11 Augmenting Path Algorithms
Greedy-algorithm:
> start with f(e) = 0 everywhere
» find an s-t path with f(e) < c(e) on every edge
» augment flow along the path
>

repeat as long as possible

2

’1%\’)9 0/10
20
2130
0/10 ’l%\'lp
~

The Residual Graph
From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey, cyr) (the residual graph):
» Suppose the original graph has edges e; = (u,v), and
e>» = (v, u) between u and v.

> Gy has edge e} with capacity max{0,c(e1) — f(e1) + f(e2)}
and e}, with with capacity max{0, c(e2) — f(e2) + f(e1)}.

m Ernst Mayr, Harald Racke 400/429

10/20 >
G = 12176 ®
24 >
Gy W= 12 ®
‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 401/429

Augmenting Path Algorithm

Definition 1

An augmenting path with respect to flow f, is a path from s to t
in the auxiliary graph G that contains only edges with non-zero
capacity.

Algorithm 1 FordFulkerson(G = (V,E,c))

1: Initialize f(e) < O for all edges.

2: while 3 augmenting path p in Gy do

3: augment as much flow along p as possible.

. Animation for augmenting path !
| algorithms is only available in the

1
' lecture version of the slides. 1

Augmenting Path Algorithm

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 402/429

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 403/429




Augmenting Path Algorithm

Theorem 2
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 3
The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 404/429

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.

> Let f be a flow with no augmenting paths.

> Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.

» Since there is no augmenting path we have s € Aand t ¢ A.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 405/429

Augmenting Path Algorithm

val(f)

S fler - > f(e)

ecout(A) ecinto(A)

Z c(e)

ecout(A)

cap(A,V\ A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the
second exploits the fact that the flow along incoming edges
must be 0 as the residual graph does not have edges leaving A.

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 406/429

Analysis

Assumption:
All capacities are integers between 1 and C.

Invariant:
Every flow value f(e) and every residual capacity c¢(e) remains
integral troughout the algorithm.

'm 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 407/429




Lemma 4

The algorithm terminates in at most val(f*) < nC iterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time O (m). This gives a total running time of
O(nmcC).

Theorem 5
If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.

A Bad Input

Problem: The running time may not be polynomial.

1

N %
0\1'0 000
01
% ©
%0 o
2

Question:
Can we tweak the algorithm so that the running time is

polynomial in the input length?

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 408/429

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 409/429

A Bad Input

Problem: The running time may not be polynomial.

®

o T
ON : MO
N ‘ o
P 1 1{@_
“?090 :

Question:
Can we tweak the algorithm so that the running time is

polynomial in the input length?

P e m e m e e e e — oo ,
1 See the lecture-version of the slides for

! . .
i the animation. \

A Pathological Input

Letr = %(\/3— 1). Then ¥"*+2 = 3 — yn+l,

r4

® 8 8
. N
S AN . o

Running time may be infinite!!!

P m m e m e e e e ,
1 See the lecture-version of the slides for

 the animation. \

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/429

'm 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 411/429




How to choose augmenting paths?
> We need to find paths efficiently.

> We want to guarantee a small number of iterations.

Several possibilities:
» Choose path with maximum bottleneck capacity.
» Choose path with sufficiently large bottleneck capacity.

» Choose the shortest augmenting path.

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

412/429

Overview: Shortest Augmenting Paths

Lemma 6
The length of the shortest augmenting path never decreases.

Lemma 7
After at most O (m) augmentations, the length of the shortest
augmenting path strictly increases.

11.2 Shortest Augmenting Paths

‘_I—I_Hm Ernst Mayr, Harald Racke 413/429

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 8
The shortest augmenting path algorithm performs at most

O(mn) augmentations. This gives a running time of O(m?n).

Proof.

» We can find the shortest augmenting paths in time O (m)
via BFS.

> ((m) augmentations for paths of exactly k < n edges.

11.2 Shortest Augmenting Paths

m Ernst Mayr, Harald Racke

414/429

Shortest Augmenting Paths

Define the level £(v) of a hode as the length of the shortest s-v
path in Gy.

Let L denote the subgraph of the residual graph G ¢ that
contains only those edges (u, v) with £(v) = £(u) + 1.

A path P is a shortest s-u path in G if itis a an s-u path in L.

o TS
¥

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 415/429




In the following we assume that the residual graph G does not
contain zero capacity edges.

This means, we construct it in the usual sense and then delete
edges of zero capacity.

m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 416/429

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.
After an augmentation G changes as follows:

> Bottleneck edges on the chosen path are deleted.

> Back edges are added to all edges that don’t have back
edges so far.

These changes cannot decrease the distance between s and t.

Gr \0/ 7\ Gf
Lg > < 6 ’o\
¥
$@4_ 9 9 @ﬁ@

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of
the shortest augmenting path strictly increases.

Let E; denote the set of edges in graph L at the beginning of a
round when the distance between s and t is k.

An s-t path in G ¢ that uses edges not in E; has length larger
than k, even when considering edges added to G during the
round.

In each augmentation one edge is deleted from Er.

2 4 >
o \Q/ﬁ\ g
Ev 2 N 0
- 1 —»(;\ < 9 9 @4_ = 1 \! @

Shortest Augmenting Paths

Theorem 9

The shortest augmenting path algorithm performs at most
O(mn) augmentations. Each augmentation can be performed in
time O(m).

Theorem 10 (without proof)

There exist networks with m = ©(n?) that require O(mn)
augmentations, when we restrict ourselves to only augment
along shortest augmenting paths.

Note:
There always exists a set of m augmentations that gives a
maximum flow (why?).

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 419/429




Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve
(asymptotically) on the number of augmentations.

However, we can improve the running time to ©(mn?) by
improving the running time for finding an augmenting path
(currently we assume O(m) per augmentation for this).

m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 420/429

Shortest Augmenting Paths

We maintain a subset E; of the edges of Gy with the guarantee
that a shortest s-t path using only edges from E; is a shortest
augmenting path.

With each augmentation some edges are deleted from E;.

When E; does not contain an s-t path anymore the distance
between s and t strictly increases.

Note that E; is not the set of edges of the level graph but a
subset of level-graph edges.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 421/429

Suppose that the initial distance between s and ¢ in G is k.
E; is initialized as the level graph L.

Perform a DFS search to find a path from s to t using edges from
E;.

Either you find t after at most n steps, or you end at a node v
that does not have any outgoing edges.

You can delete incoming edges of v from Ej.

m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 422/429

Let a phase of the algorithm be defined by the time between two
augmentations during which the distance between s and t
strictly increases.

Initializing E; for the phase takes time O (m).

The total cost for searching for augmenting paths during a
phase is at most O(mmn), since every search (successful (i.e.,
reaching t) or unsuccessful) decreases the number of edges in
E; and takes time O(n).

The total cost for performing an augmentation during a phase is
only O(n). For every edge in the augmenting path one has to
update the residual graph G s and has to check whether the edge
is still in Er for the next search.

There are at most n phases. Hence, total cost is O(mn?).

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 423/429




How to choose augmenting paths?

> We need to find paths efficiently.

> We want to guarantee a small number of iterations.

Several possibilities:

» Choose path with maximum bottleneck capacity.

» Choose path with sufficiently large bottleneck capacity.

» Choose the shortest augmenting path.

11.3 Capacity Scaling

m Ernst Mayr, Harald Racke

424/429

Capacity Scaling
Intuition:

» Choosing a path with the highest bottleneck increases the
flow as much as possible in a single step.

» Don’t worry about finding the exact bottleneck.
> Maintain scaling parameter A.

> Gr(A) is a sub-graph of the residual graph G that contains
only edges with capacity at least A.

Gy c,/,'@v\ G£(99) ‘,/@
AN A\
. [9) 6’)
h 1 e 7

11.3 Capacity Scaling

‘m Ernst Mayr, Harald Racke 425/429

Capacity Scaling

Algorithm 2 maxflow(G, s, t,c)

1: foreach e € E do f, — 0;

2: A — 2M0g:Cl

3: whileA>1do

4 Gr(A) < A-residual graph

5 while there is augmenting path P in G¢(A) do
6: f < augment(f,c,P)

7 update(G£(A))

8 A—A/2

9: return f

11.3 Capacity Scaling

m Ernst Mayr, Harald Racke

426/429

Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the
algorithm.

Correctness:
The algorithm computes a maxflow:

> because of integrality we have G¢(1) = G

> therefore after the last phase there are no augmenting
paths anymore

» this means we have a maximum flow.

11.3 Capacity Scaling

lm Ernst Mayr, Harald Racke 427/429




Capacity Scaling

Lemma 11
There are [log C| + 1 iterations over A.

Proof: obvious.

Lemma 12
Let f be the flow at the end of a A-phase. Then the maximum
flow is smaller than val(f) + mA.

Proof: less obvious, but simple:
> There must exist an s-t cut in G ¢(A) of zero capacity.
> In G this cut can have capacity at most mA.

» This gives me an upper bound on the flow that | can still
add.

m 11.3 Capacity Scaling
Ernst Mayr, Harald Racke

428/429

Capacity Scaling

Lemma 13
There are at most 2m augmentations per scaling-phase.

Proof:
> Let f be the flow at the end of the previous phase.
> val(f*) <val(f) + 2mA

» Each augmentation increases flow by A.

Theorem 14
We need ©(mlog C) augmentations. The algorithm can be
implemented in time O (m?logC).

‘m 11.3 Capacity Scaling
Ernst Mayr, Harald Racke 429/429




	Augmenting Path Algorithms
	The Generic Augmenting Path Algorithm
	Shortest Augmenting Paths
	Capacity Scaling


