A Fast Matching Algorithm

Algorithm 28 Bimatch-Hopcroft-Karp(*G*)

```
1: M ← ∅
```

2: repeat

3: let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. *M*.

5: $M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k)$

6: until $P = \emptyset$

7: return *M*

We call one iteration of the repeat-loop a phase of the algorithm.

Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- ▶ Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- The connected components of G are cycles and paths.
- ▶ The graph contains $k ext{ # } |M^*| |M|$ more red edges than blue edges.
- ► Hence, there are at least *k* components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. *M*.

Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- ► Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ▶ The graph contains $k ext{ # } |M^*| |M|$ more red edges than blue edges.
- ▶ Hence, there are at least *k* components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. *M*.

Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ▶ The graph contains $k ext{ # } |M^*| |M|$ more red edges than blue edges.
- ▶ Hence, there are at least *k* components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. *M*.

Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- ► Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ightharpoonup The connected components of G are cycles and paths.
- ▶ The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- ▶ Hence, there are at least *k* components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. *M*.

Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- ► Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ightharpoonup The connected components of G are cycles and paths.
- ▶ The graph contains $k ext{ \ext{ }} ext{ } |M^*| |M| \text{ more red edges than blue edges.}$
- ▶ Hence, there are at least *k* components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. *M*.

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'

Lemma 2

The set $A \not \equiv M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 2

The set $A \not \equiv M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 2

The set $A \not \equiv M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 2

The set $A \stackrel{\text{\tiny def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- ▶ The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ▶ Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- ightharpoonup Each of these paths is of length at least ℓ

- ► The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- **Each** of these paths is of length at least ℓ .

- ▶ The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Lemma 3

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Lemma 3

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ▶ If P does not intersect any of the $P_1, ..., P_k$, this follows from the maximality of the set $\{P_1, ..., P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 3

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- ▶ This edge is not contained in *A*.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 3

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 3

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 3

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof

The symmetric difference between M and M^* contains $|M^*|-|M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*|-|M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Lemma 4

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

- After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \geq \sqrt{|V|}$.
- ▶ Hence, there can be at most $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

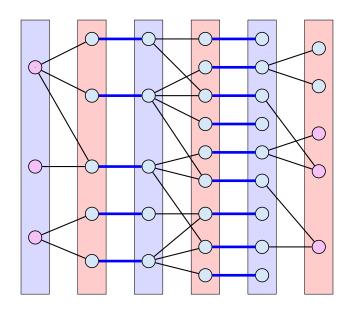
Lemma 4

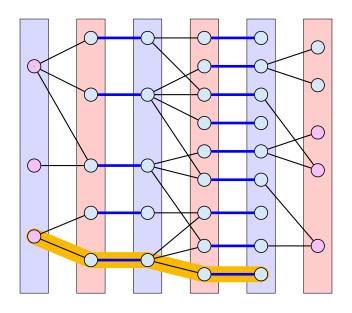
The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

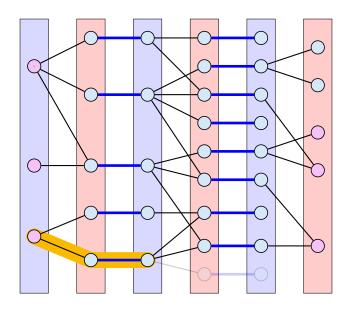
- ▶ After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

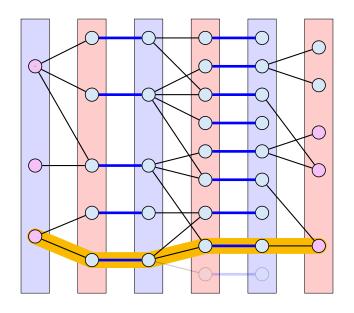
Lemma 5

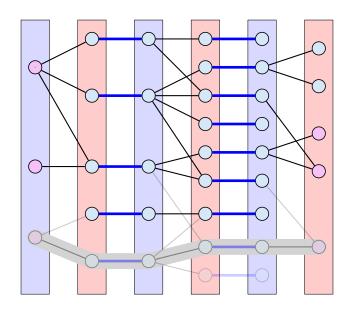
One phase of the Hopcroft-Karp algorithm can be implemented in time O(m).

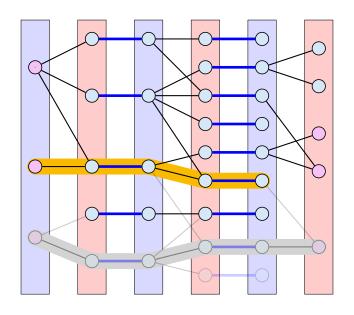

construct a "level graph" G':

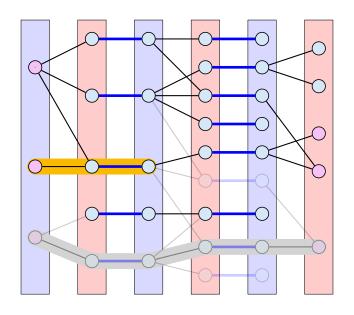

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- stop when a level (apart from Level 0) contains a free vertex can be done in time $\mathcal{O}(m)$ by a modified BFS

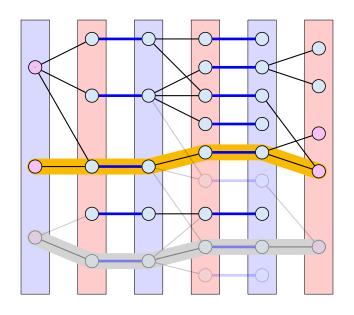


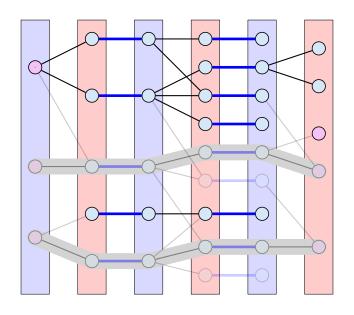

- a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a "dead end" \boldsymbol{v}
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- if you reach a dead end backtrack and delete v together with its incident edges

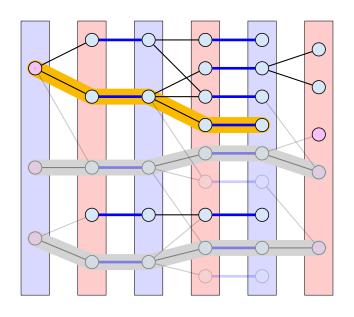


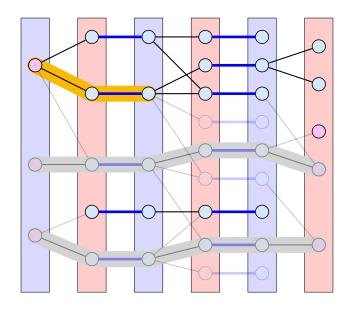


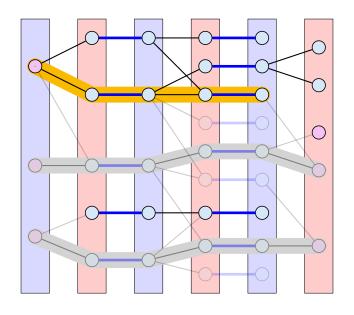


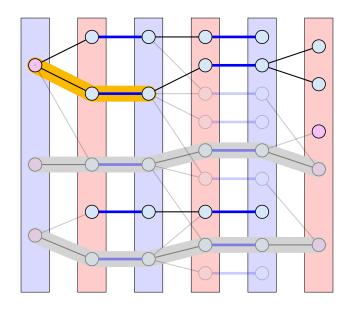


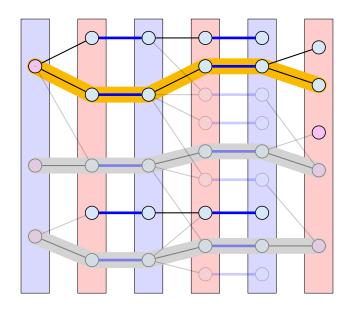


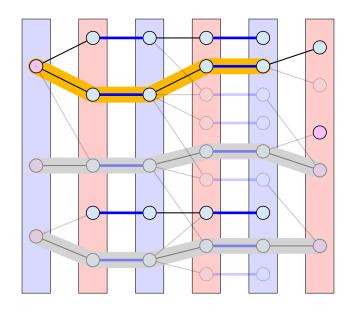


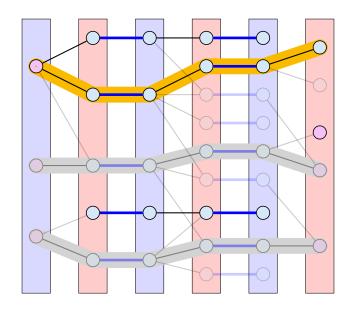


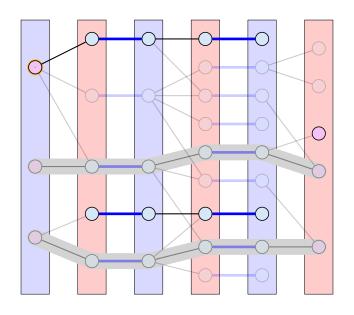


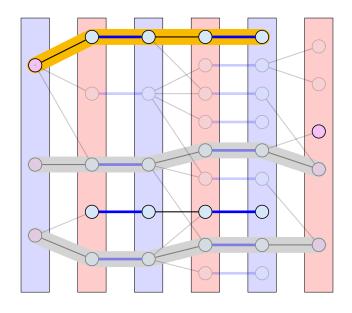


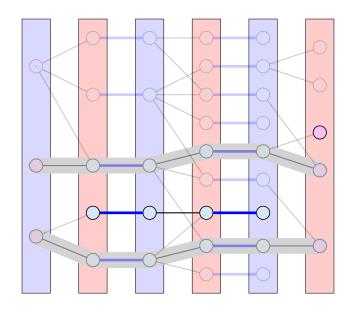


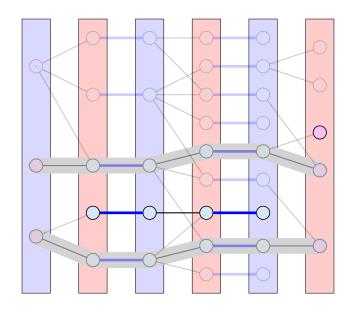












Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is O(mn)

- ▶ a search (successful or unsuccessful) takes time O(n)
- a search deletes at least one edge from the level graph

there are at most n phases

Time: $\mathcal{O}(mn^2)$.

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is O(m)

an edge/vertex is traversed at most twice

need at most $\mathcal{O}(\sqrt{n})$ phases

- after \sqrt{n} phases there is a cut of size at most \sqrt{n} in the residual graph
- lacktriangle hence at most \sqrt{n} additional augmentations required

Time: $\mathcal{O}(m\sqrt{n})$.

