returns a mincut?

15 Global Mincut Ernst Mayr, Harald Räcke	
--	--

Analysis	
What is the probability that a given mincut A is still possible after round i ?	
 It is still possible to obtain cut A in the end if so far no edge in (A, V \ A) has been contracted. 	
15 Global Mincut Ernst Mayr, Harald Räcke	514

Example: Randomized Mincut Algorithm					
	Animation only available in the lecture version of the slides.				
Ernst Mayr, Ha	15 Global Mincut rald Räcke	513			

Analysis

512

What is the probability that we select an edge from A in iteration i?

- Let $\min = \operatorname{cap}(A, V \setminus A)$ denote the capacity of a mincut.
- ► Let cap(v) be capacity of edges incident to vertex v ∈ V_{n-i+1}.
- Clearly, $cap(v) \ge min$.
- Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

> Hence, the probability of choosing an edge from the cut is

```
at most min-log(E) > 21C_{2} = i + 1

n - i + 1 is the number of nodes in graph

G_{n-i+1} = (V_{n-i+1}, E_{n-i+1}), the graph at the start of iteration i.

15 Global Mincut

Ernst Mayr, Harald Räcke
```

Analysis

The probability that we do not choose an edge from the cut in iteration i is

 $1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1}$.

The probability that the cut is alive after iteration n - t (after which t nodes are left) is

$$\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} = \frac{t(t-1)}{n(n-1)}$$

Choosing t = 2 gives that with probability $1/\binom{n}{2}$ the algorithm computes a mincut.

Ernst Mayr, Harald Räcke

15 Global Mincut

Improved Algorithm

Algorithm 24 RecursiveMincut(G = (V, E, c))

1: for $i = 1 \to n - n/\sqrt{2}$ do

2: choose $e \in E$ randomly with probability c(e)/c(E)

15 Global Mincut

- 3: $G \leftarrow G/e$
- 4: **if** |V| = 2 **return** cut-value;
- 5: *cuta* ← RecursiveMincut(G);
- 6: *cutb* ← RecursiveMincut(G);
- 7: **return** min{*cuta*, *cutb*}

Running time:

- $T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + \mathcal{O}(n^2)$
- This gives $T(n) = \mathcal{O}(n^2 \log n)$.

Note that the above implementation only works for very special values of n.

516

518

החהר	Ernst Mayr, Harald Räcke
	Ernst Mayr, Harald Räcke

Analysis

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

 $\left(1-\frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \leq \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \leq n^{-c}$,

where we used $1 - x \le e^{-x}$.

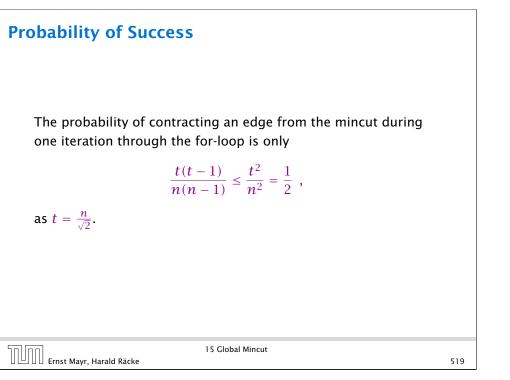
Theorem 2

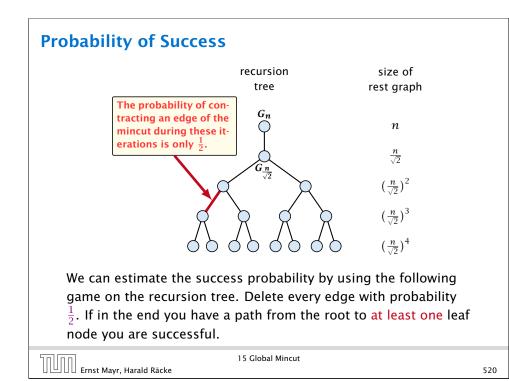
The randomized mincut algorithm computes an optimal cut with high probability. The total running time is $O(n^4 \log n)$.

Ernst Mayr, Harald Räcke

15 Global Mincut

517

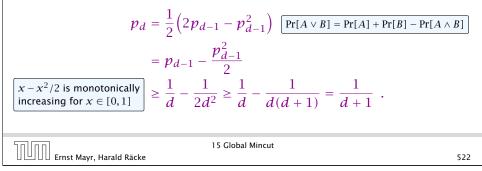




Probability of Success

Proof.

- An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least ¹/₂.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge e = {c, p} if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability



Probability of Success

Let for an edge e in the recursion tree, h(e) denote the height (distance to leaf level) of the parent-node of e (end-point that is higher up in the tree). Let h denote the height of the root node.

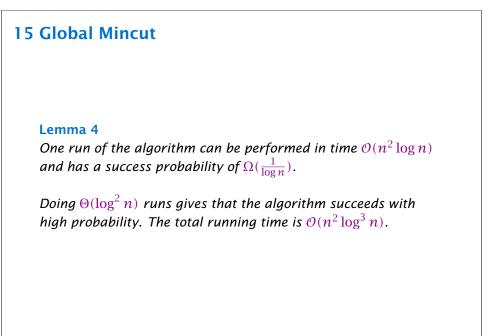
Call an edge e alive if there exists a path from the parent-node of e to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn't been deleted.

Lemma 3

The probability that an edge e is alive is at least $\frac{1}{h(e)+1}$.

Ernst Mayr, Harald Räcke

15 Global Mincut



Ernst Mayr, Harald Räcke

521