Definition 4 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n \ge 0} a_n z^n;$$

 exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) = \sum_{n>0} \frac{a_n}{n!} z^n.$$

Example 5

1. The generating function of the sequence $(1,0,0,\ldots)$ is

$$F(z) = 1$$
.

2. The generating function of the sequence (1, 1, 1, ...) is

$$F(z) = \frac{1}{1-z}.$$

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n \ge 0} a_n z^n$$
 and $g = \sum_{n \ge 0} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$.
- ► Multiplication: $f \cdot g := \sum_{n\geq 0} c_n z^n$ with $c_n = \sum_{p=0}^n a_p b_{n-p}$.

There are no convergence issues here.

The arithmetic view:

We view a power series as a function $f: \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

What does $\sum_{n\geq 0} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1-z and the power series $\sum_{n\geq 0} z^n$ are invers, i.e.,

$$\left(1-z\right)\cdot\left(\sum_{n>0}^{\infty}z^n\right)=1.$$

This is well-defined.

Suppose we are given the generating function

$$\sum_{n\geq 0} z^n = \frac{1}{1-z} \cdot \begin{vmatrix} \frac{1}{(1-z)^2} \\ \text{Note that conside} \end{vmatrix}$$

Formally the derivative of a formal power series $\sum_{n\geq 0} a_n z^n$ is defined as $\sum_{n\geq 0} n a_n z^{n-1}$.

The known rules for differentiation work for this definition. In particular, e.g. the derivative of $\frac{1}{1-z}$ is $\frac{1}{1-z^2}$.

Note that this requires a proof if we consider power series as algebraic objects. However, we did not prove this in the lecture.

We can compute the derivative:

$$\sum_{n \ge 1} n z^{n-1} = \frac{1}{(1-z)^2}$$

$$\sum_{n \ge 0} (n+1) z^n$$

Hence, the generating function of the sequence $a_n = n + 1$ is $1/(1-z)^2$.

We can repeat this

$$\sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2} \ .$$

Derivative:

$$\underbrace{\sum_{n\geq 1} n(n+1)z^{n-1}}_{\sum_{n\geq 0} (n+1)(n+2)z^n} = \frac{2}{(1-z)^3}$$

Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-z)^3}$.

Computing the k-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \cdot \ldots \cdot (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \cdot \ldots \cdot (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}}.$$

Hence:

$$\sum_{n\geq 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}}.$$

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

$$\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$$
$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$
$$= \frac{z}{(1-z)^2}$$

The generating function of the sequence $a_n = n$ is $\frac{z}{(1-z)^2}$.

We know

$$\sum_{n\geq 0} y^n = \frac{1}{1-y}$$

Hence,

$$\sum_{n\geq 0} a^n z^n = \frac{1}{1-az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$.

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$= a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$$

$$= 1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$$

$$= z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$$

$$= zA(z) + \sum_{n \ge 0} z^n$$

$$= zA(z) + \frac{1}{1 - z}$$

Solving for A(z) gives

$$\sum_{n \geq 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n \geq 0} (n+1) z^n$$

Hence, $a_n = n + 1$.

Some Generating Functions

n-th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$
n^2	$\frac{z(1+z)}{(1-z)^3}$
$\frac{1}{n!}$	e^z

Some Generating Functions

n-th sequence element	generating function
cf_n	cF
$f_n + g_n$	F+G
$\sum_{i=0}^{n} f_i \mathcal{G}_{n-i}$	$F\cdot G$
f_{n-k} $(n \ge k)$; 0 otw.	$z^k F$
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$
$c^n f_n$	F(cz)

Solving Recursions with Generating Functions

- **1.** Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- **3.** Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- **4.** Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - lookup in tables
- **6.** The coefficients of the resulting power series are the a_n .

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n>1} a_n z^n$$

2. Plug in:

$$A(z) = 1 + \sum_{n>1} (2a_{n-1})z^n$$

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

$$= 1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$$

$$= 1 + 2z \sum_{n \ge 0} a_n z^n$$

$$= 1 + 2z \cdot A(z)$$

4. Solve for A(z).

$$A(z) = \frac{1}{1 - 2z}$$

5. Rewrite f(z) as a power series:

$$\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{1 - 2z} = \sum_{n \ge 0} 2^n z^n$$

1. Set up generating function:

$$A(z) = \sum_{n>0} a_n z^n$$

2./3. Transform right hand side:

$$A(z) = \sum_{n\geq 0} a_n z^n$$

$$= a_0 + \sum_{n\geq 1} a_n z^n$$

$$= 1 + \sum_{n\geq 1} (3a_{n-1} + n) z^n$$

$$= 1 + 3z \sum_{n\geq 1} a_{n-1} z^{n-1} + \sum_{n\geq 1} n z^n$$

$$= 1 + 3z \sum_{n\geq 0} a_n z^n + \sum_{n\geq 0} n z^n$$

$$= 1 + 3z A(z) + \frac{z}{(1-z)^2}$$

4. Solve for A(z):

$$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$$

gives

$$A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}$$

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

This gives

$$z^{2} - z + 1 = A(1 - z)^{2} + B(1 - 3z)(1 - z) + C(1 - 3z)$$

$$= A(1 - 2z + z^{2}) + B(1 - 4z + 3z^{2}) + C(1 - 3z)$$

$$= (A + 3B)z^{2} + (-2A - 4B - 3C)z + (A + B + C)$$

Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$

5. Write f(z) as a formal power series:

This leads to the following conditions:

$$A + B + C = 1$$
$$2A + 4B + 3C = 1$$
$$A + 3B = 1$$

which gives

$$A = \frac{7}{4}$$
 $B = -\frac{1}{4}$ $C = -\frac{1}{2}$

5. Write f(z) as a formal power series:

$$\begin{split} A(z) &= \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2} \\ &= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n \\ &= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2} (n + 1) \right) z^n \\ &= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{2} n - \frac{3}{4} \right) z^n \end{split}$$

6. This means $a_n = \frac{7}{4}3^n - \frac{1}{2}n - \frac{3}{4}$.