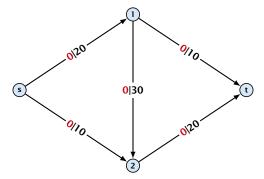
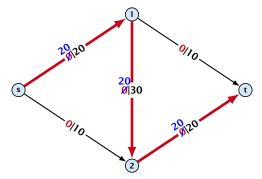
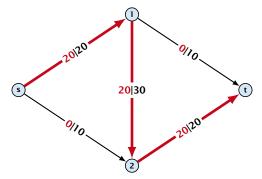
- start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



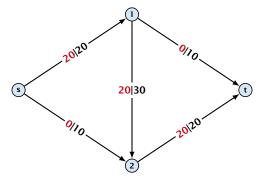
- start with f(e) = 0 everywhere
- find an *s-t* path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



- start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



- start with f(e) = 0 everywhere
- find an *s-t* path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

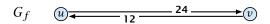
Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- ▶ G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e'_2 with with capacity $\max\{0, c(e_2) f(e_2) + f(e_1)\}$.

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- ▶ G_f has edge e_1' with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) f(e_2) + f(e_1)\}$.



Definition 1

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 1 FordFulkerson(G = (V, E, c))

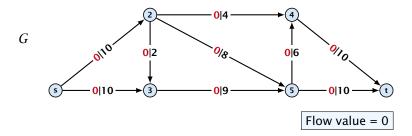
- 1: Initialize $f(e) \leftarrow 0$ for all edges.
- 2: **while** \exists augmenting path p in G_f **do**
- 3: augment as much flow along p as possible.

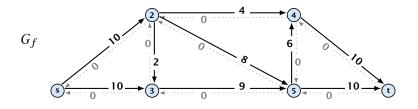
Definition 1

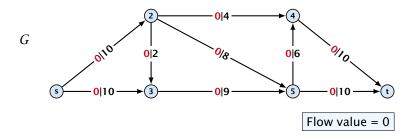
An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

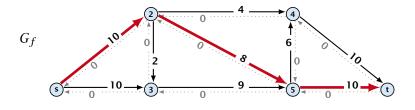
Algorithm 1 FordFulkerson(G = (V, E, c))

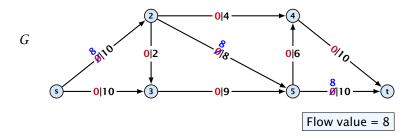
- 1: Initialize $f(e) \leftarrow 0$ for all edges.
- 2: **while** \exists augmenting path p in G_f **do**
- 3: augment as much flow along p as possible.

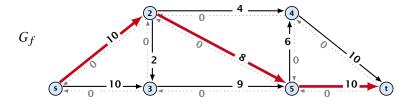


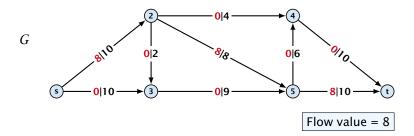


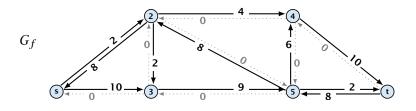


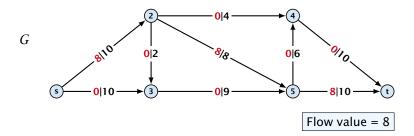


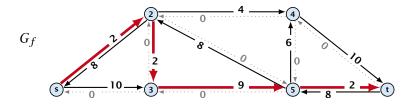


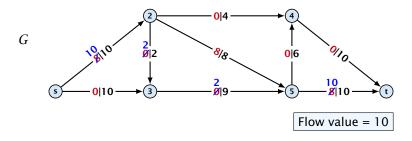


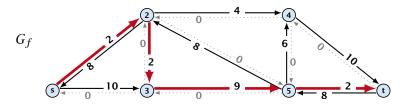


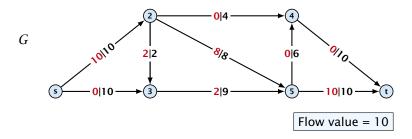


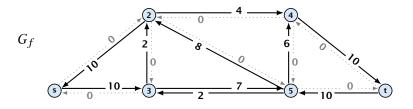


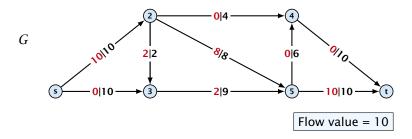


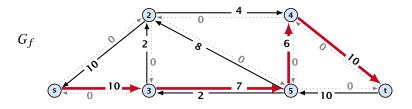


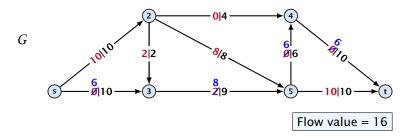


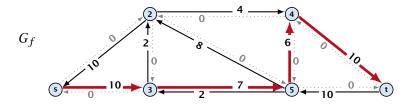


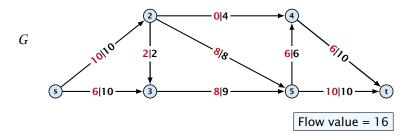


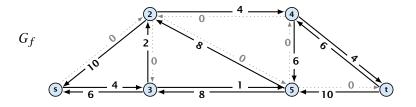


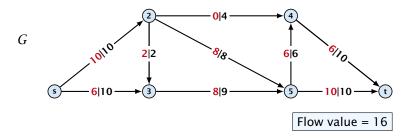


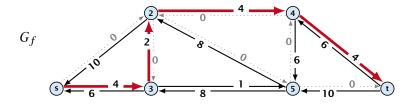


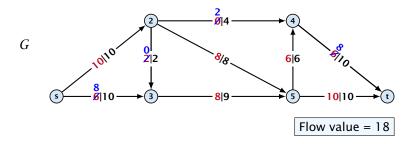


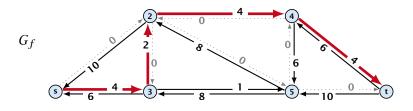


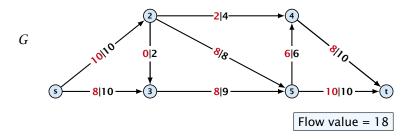


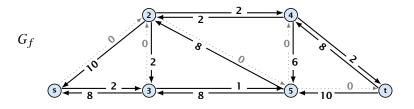


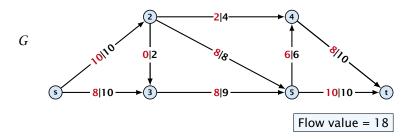


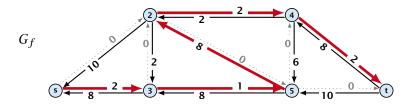


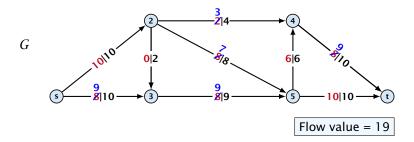


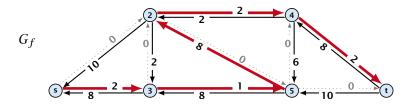


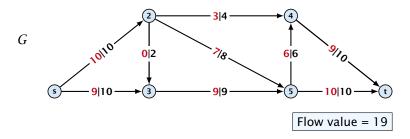


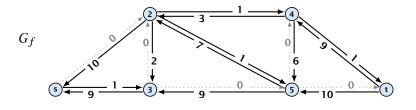


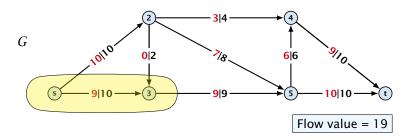


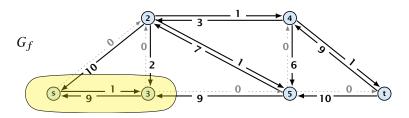












Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

- There exists a cut and such that
- Flow / is a maximum flow.
- There is no augmenting path w.r.t. / ...

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

- There exists a cut A B such that
- Flow / is a maximum flow.
- There is no augmenting path w.r.t. //

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- **2.** Flow f is a maximum flow.
- **3.** There is no augmenting path w.r.t. f.

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- **2.** Flow f is a maximum flow.
- **3.** There is no augmenting path w.r.t. f.

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- **2.** Flow f is a maximum flow.
- 3. There is no augmenting path w.r.t. f.

$$1. \Rightarrow 2.$$

This we already showed.

$$2. \Rightarrow 3.$$

If there were an augmenting path, we could improve the flow.

$$3. \Rightarrow 1.$$

- Let / be a flow with no augmenting paths...
- Let it be the set of vertices reachable from in the residual land.
 - graph along non-zero capacity edges
- Since there is no augmenting path we have see A and see As

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let / be a flow with no augmenting paths
 - Let be the set of vertices reachable from in the residual
 - graph along non-zero capacity edges
 - Since there is no augmenting path we have seen and seen and

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - ▶ Let *A* be the set of vertices reachable from *s* in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.

val(f)

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

Lemma 4

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of $\mathcal{O}(nmC)$.

Theorem 5

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

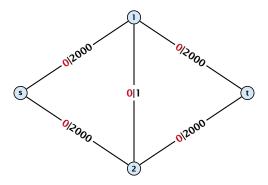
Lemma 4

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of $\mathcal{O}(nmC)$.

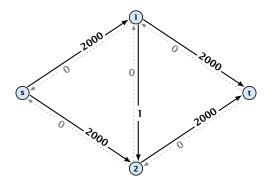
Theorem 5

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

Problem: The running time may not be polynomial.

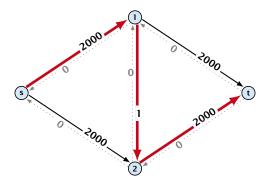


Problem: The running time may not be polynomial.



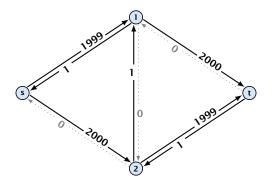
Question

Problem: The running time may not be polynomial.



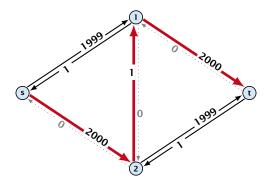
Question

Problem: The running time may not be polynomial.



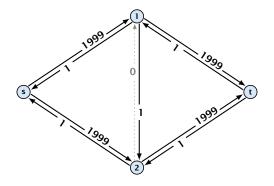
Question

Problem: The running time may not be polynomial.



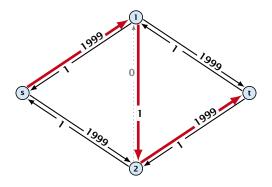
Question

Problem: The running time may not be polynomial.



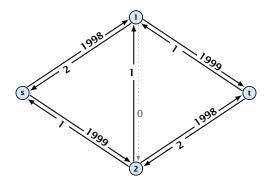
Question

Problem: The running time may not be polynomial.



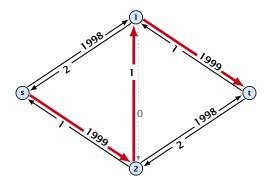
Question

Problem: The running time may not be polynomial.



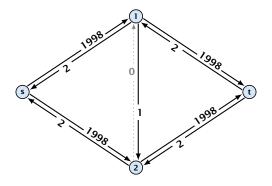
Question

Problem: The running time may not be polynomial.



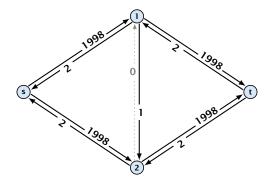
Question

Problem: The running time may not be polynomial.



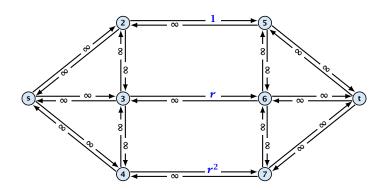
Question

Problem: The running time may not be polynomial.

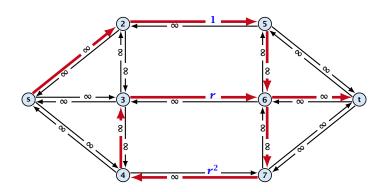


Question:

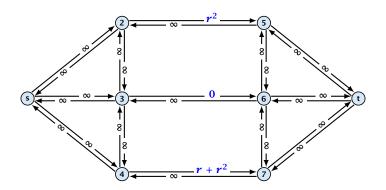
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



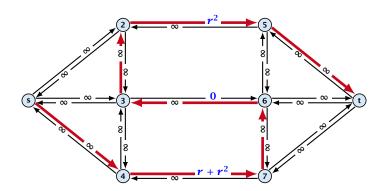
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



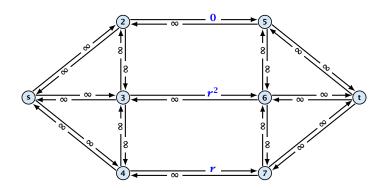
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



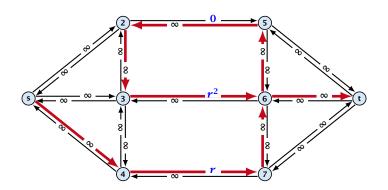
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



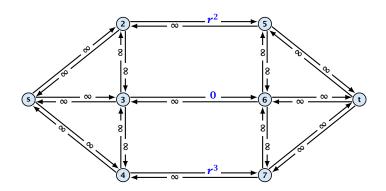
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



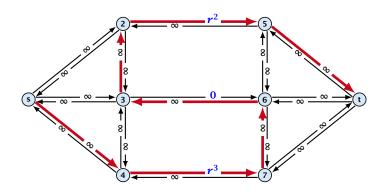
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



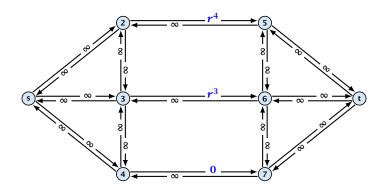
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



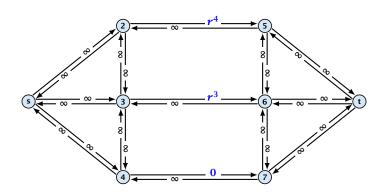
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



Running time may be infinite!!!

We need to find paths efficiently.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

Choose path with maximum bottleneck capacity.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

