7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Π	۱I	٦٢	1			Harald	
	чı	Ш	Ш	Ernst	Mavr.	Harald	Räcke

137

7.2 Red Black Trees

Lemma 2

A red-black tree with n internal nodes has height at most $O(\log n)$.

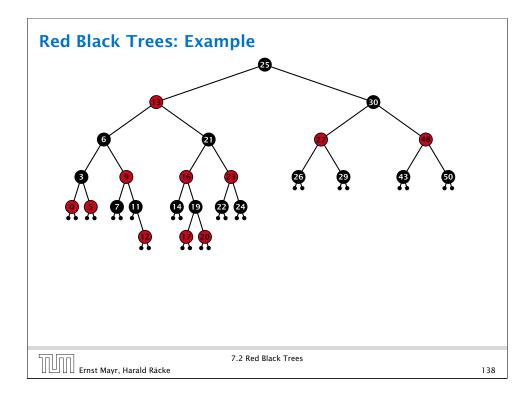
Definition 3

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 4

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.



7.2 Red Black Trees	
Proof of Lemma 4.	
Induction on the height of <i>v</i> .	
base case (height (v) = 0)	
If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.	
• The black height of v is 0.	
The sub-tree rooted at v contains 0 = 2 ^{bh(v)} - 1 inner vertices.	
7.2 Red Black Trees	140

7.2 Red Black Trees

139

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height(v) > 0.
- \triangleright v has two children with strictly smaller height.
- These children (c_1 , c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) - 1.$
- By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} - 1$ internal vertices.
- Then T_{ν} contains at least $2(2^{bh(\nu)-1}-1) + 1 \ge 2^{bh(\nu)} 1$ vertices.

141

```
Ernst Mayr, Harald Räcke
```

7.2 Red Black Trees

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on *P* must be black, since a red node must be followed by a black node.

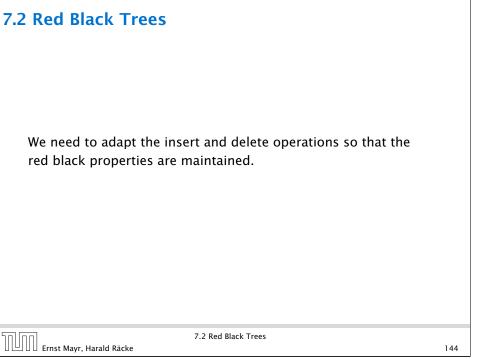
Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 < n$.

Hence, $h \leq 2\log(n+1) = \mathcal{O}(\log n)$.

Ernst Mayr, Harald Räcke

7.2 Red Black Trees

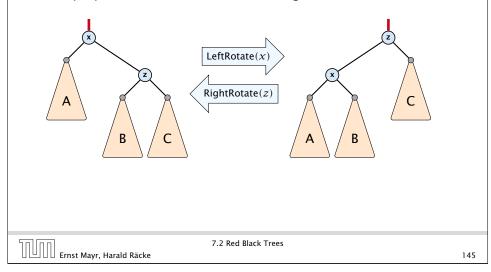


143

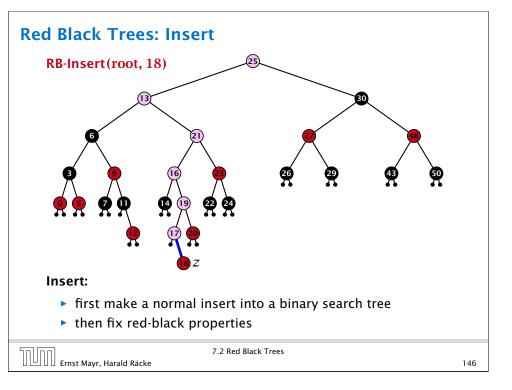
142

Rotations

The properties will be maintained through rotations:



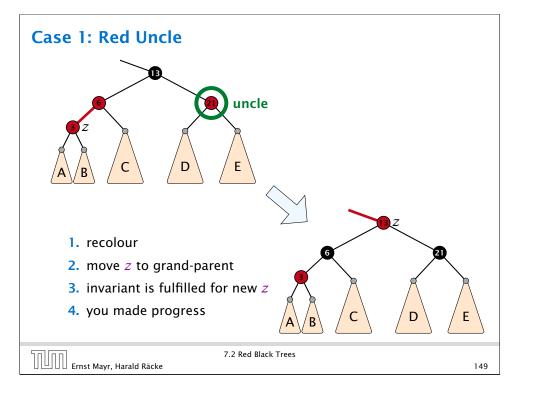
Red Black Trees: Insert Invariant of the fix-up algorithm: • z is a red node • the black-height property is fulfilled at every node • the only violation of red-black properties occurs at z and parent[z] • either both of them are red (most important case) • or the parent does not exist (violation since root must be black) If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

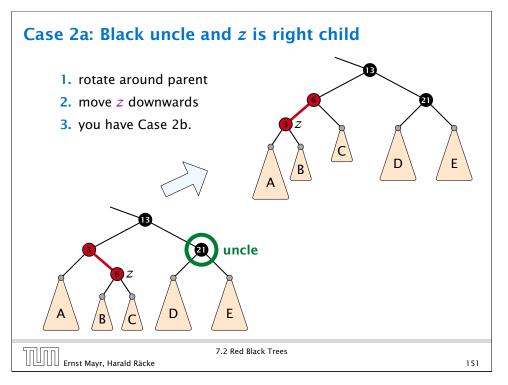


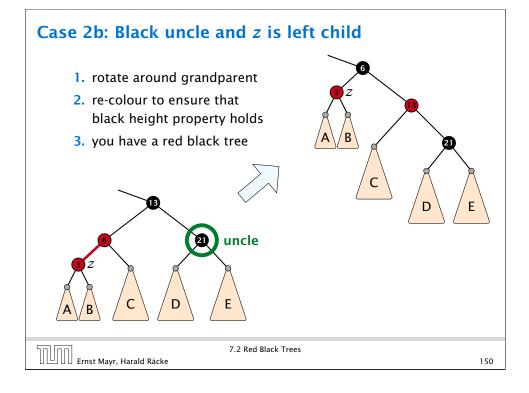
5: $\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};$ 6: $\operatorname{col}[gp[z]] \leftarrow \operatorname{red}; z \leftarrow \operatorname{grandparent}[z];$ 7: else Case 2: uncle black 8: if $z = \operatorname{right}[\operatorname{parent}[z]]$ then 2a: z right child 9: $z \leftarrow p[z];$ LeftRotate $(z);$ 10: $\operatorname{col}[p[z]] \leftarrow \operatorname{black};$ col $[gp[z]] \leftarrow \operatorname{red};$ 2b: z left child 11: RightRotate $(gp[z]);$	Algo	rithm 10 InsertFix (z)	
3: $uncle \leftarrow right[grandparent[z]]$ 4:if $col[uncle] = red$ thenCase 1: uncle red5: $col[p[z]] \leftarrow black; col[u] \leftarrow black;$ 6: $col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$ 7:elseCase 2: uncle black8:if $z = right[parent[z]]$ then2a: z right child9: $z \leftarrow p[z];$ LeftRotate(z);10: $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z$ left child11:RightRotate(gp[z]);	1: N	(hile parent[z] \neq null and col[parent[z]]	= red do
4:if $col[uncle] = red$ thenCase 1: uncle red5: $col[p[z]] \leftarrow black; col[u] \leftarrow black;$ 6: $col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$ 7:else8:if $z = right[parent[z]]$ then9: $z \leftarrow p[z];$ LeftRotate(z);10: $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z left child11:RightRotate(gp[z]);$	2:	if parent[z] = left[gp[z]] then z in left s	ubtree of grandparent
5: $\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};$ 6: $\operatorname{col}[gp[z]] \leftarrow \operatorname{red}; z \leftarrow \operatorname{grandparent}[z];$ 7: else Case 2: uncle black 8: if $z = \operatorname{right}[\operatorname{parent}[z]]$ then 2a: z right child 9: $z \leftarrow p[z];$ LeftRotate $(z);$ 10: $\operatorname{col}[p[z]] \leftarrow \operatorname{black};$ col $[gp[z]] \leftarrow \operatorname{red};$ 2b: z left child 11: RightRotate $(gp[z]);$	3:	$uncle \leftarrow right[grandparent[z]]$	
6: $\operatorname{col}[\operatorname{gp}[z]] \leftarrow \operatorname{red}; z \leftarrow \operatorname{grandparent}[z];$ 7: else Case 2: uncle black 8: if $z = \operatorname{right}[\operatorname{parent}[z]]$ then 2a: z right child 9: $z \leftarrow p[z];$ LeftRotate $(z);$ 10: $\operatorname{col}[p[z]] \leftarrow \operatorname{black};$ col $[\operatorname{gp}[z]] \leftarrow \operatorname{red};$ 2b: z left child 11: RightRotate $(\operatorname{gp}[z]);$	4:	if col[<i>uncle</i>] = red then	Case 1: uncle red
7:elseCase 2: uncle black8:if $z = right[parent[z]]$ then2a: z right child9: $z \leftarrow p[z]$; LeftRotate(z);10: $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z$ left child11:RightRotate(gp[z]);	5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black$.ck;
8: if $z = right[parent[z]]$ then 2a: z right child 9: $z \leftarrow p[z]$; LeftRotate(z); 10: $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z$ left child 11: RightRotate($gp[z]$);	6:	$\operatorname{col}[\operatorname{gp}[z]] \leftarrow \operatorname{red}; z \leftarrow \operatorname{grandpar}$	rent[z];
9: $z \leftarrow p[z]$; LeftRotate (z) ; 10: $col[p[z]] \leftarrow black$; $col[gp[z]] \leftarrow red$; 2b: z left child 11: RightRotate $(gp[z])$;	7:	else	Case 2: uncle black
10: $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z left child11:RightRotate(gp[z]);$	8:	<pre>if z = right[parent[z]] then</pre>	2a: z right child
11: RightRotate $(gp[z]);$	9:	$z \leftarrow p[z]$; LeftRotate(z);	
	10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow$	- red; 2b: <i>z</i> left child
12: else same as then-clause but right and left exchanged	11:	RightRotate $(gp[z]);$	
	12:	else same as then-clause but right and	left exchanged

147

Ernst Mayr, Harald Räcke







Red Black Trees: Insert Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- ► Case $2a \rightarrow Case 2b \rightarrow red-black$ tree
- Case $2b \rightarrow red$ -black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

Red Black Trees: Delete

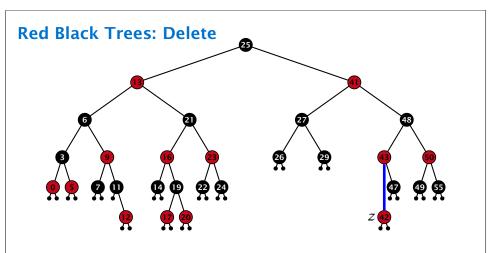
First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

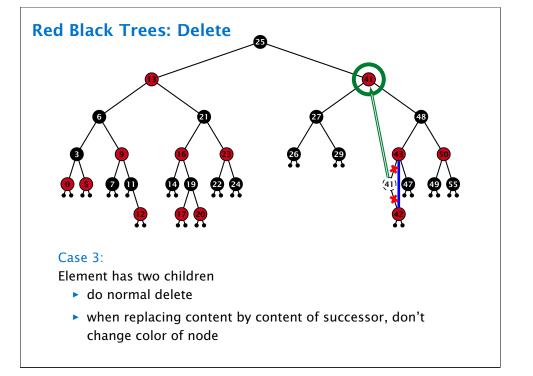
- Parent and child of *x* were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

Ernst Mayr, Harald Räcke	7.2 Red Black Trees	153

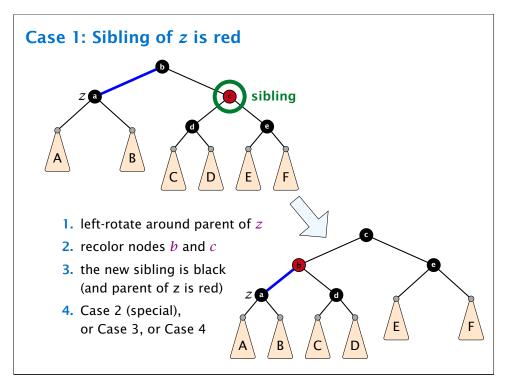


Delete:

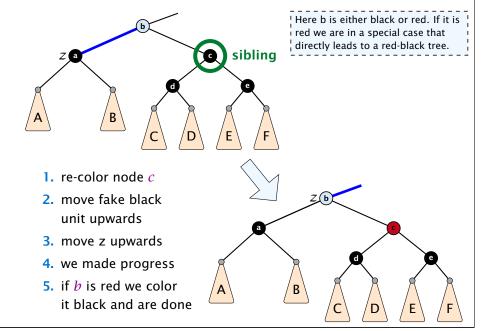
- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

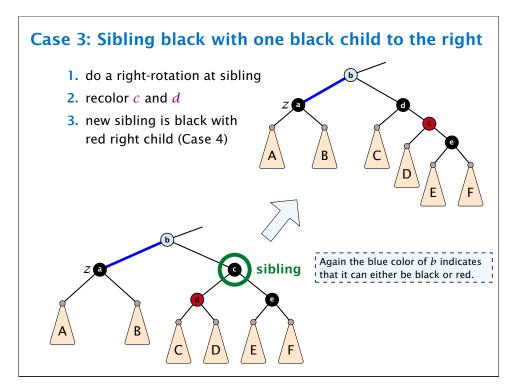


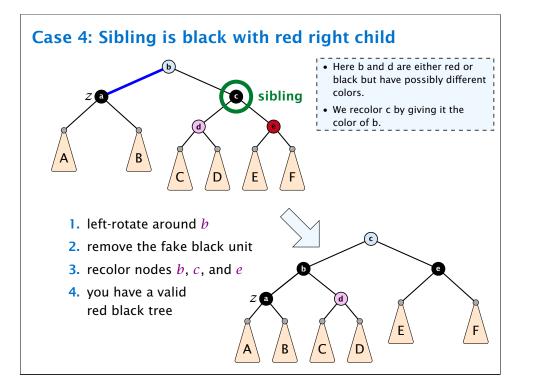
Red Black Trees: Delete
 Invariant of the fix-up algorithm the node z is black if we "accient" a false black whit to the addre from z to its
 if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled
Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.



Case 2: Sibling is black with two black children







Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 Case 1 → Case 3 → Case 4 → red black tree
 Case 1 → Case 4 → red black tree
- Case 3 \rightarrow Case 4 \rightarrow red black tree
- Case $4 \rightarrow$ red black tree

Performing Case 2 at most $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colorings and at most 3 rotations.

החוחר	Ernst Mayr, Harald Räcke
	Ernst Mayr, Harald Räcke

7.2 Red Black Trees

161

Red-Black Trees	
Bibliography [CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to Algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009	
Red black trees are covered in detail in Chapter 13 of [CLRS90].	
7.2 Red Black Trees	162

