The Inhomogeneous Case

If f(n) is a polynomial of degree r this method can be applied

r + 1 times to obtain a homogeneous equation:

 $T[n] = T[n-1] + n^2$

Shift:

 $T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$

Difference:

T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1

T[n] = 2T[n-1] - T[n-2] + 2n - 1

Shift:

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$
$$- 2T[n-2] + T[n-3] - 2n + 3$$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

and so on...

6.4 Generating Functions

Definition 4 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n \ge 0} a_n z^n;$$

 exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) = \sum_{n \ge 0} \frac{a_n}{n!} z^n.$$

6.4 Generating Functions

93

6.4 Generating Functions

Example 5

1. The generating function of the sequence (1, 0, 0, ...) is

F(z) = 1.

2. The generating function of the sequence (1, 1, 1, ...) is

$$F(z)=\frac{1}{1-z}.$$

6.4 Generating Functions

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

- Let $f = \sum_{n\geq 0} a_n z^n$ and $g = \sum_{n\geq 0} b_n z^n$.
 - **Equality:** f and g are equal if $a_n = b_n$ for all n.
 - Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$.
 - Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c_n = \sum_{p=0}^n a_p b_{n-p}$.

There are no convergence issues here.

Ernst Mayr, Harald Räcke	6.4 Generating Functions	

6.4 Generating Functions

What does $\sum_{n\geq 0} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1-z and the power series $\sum_{n\geq 0} z^n$ are invers, i.e.,

$$(1-z)\cdot\left(\sum_{n\geq 0}^{\infty}z^n\right)=1$$

This is well-defined.

Ernst Mayr, Harald Räcke	6.4 Generating Functions
Ernst Mayr, Harald Räcke	

6.4 Generating Functions

The arithmetic view:

We view a power series as a function $f : \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

Ernst Mayr, Harald Räcke

95

97

6.4 Generating Functions

96

5.4 Generating Functions	Formally the derivative of a formal power series $\sum_{n \ge 0} a_n z^n$ is defined
Suppose we are given the generating function $\sum_{n\geq 0} z^n = \frac{1}{1-x}$	as $\sum_{n\geq 0} na_n z^{n-1}$. The known rules for differentiation work for this definition. In partic- ular, e.g. the derivative of $\frac{1}{1-z}$ is $\frac{1}{(1-z)^2}$. Note that this requires a proof if we consider power series as algebraic objects. However, we did not prove
We can compute the derivative:	this in the lecture.
$\underbrace{\sum_{n\geq 1} nz^{n-1}}_{\sum_{n\geq 0}(n+1)z^n} = \frac{1}{(1-1)^n}$	$\frac{1}{(z-z)^2}$
Hence, the generating function of the is $1/(1-z)^2$.	sequence $a_n = n + 1$
6.4 Generating Func	ions

6.4 Generating Functions

We can repeat this

$$\sum_{n \ge 0} (n+1)z^n = \frac{1}{(1-z)^2}$$

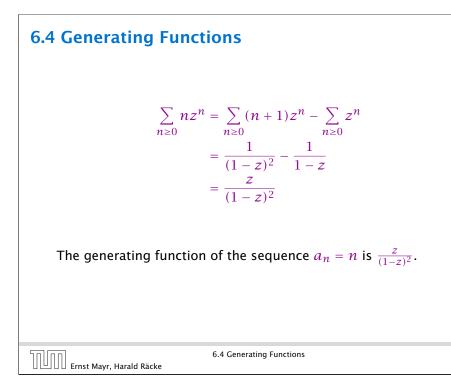
Derivative:

$$\underbrace{\sum_{n\geq 1} n(n+1)z^{n-1}}_{\sum_{n\geq 0}(n+1)(n+2)z^n} = \frac{2}{(1-z)^3}$$

Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-z)^3}$.

Ernst Mayr, Harald Räcke

6.4 Generating Functions



6.4 Generating Functions

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \cdot \ldots \cdot (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \cdot \ldots \cdot (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}} .$$

Hence:

99

101

$$\sum_{n\geq 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}}$$

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

Ernst Mayr, Harald Räcke	6.4 Generating Functions	
UUU Ernst Mayr, Harald Räcke		100

6.4 Generating Functions	
We know	
$\sum_{n\geq 0} \gamma^n = \frac{1}{1-\gamma}$	
Hence,	
$\sum_{n\geq 0} a^n z^n = \frac{1}{1-az}$	
The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$.	
「「」」 6.4 Generating Functions	
6.4 Generating Functions	102

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$	
Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and	
$a_0 = 1.$	
$A(z) = \sum a_n z^n$	
$n \ge 0$	
$= a_0 + \sum (a_{n-1} + 1)z^n$	
$n \ge 1$	
$= 1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$	
$= z \sum a_n z^n + \sum z^n$	
$n \ge 0$ $n \ge 0$	
$=zA(z)+\sum z^n$	
$n \ge 0$	
$= zA(z) + \frac{1}{1-z}$	
「□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	
IIIII Ernst Mayr, Harald Räcke	103

Some Generating Functions			
	n-th sequence element	generating function	
	1	$\frac{1}{1-z}$	
	n + 1	$\frac{1}{(1-z)^2}$	
	$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$	
	п	$\frac{z}{(1-z)^2}$	
	a^n	$\frac{1}{1-az}$	
	n^2	$\frac{z(1+z)}{(1-z)^3}$	
	$\frac{1}{n!}$	e ^z	
6.4 Generating Functions			

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Solving for A(z) gives $\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n \ge 0} (n+1) z^n$ Hence, $a_n = n + 1$. Ernst Mayr, Harald Räcke 6.4 Generating Functions 104

n-th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G
$\sum_{i=0}^{n} f_i g_{n-i}$	$F \cdot G$
f_{n-k} $(n \ge k); 0$ otw.	z^kF
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$
$c^n f_n$	F(cz)

105

Solving Recursions with Generating Functions

- **1.** Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- **3.** Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - lookup in tables
- **6.** The coefficients of the resulting power series are the a_n .

Ernst Mayr, Harald Räcke	6.4 Generating Functions

Example: $a_n = 2a_{n-1}, a_0 = 1$

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

= 1 + 2z $\sum_{n \ge 1} a_{n-1}z^{n-1}$
= 1 + 2z $\sum_{n \ge 0} a_n z^n$
= 1 + 2z $\cdot A(z)$

4. Solve for A(z).

$$A(z) = \frac{1}{1 - 2z}$$

Ernst Mayr, Harald Räcke	6.4 Generating Functions
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke	

109

107

Example: $a_n = 2a_{n-1}, a_0 = 1$

1. Set up generating function:

 $A(z) = \sum_{n \ge 0} a_n z^n$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n \ge 1} a_n z^n$$

2. Plug in:

$$A(z) = 1 + \sum_{n > 1} (2a_{n-1})z^n$$

6.4 Generating Functions Ernst Mayr, Harald Räcke 108

```
Example: a_n = 2a_{n-1}, a_0 = 1

5. Rewrite f(z) as a power series:

\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{1-2z} = \sum_{n \ge 0} 2^n z^n
6.4 Generating Functions
```

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$	
1. Set up generating function:	
$A(z) = \sum_{n \ge 0} a_n z^n$	
6.4 Generating Functions	111

Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$
4. Solve for $A(z)$:
 $A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$
gives
 $A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}$
6.4 Generating Functions

113

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} a_n z^n$
= $1 + \sum_{n \ge 1} (3a_{n-1} + n)z^n$
= $1 + 3z \sum_{n \ge 1} a_{n-1}z^{n-1} + \sum_{n \ge 1} nz^n$
= $1 + 3z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} nz^n$
= $1 + 3zA(z) + \frac{z}{(1-z)^2}$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$ 5. Write f(z) as a formal power series: We use partial fraction decomposition: $\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$ This gives $z^2 - z + 1 = A(1 - z)^2 + B(1 - 3z)(1 - z) + C(1 - 3z)$ $= A(1 - 2z + z^2) + B(1 - 4z + 3z^2) + C(1 - 3z)$ $= (A + 3B)z^2 + (-2A - 4B - 3C)z + (A + B + C)$ **Example:** $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

This leads to the following conditions:

$$A + B + C = 1$$
$$2A + 4B + 3C = 1$$
$$A + 3B = 1$$

which gives

$$A = \frac{7}{4}$$
 $B = -\frac{1}{4}$ $C = -\frac{1}{2}$

6.4 Generating Functions Ernst Mayr, Harald Räcke 115

6.5 Transformation of the Recurrence Example 6 $f_0 = 1$ $f_1 = 2$ $f_n = f_{n-1} \cdot f_{n-2} \text{ for } n \ge 2.$ Define $g_n := \log f_n.$

Then

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$
 $g_1 = \log 2 = 1$ (for $\log = \log_2$), $g_0 = 0$
 $g_n = F_n$ (*n*-th Fibonacci number)
 $f_n = 2^{F_n}$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

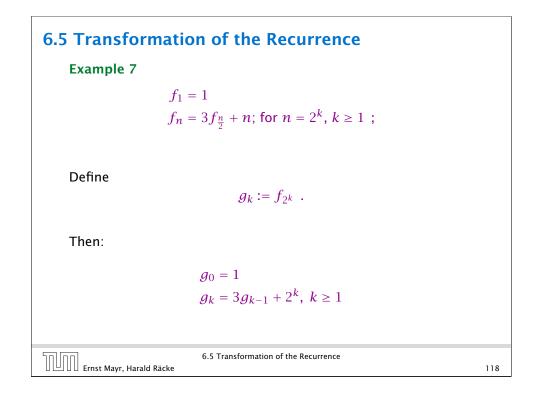
$$A(z) = \frac{7}{4} \cdot \frac{1}{1-3z} - \frac{1}{4} \cdot \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{(1-z)^2}$$

$$= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n+1) z^n$$

$$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2}(n+1)\right) z^n$$

$$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{2}n - \frac{3}{4}\right) z^n$$

6. This means $a_n = \frac{7}{4} 3^n - \frac{1}{2}n - \frac{3}{4}$.



6.5 Transformation of the Recurrence Ernst Mayr, Harald Räcke

117