## 6 Recurrences

```
Algorithm 2 mergesort(list \(L\) )
    1: \(n \leftarrow \operatorname{size}(L)\)
    2: if \(n \leq 1\) return \(L\)
    3: \(L_{1} \leftarrow L\left[1 \cdots\left\lfloor\frac{n}{2}\right\rfloor\right]\)
    4: \(L_{2} \leftarrow L\left[\left\lfloor\frac{n}{2}\right\rfloor+1 \cdots n\right]\)
    5: mergesort \(\left(L_{1}\right)\)
    6: mergesort \(\left(L_{2}\right)\)
    7: \(L \leftarrow \operatorname{merge}\left(L_{1}, L_{2}\right)\)
    8: return \(L\)
```

This algorithm requires

$$
T(n)=T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\mathcal{O}(n) \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+\mathcal{O}(n)
$$

comparisons when $n>1$ and 0 comparisons when $n \leq 1$.

## Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.
2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.
3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

## Recurrences

How do we bring the expression for the number of comparisons ( $\approx$ running time) into a closed form?

For this we need to solve the recurrence

## Methods for Solving Recurrences

## 4. Generating Functions

A more general technique that allows to solve certain types of linear inhomogenous relations and also sometimes non-linear recurrence relations.

## 5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations so that it e.g. becomes linear and can therefore be solved with one of the other techniques.

### 6.1 Guessing+Induction

First we need to get rid of the $\mathcal{O}$-notation in our recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Assume that instead we had

$$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

### 6.1 Guessing+Induction

$$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 16 \\ b & \text { otw. }\end{cases}
$$

Guess: $T(n) \leq d n \log n$.
Proof. (by induction)

- base case $(2 \leq n<16)$ : true if we choose $d \geq b$.
- induction step $2 \ldots n-1 \rightarrow n$ :

Suppose statem. is true for $n^{\prime} \in\{2, \ldots, n-1\}$, and $n \geq 16$. We prove it for $n$ :

$$
\begin{array}{rlrl}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n & & \begin{array}{l}
\text { Note that this proves the } \\
\\
\end{array} \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n & & \text { statement for } n \in \mathbb{N} \geq 2, \text { as the } \\
& =d n(\log n-1)+c n & & \text { as it is the same for different } \\
& =d n \log n+(c-d) n & & \text { recurrences. } \\
& \leq d n \log n &
\end{array}
$$

Hence, statement is true if we choose $d \geq c$.

### 6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant $d$. Then

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n \\
& \leq d n \log n
\end{aligned}
$$

if we choose $d \geq c$.

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.
Ernst Mayr, Harald Räcke 6.1 Guessing+Induction
6.1 Guessing+Induction

Ernst Mayr, Harald Räcke

### 6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?
If we do not do this we instead consider the following recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 16 \\ b & \text { otherwise }\end{cases}
$$

Note that we can do this as for constant-sized inputs the running time is always some constant ( $b$ in the above case).

### 6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

for a suitable choice of $d$.

### 6.2 Master Theorem

We prove the Master Theorem for the case that $n$ is of the form $b^{\ell}$, and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

### 6.2 Master Theorem

Lemma 1
Let $a \geq 1, b \geq 1$ and $\epsilon>0$ denote constants. Consider the
recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1.
If $f(n)=\mathcal{O}\left(n^{\log _{b}(a)-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
Case 2.
If $f(n)=\Theta\left(n^{\log _{b}(a)} \log ^{k} n\right)$ then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$,
$k \geq 0$.
Case 3.
If $f(n)=\Omega\left(n^{\log _{b}(a)+\epsilon}\right)$ and for sufficiently large $n$
af $\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ then $T(n)=\Theta(f(n))$.

Ernst Mayr, Harald Räcke 6.2 Master Theorem

## The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:


### 6.2 Master Theorem

This gives

$$
T(n)=n^{\log _{b} a}+\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) .
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Hence,

$$
T(n)=\mathcal{O}\left(n^{\log _{b} a} \log _{b} n\right)
$$

$$
\Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a} \log n\right)
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon}
\end{aligned}
$$

$$
b^{-i\left(\log _{b} a-\epsilon\right)}=b^{\epsilon i}\left(b^{\left.\log _{b} a\right)^{-i}=b^{\epsilon i} a^{-i}}=c n^{\log _{b} a-\epsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{i}\right.
$$

$$
\sum_{i=0}^{k} q^{i}=\frac{q^{k+1}-1}{q-1}=c n^{\log _{b} a-\epsilon}\left(b^{\epsilon \log _{b} n}-1\right) /\left(b^{\epsilon}-1\right)
$$

$$
=c n^{\log _{b} a-\epsilon}\left(n^{\epsilon}-1\right) /\left(b^{\epsilon}-1\right)
$$

$$
=\frac{c}{b^{\epsilon}-1} n^{\log _{b} a}\left(n^{\epsilon}-1\right) /\left(n^{\epsilon}\right)
$$

Hence,

$$
T(n) \leq\left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log _{b}(a)}
$$

$\Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a}\right)$.

70 n
6.2 Master Theorem

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \geq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Hence,

$$
T(n)=\Omega\left(n^{\log _{b} a} \log _{b} n\right)
$$

$$
\Rightarrow T(n)=\Omega\left(n^{\log _{b} a} \log n\right)
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k} \\
n=b^{\ell} \Rightarrow \ell=\log _{b} n & =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}\left(\log _{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}(\ell-i)^{k} \\
& =c n^{\log _{b} \phi \sum_{i=1}^{\ell} i^{k} \approx \frac{1}{k} \ell^{k+1}} \\
& \approx \frac{c}{k} n^{\log _{b} a \ell^{k+1}} \Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a} \log ^{k+1} n\right) .
\end{aligned}
$$

## Example: Multiplying Two Integers

Suppose we want to multiply two $n$-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers $A$ and $B$

$$
\begin{array}{rrrrrrrrrr}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & A \\
& 1 & 0_{0} & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & B & B & 1
\end{array}
$$

This gives that two $n$-bit integers can be added in time $\mathcal{O}(n)$.

Case 3. Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large $n$ : $a f(n / b) \leq c f(n)$, for $c<1$.

From this we get $a^{i} f\left(n / b^{i}\right) \leq c^{i} f(n)$, where we assume that $n / b^{i-1} \geq n_{0}$ is still sufficiently large.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq \sum_{i=0}^{\log _{b} n-1} c^{i} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right) \\
q<1: \sum_{i=0}^{n} q^{i}=\frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} & \leq \frac{1}{1-c} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Hence,

$$
T(n) \leq \mathcal{O}(f(n))
$$

$$
\Rightarrow T(n)=\Theta(f(n))
$$

' Where did we use $f(n) \geq \Omega\left(n^{\log _{b}} \overline{a+\epsilon}\right)$ ?


Urnst Mayr, Harald Räcke
6.2 Master Theorem

## Example: Multiplying Two Integers

Suppose that we want to multiply an $n$-bit integer $A$ and an $m$-bit integer $\boldsymbol{B}(m \leq n)$.


## Time requirement:

- Computing intermediate results: $\mathcal{O}(\mathrm{nm})$.
- Adding $m$ numbers of length $\leq 2 n$ : $\mathcal{O}((m+n) m)=\mathcal{O}(n m)$.


## Example: Multiplying Two Integers

## A recursive approach:

Suppose that integers $A$ and $B$ are of length $n=2^{k}$, for some $k$.

| $B_{1}$ | $B_{0}$ |
| :---: | :---: | | $A_{1}$ | $A_{0}$ |
| :---: | :---: |

Then it holds that

$$
A=A_{1} \cdot 2^{\frac{n}{2}}+A_{0} \text { and } B=B_{1} \cdot 2^{\frac{n}{2}}+B_{0}
$$

Hence,

$$
A \cdot B=A_{1} B_{1} \cdot 2^{n}+\left(A_{1} B_{0}+A_{0} B_{1}\right) \cdot 2^{\frac{n}{2}}+A_{0} B_{0}
$$

## Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

In our case $a=4, b=2$, and $f(n)=\Theta(n)$. Hence, we are in Case 1 , since $n=\mathcal{O}\left(n^{2-\epsilon}\right)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$.

We get a running time of $\mathcal{O}\left(n^{2}\right)$ for our algorithm.
$\Rightarrow$ Not better then the "school method".

## Example: Multiplying Two Integers

| Algorithm 3 mult $(A, B)$ |  |
| :--- | :--- |
| 1: if $\|A\|=\|B\|=1$ then | $\mathcal{O}(1)$ |
| 2: return $a_{0} \cdot b_{0}$ | $\mathcal{O}(1)$ |
| 3: split $A$ into $A_{0}$ and $A_{1}$ | $\mathcal{O}(n)$ |
| 4: split $B$ into $B_{0}$ and $B_{1}$ | $\mathcal{O}(n)$ |
| 5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$ | $T\left(\frac{n}{2}\right)$ |
| 6: $Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right)$ | $2 T\left(\frac{n}{2}\right)+\mathcal{O}(n)$ |
| 7: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$ | $T\left(\frac{n}{2}\right)$ |
| 8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$ | $\mathcal{O}(n)$ |

We get the following recurrence:

$$
T(n)=4 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

Ernst Mayr, Harald Räcke
6.2 Master Theorem

## Example: Multiplying Two Integers

We can use the following identity to compute $Z_{1}$ :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}^{=Z_{2}}-\overbrace{A_{0} B_{0}}^{=Z_{0}}
\end{aligned}
$$

Hence,

A more precise
(correct) analysi
would say that
computing $Z_{1}$
I needs time
$T\left(\frac{n}{2}+1\right)+\mathcal{O}(n)$.


## Example: Multiplying Two Integers

We get the following recurrence:

$$
T(n)=3 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.59}\right)$.

A huge improvement over the "school method".

### 6.3 The Characteristic Polynomial

## Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any $k$ consecutive values completely determine the solution.
- $k$ non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).


## Approach:

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.


### 6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order $k$ with constant coefficients ( $c_{0}, c_{k} \neq 0$ ).

- $T(n)$ only depends on the $k$ preceding values. This means the recurrence relation is of order $k$.
- The recurrence is linear as there are no products of $T[n]$ 's.
- If $f(n)=0$ then the recurrence relation becomes a linear, homogenous recurrence relation of order $k$.

Note that we ignore boundary conditions for the moment.
Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

## The Homogenous Case

The solution space

$$
S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T} \text { fulfills recurrence relation }\}
$$

is a vector space. This means that if $\mathcal{T}_{1}, \mathcal{T}_{2} \in S$, then also $\alpha \mathcal{T}_{1}+\beta \mathcal{T}_{2} \in S$, for arbitrary constants $\alpha, \beta$.

## How do we find a non-trivial solution?

We guess that the solution is of the form $\lambda^{n}, \lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$
c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \cdot \lambda^{n-2}+\cdots+c_{k} \cdot \lambda^{n-k}=0
$$

for all $n \geq k$.

## The Homogenous Case

Dividing by $\lambda^{n-k}$ gives that all these constraints are identical to

$$
\underbrace{c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}}_{\text {characteristic polynomial } P[\lambda]}=0
$$

This means that if $\lambda_{i}$ is a root (Nullstelle) of $P[\lambda]$ then $T[n]=\lambda_{i}^{n}$ is a solution to the recurrence relation.

Let $\lambda_{1}, \ldots, \lambda_{k}$ be the $k$ (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n}
$$

is a solution for arbitrary values $\alpha_{i}$.

## The Homogenous Case

Proof (cont.).
Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\begin{gathered}
\alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1] \\
\alpha_{1} \cdot \lambda_{1}^{2}+\alpha_{2} \cdot \lambda_{2}^{2}+\cdots+\alpha_{k} \cdot \lambda_{k}^{2}=T[2] \\
\vdots \\
\alpha_{1} \cdot \lambda_{1}^{k}+\alpha_{2} \cdot \lambda_{2}^{k}+\cdots+\alpha_{k} \cdot \lambda_{k}^{k}=T[k]
\end{gathered}
$$

## The Homogenous Case

## Lemma 2

Assume that the characteristic polynomial has $k$ distinct roots $\lambda_{1}, \ldots, \lambda_{k}$. Then all solutions to the recurrence relation are of the form

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n}
$$

Proof.
There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

## The Homogenous Case

## Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k}^{2} \\
& & \vdots & \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k}^{k}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right)=\left(\begin{array}{c}
T[1] \\
T[2] \\
\vdots \\
T[k]
\end{array}\right)
$$

We show that the column vectors are linearly independent. Then the above equation has a solution.

|  |  |  |
| :--- | :--- | :--- |
| $\boxed{T}$ | Ernst Mayr, Harald Räcke | 7.3 The Characteristic Polynomial |

## Computing the Determinant

$$
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right|=\prod_{i=1}^{k} \lambda_{i} \cdot\left|\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_{k}^{k-1}
\end{array}\right|
$$

$$
=\prod_{i=1}^{k} \lambda_{i} \cdot\left|\begin{array}{ccccc}
1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1}
\end{array}\right|
$$

$$
\left|\begin{array}{ccccc}
1 & \lambda_{1}-\lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2}-\lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1}-\lambda_{1} \cdot \lambda_{1}^{k-2} \\
1 & \lambda_{2}-\lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2}-\lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1}-\lambda_{1} \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k}-\lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2}-\lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1}-\lambda_{1} \cdot \lambda_{k}^{k-2}
\end{array}\right|
$$

## Computing the Determinant

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
1 & \lambda_{1}-\lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2}-\lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1}-\lambda_{1} \cdot \lambda_{1}^{k-2} \\
1 & \lambda_{2}-\lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2}-\lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1}-\lambda_{1} \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k}-\lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2}-\lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1}-\lambda_{1} \cdot \lambda_{k}^{k-2}
\end{array}\right|= \\
& \\
&
\end{aligned}\left|\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & \left(\lambda_{2}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-3} & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \left(\lambda_{k}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-3} & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-2}
\end{array}\right|, ~ l
$$

## Computing the Determinant

$$
\left|\begin{array}{ccccc}
1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1}
\end{array}\right|=
$$

## Computing the Determinant

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & \left(\lambda_{2}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-3} & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \left(\lambda_{k}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-3} & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-2}
\end{array}\right|= \\
& \\
&
\end{aligned} \prod_{i=2}^{k}\left(\lambda_{i}-\lambda_{1}\right) \cdot\left|\begin{array}{ccccc}
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-3} & \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-3} & \lambda_{k}^{k-2}
\end{array}\right|=
$$

## Computing the Determinant

Repeating the above steps gives:

$$
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right|=\prod_{i=1}^{k} \lambda_{i} \cdot \prod_{i>\ell}\left(\lambda_{i}-\lambda_{\ell}\right)
$$

Hence, if all $\lambda_{i}$ 's are different, then the determinant is non-zero.

This means

$$
c_{0} n \lambda_{i}^{n-1}+c_{1}(n-1) \lambda_{i}^{n-2}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k-1}=0
$$

Hence,

$$
c_{0} \underbrace{n \lambda_{i}^{n}}_{T[n]}+c_{1} \underbrace{(n-1) \lambda_{i}^{n-1}}_{T[n-1]}+\cdots+c_{k} \underbrace{(n-k) \lambda_{i}^{n-k}}_{T[n-k]}=0
$$

## The Homogeneous Case

## What happens if the roots are not all distinct?

Suppose we have a root $\lambda_{i}$ with multiplicity (Vielfachheit) at least
2. Then not only is $\lambda_{i}^{n}$ a solution to the recurrence but also $n \lambda_{i}^{n}$.

To see this consider the polynomial

$$
P[\lambda] \cdot \lambda^{n-k}=c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{k} \lambda^{n-k}
$$

Since $\lambda_{i}$ is a root we can write this as $Q[\lambda] \cdot\left(\lambda-\lambda_{i}\right)^{2}$. Calculating the derivative gives a polynomial that still has root $\lambda_{i}$.

## The Homogeneous Case

Suppose $\lambda_{i}$ has multiplicity $j$. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with $\lambda$; plugging in $\lambda_{i}$ )

Doing this again gives

$$
c_{0} n^{2} \lambda_{i}^{n}+c_{1}(n-1)^{2} \lambda_{i}^{n-1}+\cdots+c_{k}(n-k)^{2} \lambda_{i}^{n-k}=0
$$

We can continue $j-1$ times.
Hence, $n^{\ell} \lambda_{i}^{n}$ is a solution for $\ell \in 0, \ldots, j-1$.

## The Homogeneous Case

## Lemma 3

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

$$
c_{0} T[n]+c_{1} T[n-1]+\cdots+c_{k} T[n-k]=0
$$

Let $\lambda_{i}, i=1, \ldots, m$ be the (complex) roots of $P[\lambda]$ with multiplicities $\ell_{i}$. Then the general solution to the recurrence is given by

$$
T[n]=\sum_{i=1}^{m} \sum_{j=0}^{\ell_{i}-1} \alpha_{i j} \cdot\left(n^{j} \lambda_{i}^{n}\right)
$$

The full proof is omitted. We have only shown that any choice of $\alpha_{i j}$ 's is a solution to the recurrence.

## Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$T[0]=0$ gives $\alpha+\beta=0$.
$T[1]=1$ gives

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Rightarrow \alpha-\beta=\frac{2}{\sqrt{5}}
$$

## Example: Fibonacci Sequence

$$
\begin{aligned}
T[0] & =0 \\
T[1] & =1 \\
T[n] & =T[n-1]+T[n-2] \text { for } n \geq 2
\end{aligned}
$$

The characteristic polynomial is

$$
\lambda^{2}-\lambda-1
$$

Finding the roots, gives

$$
\lambda_{1 / 2}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+1}=\frac{1}{2}(1 \pm \sqrt{5})
$$

$\square$ Ernst Mayr, Harald Räcke

## Example: Fibonacci Sequence

Hence, the solution is

$$
\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

## The Inhomogeneous Case

## Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

with $f(n) \neq 0$.
While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

## The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

Subtracting the first from the second equation gives,

$$
T[n]-T[n-1]=T[n-1]-T[n-2] \quad(n \geq 2)
$$

or

$$
T[n]=2 T[n-1]-T[n-2] \quad(n \geq 2)
$$

I get a completely determined recurrence if I add $T[0]=1$ and $T[1]=2$.

## The Inhomogeneous Case

The general solution of the recurrence relation is

$$
T(n)=T_{h}(n)+T_{p}(n),
$$

where $T_{h}$ is any solution to the homogeneous equation, and $T_{p}$ is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.


## The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

Then the solution is of the form

$$
T[n]=\alpha 1^{n}+\beta n 1^{n}=\alpha+\beta n
$$

$$
\begin{aligned}
& T[0]=1 \text { gives } \alpha=1 \\
& T[1]=2 \text { gives } 1+\beta=2 \Longrightarrow \beta=1
\end{aligned}
$$

## The Inhomogeneous Case

If $f(n)$ is a polynomial of degree $r$ this method can be applied $r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}=T[n-2]+n^{2}-2 n+1
$$

Difference:

$$
T[n]-T[n-1]=T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

Difference:

$$
\begin{aligned}
T[n]-T[n-1]= & 2 T[n-1]-T[n-2]+2 n-1 \\
& -2 T[n-2]+T[n-3]-2 n+3
\end{aligned}
$$

and so on...

### 6.4 Generating Functions

## Example 5

1. The generating function of the sequence $(1,0,0, \ldots)$ is

$$
F(z)=1
$$

2. The generating function of the sequence $(1,1,1, \ldots)$ is

$$
F(z)=\frac{1}{1-z}
$$

### 6.4 Generating Functions

There are two different views:
A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.
Let $f=\sum_{n \geq 0} a_{n} z^{n}$ and $g=\sum_{n \geq 0} b_{n} z^{n}$.

- Equality: $f$ and $g$ are equal if $a_{n}=b_{n}$ for all $n$.
- Addition: $f+g:=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) z^{n}$.
- Multiplication: $f \cdot g:=\sum_{n \geq 0} c_{n} z^{n}$ with $c_{n}=\sum_{p=0}^{n} a_{p} b_{n-p}$.

There are no convergence issues here.

### 6.4 Generating Functions

What does $\sum_{n \geq 0} z^{n}=\frac{1}{1-z}$ mean in the algebraic view?
It means that the power series $1-z$ and the power series
$\sum_{n \geq 0} z^{n}$ are invers, i.e.,

$$
(1-z) \cdot\left(\sum_{n \geq 0}^{\infty} z^{n}\right)=1
$$

## This is well-defined.

### 6.4 Generating Functions

The arithmetic view:
We view a power series as a function $f: \mathbb{C} \rightarrow \mathbb{C}$.
Then, it is important to think about convergence/convergence radius etc.

### 6.4 Generating Functions

Suppose we are given the generating function Formally the derivative of a formal
power series $\sum_{n \geq 0} a_{n} z^{n}$ is defined
as $\sum_{n \geq 0} n a_{n} z^{n-1}$.
The known rules for differentiation
work for this definition. In partic-
ular, e.g. the derivative of $\frac{1}{1-z}$ is
$\frac{1}{(1-z)^{2}}$.
Note that this requires a proof if we
consider power series as algebraic
objects. However, we did not prove
this in the lecture.
We can compute the derivative:

$$
\underbrace{\sum_{n \geq 1} n z^{n-1}}_{\sum_{n \geq 0}}=\frac{1}{(1-z)^{2}}
$$

Hence, the generating function of the sequence $a_{n}=n+1$
is $1 /(1-z)^{2}$.

### 6.4 Generating Functions

We can repeat this

$$
\sum_{n \geq 0}(n+1) z^{n}=\frac{1}{(1-z)^{2}} .
$$

Derivative:

$$
\underbrace{\sum_{n \geq 1} n(n+1) z^{n-1}}_{\sum_{n \geq 0}(n+1)(n+2) z^{n}}=\frac{2}{(1-z)^{3}}
$$

Hence, the generating function of the sequence $a_{n}=(n+1)(n+2)$ is $\frac{2}{(1-z)^{3}}$.

### 6.4 Generating Functions

$$
\begin{aligned}
\sum_{n \geq 0} n z^{n} & =\sum_{n \geq 0}(n+1) z^{n}-\sum_{n \geq 0} z^{n} \\
& =\frac{1}{(1-z)^{2}}-\frac{1}{1-z} \\
& =\frac{z}{(1-z)^{2}}
\end{aligned}
$$

The generating function of the sequence $a_{n}=n$ is $\frac{z}{(1-z)^{2}}$.

### 6.4 Generating Functions

Computing the $k$-th derivative of $\sum z^{n}$.

$$
\begin{aligned}
\sum_{n \geq k} n(n-1) \cdot \ldots \cdot(n-k+1) z^{n-k} & =\sum_{n \geq 0}(n+k) \cdot \ldots \cdot(n+1) z^{n} \\
& =\frac{k!}{(1-z)^{k+1}}
\end{aligned}
$$

Hence:

$$
\sum_{n \geq 0}\binom{n+k}{k} z^{n}=\frac{1}{(1-z)^{k+1}}
$$

The generating function of the sequence $a_{n}=\binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.
$\boxed{T}$ Ernst Mayr, Harald Räcke 6.4 Generating Functions

### 6.4 Generating Functions

We know

$$
\sum_{n \geq 0} y^{n}=\frac{1}{1-y}
$$

Hence,

$$
\sum_{n \geq 0} a^{n} z^{n}=\frac{1}{1-a z}
$$

The generating function of the sequence $f_{n}=a^{n}$ is $\frac{1}{1-a z}$.

Example: $a_{n}=a_{n-1}+1, a_{0}=1$
Suppose we have the recurrence $a_{n}=a_{n-1}+1$ for $n \geq 1$ and $a_{0}=1$.

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1}\left(a_{n-1}+1\right) z^{n} \\
& =1+z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} z^{n} \\
& =z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} z^{n} \\
& =z A(z)+\sum_{n \geq 0} z^{n} \\
& =z A(z)+\frac{1}{1-z}
\end{aligned}
$$

## Some Generating Functions

| n-th sequence element | generating function |
| :---: | :---: |
| 1 | $\frac{1}{1-z}$ |
| $n+1$ | $\frac{1}{(1-z)^{2}}$ |
| $\binom{n+k}{k}$ | $\frac{1}{(1-z)^{k+1}}$ |
| $n$ | $\frac{z}{(1-z)^{2}}$ |
| $a^{n}$ | $\frac{1}{1-a z}$ |
| $n^{2}$ | $\frac{z(1+z)}{(1-z)^{3}}$ |
| $\frac{1}{n!}$ | $e^{z}$ |

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Solving for $A(z)$ gives

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{(1-z)^{2}}=\sum_{n \geq 0}(n+1) z^{n}
$$

Hence, $a_{n}=n+1$.

## Some Generating Functions

| n-th sequence element | generating function |
| :---: | :---: |
| $c f_{n}$ | $c F$ |
| $f_{n}+g_{n}$ | $F+G$ |
| $\sum_{i=0}^{n} f_{i} g_{n-i}$ | $F \cdot G$ |
| $f_{n-k}(n \geq k) ; 0$ otw. | $z^{k} F$ |
| $\sum_{i=0}^{n} f_{i}$ | $\frac{F(z)}{1-z}$ |
| $n f_{n}$ | $z \frac{\mathrm{~d} F(z)}{\mathrm{d} z}$ |
| $c^{n} f_{n}$ | $F(c z)$ |

## Solving Recursions with Generating Functions

1. Set $A(z)=\sum_{n \geq 0} a_{n} z^{n}$.
2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
3. Do further transformations so that the infinite sums on the right hand side can be replaced by $A(z)$.
4. Solving for $A(z)$ gives an equation of the form $A(z)=f(z)$, where hopefully $f(z)$ is a simple function.
5. Write $f(z)$ as a formal power series.

Techniques:

- partial fraction decomposition (Partialbruchzerlegung)
- lookup in tables

6. The coefficients of the resulting power series are the $a_{n}$.

Example: $a_{n}=2 a_{n-1}, a_{0}=1$
3. Transform right hand side so that infinite sums can be replaced by $A(z)$ or by simple function.

$$
\begin{aligned}
A(z) & =1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n} \\
& =1+2 z \sum_{n \geq 1} a_{n-1} z^{n-1} \\
& =1+2 z \sum_{n \geq 0} a_{n} z^{n} \\
& =1+2 z \cdot A(z)
\end{aligned}
$$

4. Solve for $A(z)$.

$$
A(z)=\frac{1}{1-2 z}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

2. Transform right hand side so that recurrence can be plugged in:

$$
A(z)=a_{0}+\sum_{n \geq 1} a_{n} z^{n}
$$

2. Plug in:

$$
A(z)=1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$
5. Rewrite $f(z)$ as a power series:

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{1-2 z}=\sum_{n \geq 0} 2^{n} z^{n}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$
2./3. Transform right hand side:

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1} a_{n} z^{n} \\
& =1+\sum_{n \geq 1}\left(3 a_{n-1}+n\right) z^{n} \\
& =1+3 z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} n z^{n} \\
& =1+3 z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} n z^{n} \\
& =1+3 z A(z)+\frac{z}{(1-z)^{2}}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$
5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

$$
\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}} \stackrel{!}{=} \frac{A}{1-3 z}+\frac{B}{1-z}+\frac{C}{(1-z)^{2}}
$$

This gives

$$
\begin{aligned}
z^{2}-z+1 & =A(1-z)^{2}+B(1-3 z)(1-z)+C(1-3 z) \\
& =A\left(1-2 z+z^{2}\right)+B\left(1-4 z+3 z^{2}\right)+C(1-3 z) \\
& =(A+3 B) z^{2}+(-2 A-4 B-3 C) z+(A+B+C)
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$
5. Write $f(z)$ as a formal power series:

This leads to the following conditions:

$$
\begin{aligned}
A+B+C & =1 \\
2 A+4 B+3 C & =1 \\
A+3 B & =1
\end{aligned}
$$

which gives

$$
A=\frac{7}{4} \quad B=-\frac{1}{4} \quad C=-\frac{1}{2}
$$

6.4 Generating Functions

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$
5. Write $f(z)$ as a formal power series:

$$
\begin{aligned}
A(z) & =\frac{7}{4} \cdot \frac{1}{1-3 z}-\frac{1}{4} \cdot \frac{1}{1-z}-\frac{1}{2} \cdot \frac{1}{(1-z)^{2}} \\
& =\frac{7}{4} \cdot \sum_{n \geq 0} 3^{n} z^{n}-\frac{1}{4} \cdot \sum_{n \geq 0} z^{n}-\frac{1}{2} \cdot \sum_{n \geq 0}(n+1) z^{n} \\
& =\sum_{n \geq 0}\left(\frac{7}{4} \cdot 3^{n}-\frac{1}{4}-\frac{1}{2}(n+1)\right) z^{n} \\
& =\sum_{n \geq 0}\left(\frac{7}{4} \cdot 3^{n}-\frac{1}{2} n-\frac{3}{4}\right) z^{n}
\end{aligned}
$$

6. This means $a_{n}=\frac{7}{4} 3^{n}-\frac{1}{2} n-\frac{3}{4}$.

7 Ernst Mayr, Harald Räcke 6.4 Generating Functions
Ernst Mayr, Harald Räcke
共

### 6.5 Transformation of the Recurrence

Example 6

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=2 \\
& f_{n}=f_{n-1} \cdot f_{n-2} \text { for } n \geq 2
\end{aligned}
$$

Define

$$
g_{n}:=\log f_{n}
$$

Then

$$
\begin{aligned}
g_{n} & =g_{n-1}+g_{n-2} \text { for } n \geq 2 \\
g_{1} & =\log 2=1\left(\text { for } \log =\log _{2}\right), g_{0}=0 \\
g_{n} & =F_{n}(n \text {-th Fibonacci number }) \\
f_{n} & =2^{F_{n}}
\end{aligned}
$$

### 6.5 Transformation of the Recurrence

Example 7

$$
\begin{aligned}
& f_{1}=1 \\
& f_{n}=3 f_{\frac{n}{2}}+n ; \text { for } n=2^{k}, k \geq 1 ;
\end{aligned}
$$

Define

$$
g_{k}:=f_{2^{k}}
$$

Then:

$$
\begin{aligned}
& g_{0}=1 \\
& g_{k}=3 g_{k-1}+2^{k}, k \geq 1
\end{aligned}
$$

## 6 Recurrences

We get

$$
\begin{aligned}
g_{k} & =3\left[g_{k-1}\right]+2^{k} \\
& =3\left[3 g_{k-2}+2^{k-1}\right]+2^{k} \\
& =3^{2}\left[g_{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{2}\left[3 g_{k-3}+2^{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{3} g_{k-3}+3^{2} 2^{k-2}+32^{k-1}+2^{k} \\
& =2^{k} \cdot \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i} \\
& =2^{k} \cdot \frac{\left(\frac{3}{2}\right)^{k+1}-1}{1 / 2}=3^{k+1}-2^{k+1}
\end{aligned}
$$

## 6 Recurrences

## Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures - The Basic Toolbox, Springer, 2008
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.
MIT Press and McGraw-Hill, 2009
[Liu85] Chung Laung Liu:
Elements of Discrete Mathematics
McGraw-Hill, 1985
The Karatsuba method can be found in [MS08] Chapter 1. Chapter 4.3 of [CLRS90] covers the "Substitution method" which roughly corresponds to "Guessing+induction". Chapters 4.4, 4.5, 4.6 of this book cover the master theorem. Methods using the characteristic polynomial and generating functions can be found in [Liu85] Chapter 10 .

$$
\begin{aligned}
g_{k} & =3^{k+1}-2^{k+1}, \text { hence } \\
f_{n} & =3 \cdot 3^{k}-2 \cdot 2^{k} \\
& =3\left(2^{\log 3}\right)^{k}-2 \cdot 2^{k} \\
& =3\left(2^{k}\right)^{\log 3}-2 \cdot 2^{k} \\
& =3 n^{\log 3}-2 n .
\end{aligned}
$$

## 6 Recurrences

Let $n=2^{k}$ :

