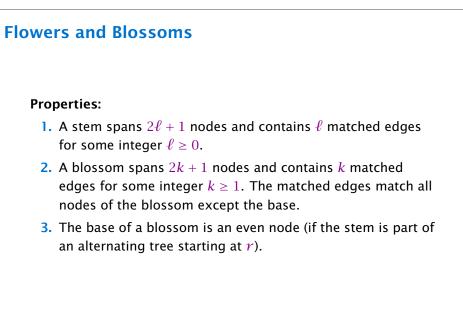

How to find an augmenting path?

Construct an alternating tree.

Flowers and Blossoms


Definition 1

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

Flowers and Blossoms

Properties:

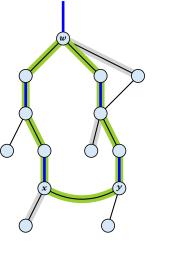
- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Ernst Mayr, Harald Räcke

19 Maximum Matching in General Graphs

Shrinking Blossoms

When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by G' = G/B, which is obtained from *G* by contracting the blossom *B*.


- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in V \ B that had at least one edge to a vertex from B.

Flowers and Blossoms	
19 Maximum Matching in General Graphs Ernst Mayr, Harald Räcke	540

Shrinking Blossoms

Ernst Mayr, Harald Räcke

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

19 Maximum Matching in General Graphs Ernst Mayr, Harald Räcke

541

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

וחר	ПГ	11			Harald	
	ЦЦ	Ц	Ernst	Mayr,	Harald	Räcke

19 Maximum Matching in General Graphs

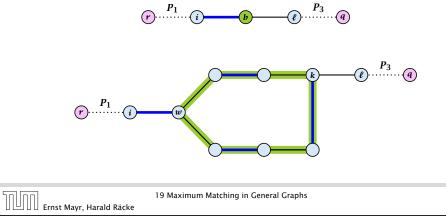
Correctness

Assume that in *G* we have a flower w.r.t. matching *M*. Let r be the root, *B* the blossom, and *w* the base. Let graph G' = G/B with pseudonode *b*. Let *M'* be the matching in the contracted graph.

Lemma 2

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

Example: Blossom Algorithm	
Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.	
19 Maximum Matching in General Graphs Ernst Mayr, Harald Räcke	543


Correctness

Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.

544

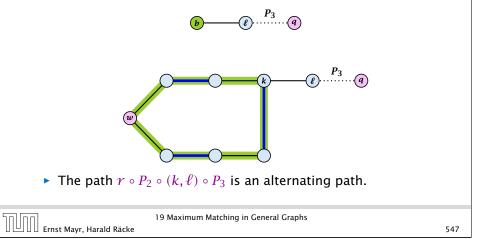
Correctness

- ► After the expansion *ℓ* must be incident to some node in the blossom. Let this node be *k*.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- ▶ If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Ernst Mayr, Harald Räcke	19 Maximum Matching in General Graphs	
🛛 💾 🔲 Ernst Mayr, Harald Räcke		546

Correctness

Lemma 3


If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Correctness

Proof.

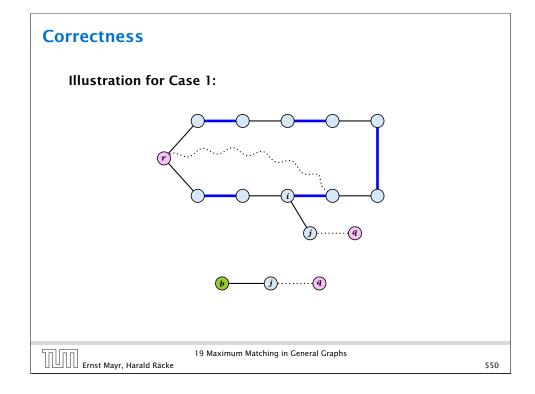
Case 2: empty stem

• If the stem is empty then after expanding the blossom, w = r.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that *r* and *q* are the only free nodes in *G*.


Case 1: empty stem

Ernst Mayr, Harald Räcke

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i,j) \circ P_2$, for some node j and (i,j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Algorithm 23 search(*r*, *found*)

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* \leftarrow false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize *list* \leftarrow {r}
- 5: while $list \neq \emptyset$ do
- 6: delete a node *i* from *list*
- 7: examine(i, found)
- 8: **if** *found* = true **then return**

Search for an augmenting path starting at r.

The lecture version of the slides has a step by step explanation.

Correctness

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

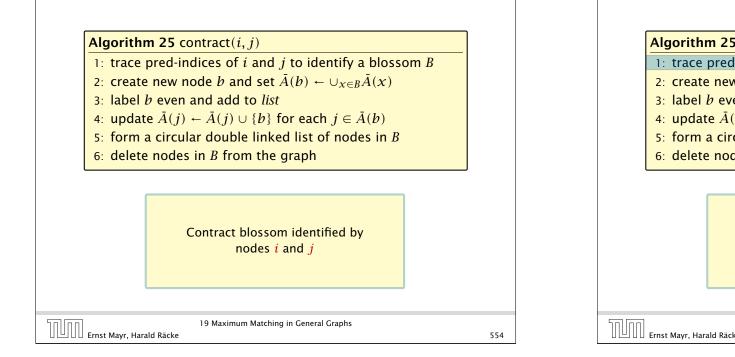
In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching $M_+,$ since M and M_+ have same cardinality.

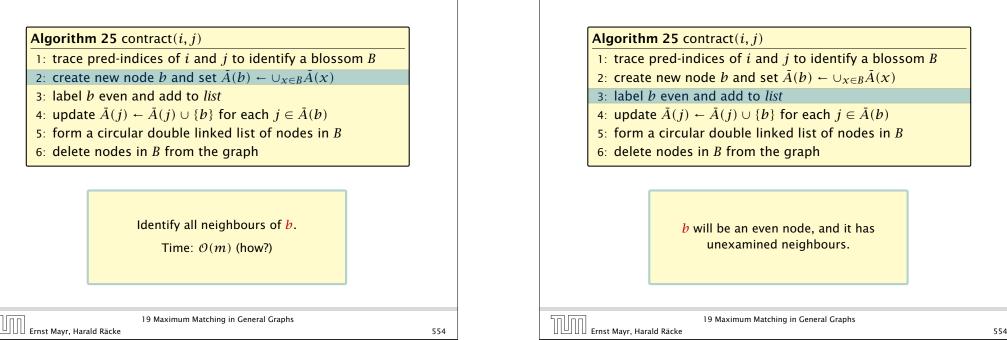
This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

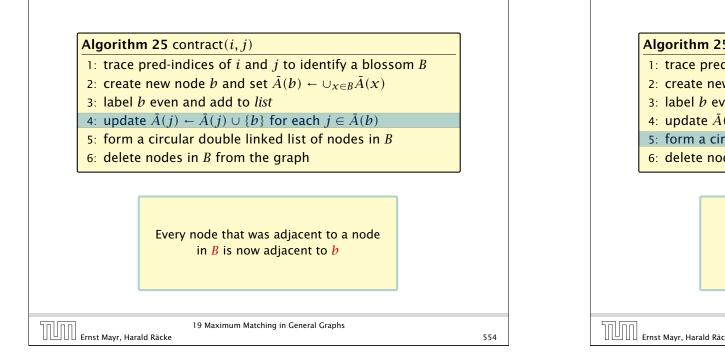
For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.


This path must go between r and q.

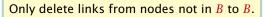
 19 Maximum Matching in General Graphs

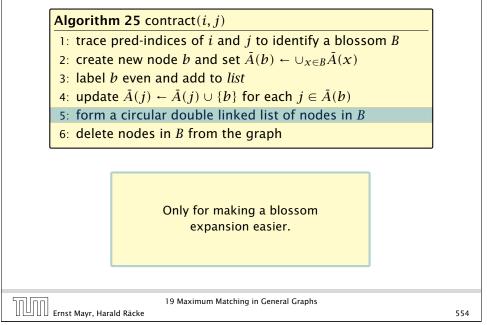

 Ernst Mayr, Harald Räcke
 551


-	rithm 24 examine(<i>i</i> , <i>found</i>)	
1: f	or all $j\in ar{A}(i)$ do	
2:	if j is even then contract (i, j) and return	
3:	if <i>j</i> is unmatched then	
4:	$q \leftarrow j;$	
5:	$\operatorname{pred}(q) \leftarrow i;$	
6:	<i>found</i> ← true;	
7:	return	
8:	if j is matched and unlabeled then	
9:	$\operatorname{pred}(j) \leftarrow i;$	
10:	$pred(mate(j)) \leftarrow j;$	
11:	add mate (j) to list	

Examine the neighbours of a node i

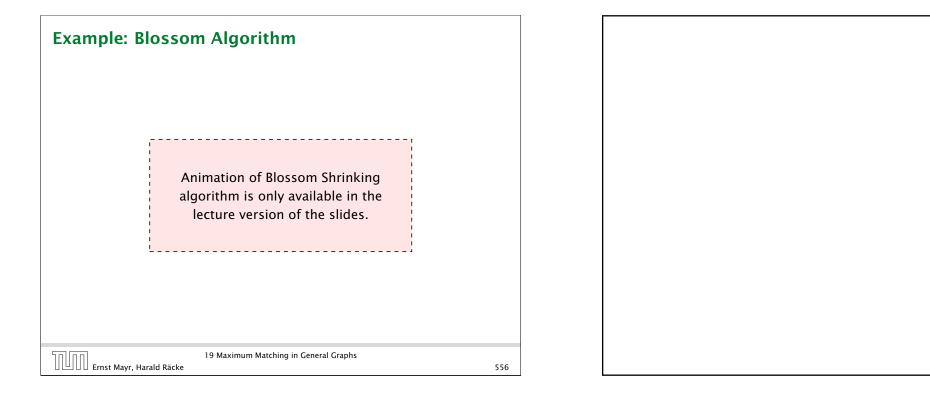
Algorithm 25 contract(*i*, *j*) 1: trace pred-indices of i and j to identify a blossom B2: create new node *b* and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$ 3: label b even and add to list 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$ 5: form a circular double linked list of nodes in B 6: delete nodes in *B* from the graph Get all nodes of the blossom. Time: $\mathcal{O}(m)$ Ernst Mayr, Harald Räcke 19 Maximum Matching in General Graphs 554

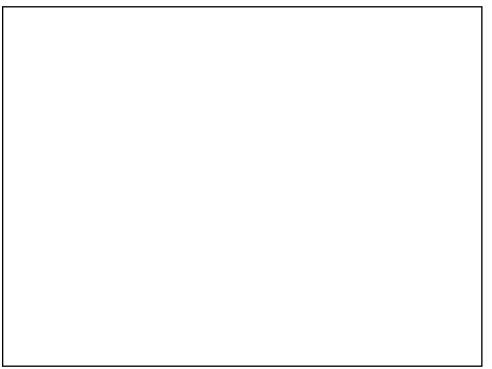



Algorithm 25 contract(*i*, *j*)

1: trace pred-indices of i and j to identify a blossom B

- 2: create new node *b* and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph


When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.


Analysis

- A contraction operation can be performed in time O(m).
 Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

```
n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2).
```