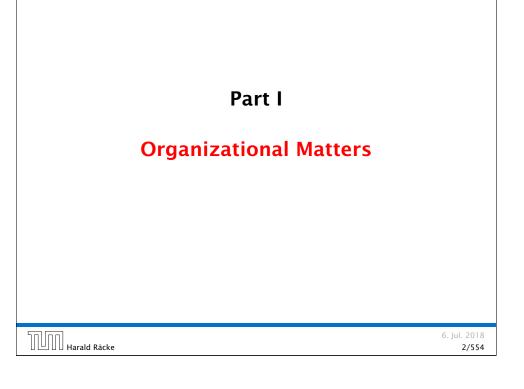
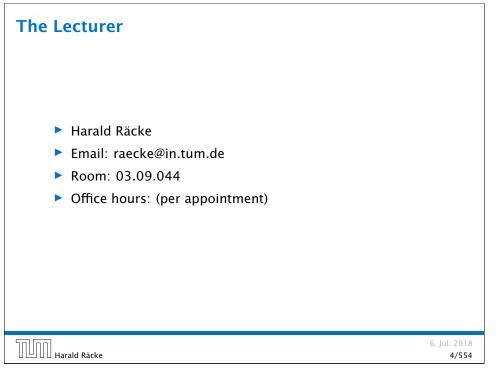
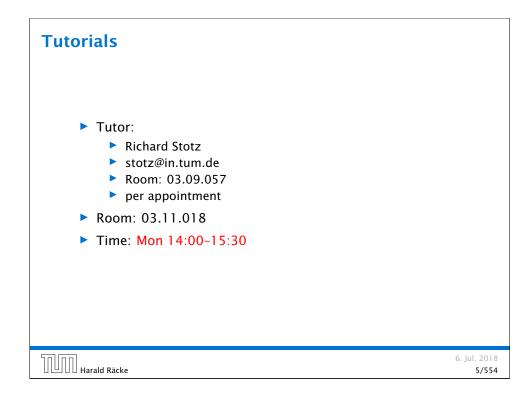
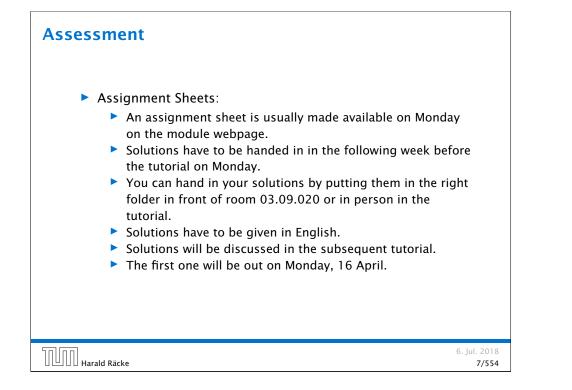
SS 2018/19 **Efficient Algorithms** and Data Structures II Harald Räcke Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2018SS/ea/ Summer Term 2018/19 6. Jul. 2018 Harald Räcke

Part I **Organizational Matters** Modul: IN2004 Name: "Efficient Algorithms and Data Structures II" "Effiziente Algorithmen und Datenstrukturen II" ECTS: 8 Credit points Lectures: 4 SWS Wed 12:15-13:45 (Room 00.13.009A) Fri 10:15-11:45 (MS HS3) Webpage: http://www14.in.tum.de/lehre/2018SS/ea/





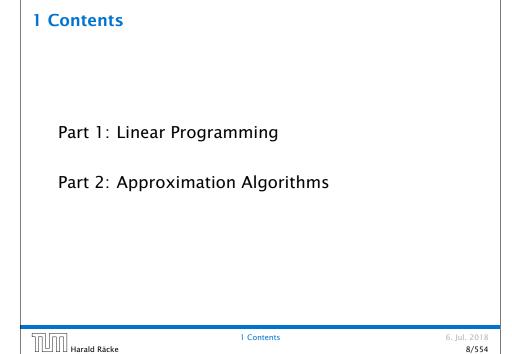




Assessment

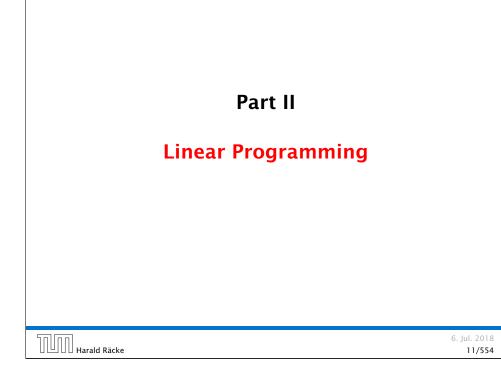
- In order to pass the module you need to pass an exam.
- Exam:
 - 2.5 hours
 - Date will be announced shortly.
 - There are no resources allowed, apart from a hand-written piece of paper (A4).
 - Answers should be given in English, but German is also accepted.

Harald Räcke	6. Jul. 2018 6/554



2 Literatur

	V. Chvatal: <i>Linear Programming</i> , Freeman, 1983 R. Seidel: <i>Skript Optimierung</i> , 1996	
	D. Bertsimas and J.N. Tsitsiklis: Introduction to Linear Optimization, Athena Scientific, 1997 Vijay V. Vazirani: Approximation Algorithms, Springer 2001	
ПП на	2 Literatur ald Räcke	6. Jul. 2018 9/554



David P. Williamson and David B. Shmoys: The Design of Approximation Algorithms, Cambridge University Press 2011 G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi: Complexity and Approximation, Springer, 1999 Harald Räcke 2 Literatur 6. Jul. 2018 10/554

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- ▶ only brew ale: 34 barrels of ale \Rightarrow 442€
- ▶ only brew beer: 32 barrels of beer \Rightarrow 736 €
- ▶ 7.5 barrels ale, 29.5 barrels beer \Rightarrow 776 €
- ▶ 12 barrels ale, 28 barrels beer \Rightarrow 800 €

החוחר	3 Introduction to Linear Programming	6. Jul. 2018
Harald Räcke		13/554

Standard Form LPs

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_i
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

max s.t.	$\sum_{\substack{j=1\\n\\j=1}}^{n} c_j x_j$ $\sum_{\substack{j=1\\j=1}}^{n} a_{ij} x_j = b_i 1 \le i \le m$ $x_j \ge 0 1 \le j \le n$		max s.t.	Ax	>			
] Harald Räcke	3 Introduction to Linear Programmin	g				-	. 2018 5/554	

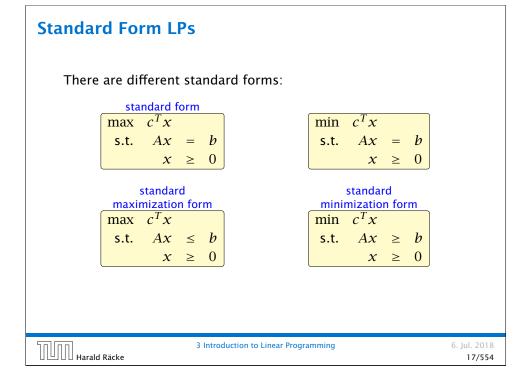
Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

	$max \ 13a \ + \ 23b$	
	s.t. $5a + 15b \le 480$	
	$4a + 4b \le 160$	
	$35a + 20b \le 1190$	
	$a, b \geq 0$	
החוחר	3 Introduction to Linear Programming	6. Jul. 201
Harald Räcke		14/55

Origina	l lp									
5		max	13a	+	23b					
		s.t.	5a	+	15b	≤ 4	80			
			4 <i>a</i>	+	4b	≤ 1	60			
			35a	+	20b	≤ 1	190			
					a,b	≥ 0				
Standar	d Form									
	d Form ack varia ax 13 <i>a</i>			/ cor	nstrair	ıt.				
Add a sl	ack varia ax 13 <i>a</i>	+ 2	3 <i>b</i>			ıt.			= 480	
Add a sl	ack varia ax 13 <i>a</i> 5.t. 5 <i>a</i>	+ 2	3b 5b -	+ s						
Add a sl	ack varia ax 13a 5.t. 5a 4a	+ 2	3b 5b - 4b	+ s	Ċ					
Add a sl	ack varia ax 13 <i>a</i> 5.t. 5 <i>a</i> 4 <i>a</i> 35 <i>a</i>	+ 2 + 1 + ·	3b 5b 4b 0b	+ s	c +	s _h	+	S_m	= 160 = 1190	



Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \le 12$$

 $-a + 3b - 5c \le -12$

equality to greater or equal:

 $a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$ $-a + 3b - 5c \ge -12$

unrestricted to nonnegative:

$$x \text{ unrestricted} \implies x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Harald Räcke

3 Introduction to Linear Programming

6. Jul. 2018 **19/554**

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

 3 Introduction to Linear Programming
 6. Jul. 2018

 Harald Räcke
 18/554

Standard Form LPs Observations: a linear program does not contain x², cos(x), etc. transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Fundamental Questions

Definition 1 (Linear Programming Problem (LP)) Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

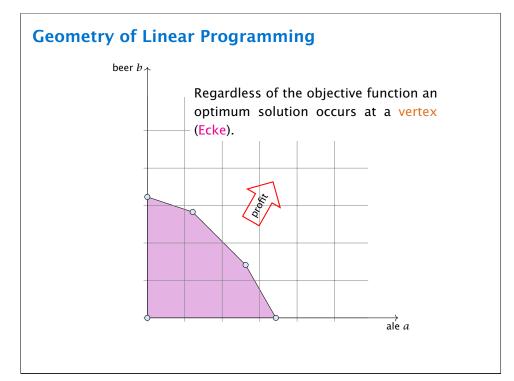
Questions:

- ► Is LP in NP?
- Is LP in co-NP?
- ► Is LP in P?

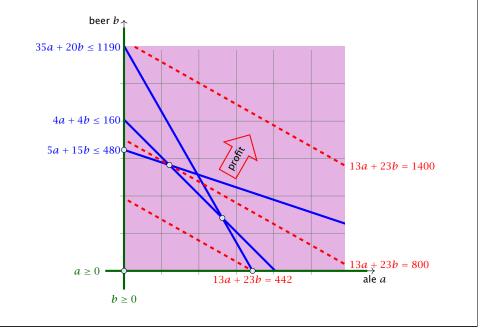
Input size:

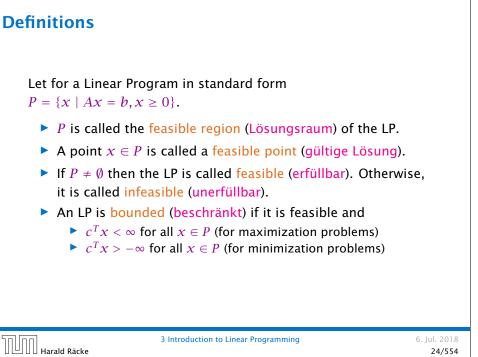
 \triangleright *n* number of variables, *m* constraints, *L* number of bits to encode the input

Harald Räcke	3 Introduction to Linear Programming	6. Jul. 2018 21/554



Geometry of Linear Programming





Definition 2

Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- linear combination if $\lambda_i \in \mathbb{R}$.
- affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \ge 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \ge 0$.

Note that a combination involves only finitely many vectors.

Harald Räcke	3 Introduction to Linear Programming	6. Jul. 2018 25/554

Definition 4

Given a set $X \subseteq \mathbb{R}^n$.

- span(X) is the set of all linear combinations of X (linear hull, span)
- aff(X) is the set of all affine combinations of X (affine hull)
- conv(X) is the set of all convex combinations of X (convex hull)
- cone(X) is the set of all conic combinations of X (conic hull)

A set $X \subseteq \mathbb{R}^n$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

3 Introduction to Linear Programming

6. Jul. 2018 26/554

Definition 5

A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Lemma 6 If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

 $Q = \{ x \in P \mid f(x) \le t \}$

6. Jul. 2018 27/554

Dimensions

Definition 7

The dimension dim(*A*) of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension dim(X) of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull aff(X).

Harald Räcke	3 Introduction to Linear Programming	

Definitions

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., $P = \operatorname{conv}(X)$ where |X| = c.

6. Jul. 2018 31/554

6. Jul. 2018

29/554

Definition 9 A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10 A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \le b\}$, for $a \ne 0$.

Harald Räcke

3 Introduction to Linear Programming

6. Jul. 2018 **30/554**

Definitions

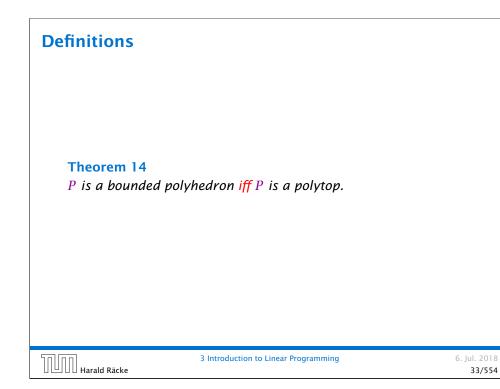
Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1, b_1), \ldots, H(a_m, b_m)\}$, where

 $H(a_i, b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$

Definition 13

A polyhedron *P* is bounded if there exists *B* s.t. $||x||_2 \le B$ for all $x \in P$.



Equivalent definition for vertex:

Definition 18

Given polyhedron *P*. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron *P*. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Definition 15 Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

т. Т.

 $H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$

is a supporting hyperplane of *P* if $\max\{a^T x \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. *F* is a face of *P* if F = P or $F = P \cap H$ for some supporting hyperplane *H*.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face *e* is an edge of *P* if *e* is a face and dim(e) = 1.
- a face F is a facet of P if F is a face and $\dim(F) = \dim(P) 1$.

Harald Räcke	3 Introduction to Linear Programming	6. Jul. 2018 34/554

The feasible region of an LP is a Polyhedron.

6. Jul. 2018 35/554

Convex Sets

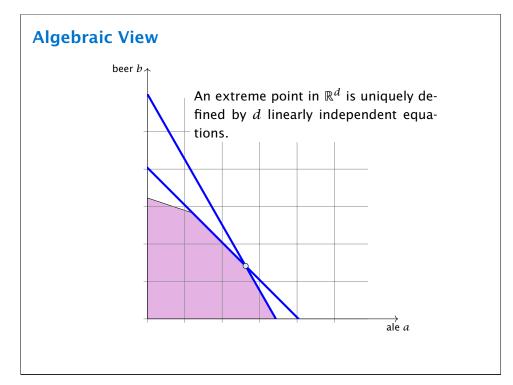
Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Harald Räcke	3 Introduction to Linear Programming	6. Jul. 2018 37/554
		57,551



Convex Sets

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- ► $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_j \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

5000	3 Introduction to Linear Programming	6. Jul. 2018
UUU Harald Räcke		38/554

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Harald Räcke	3 Introduction to Linear Programming	6. Jul. 2018
Harald Räcke		41/554

Theorem 23

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x

|||||||| Harald Räcke

hence, x is a vertex of P

```
Theorem 22
```

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

- assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend *d* to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Harald Räcke

3 Introduction to Linear Programming

6. Jul. 2018 42/554

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

 $A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- **C2** if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

3 Introduction to Linear Programming

6. Jul. 2018 43/554

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Harald Räcke	3 Introduction to Linear Programming	6. Jul. 2018 45/554

Basic Feasible Solutions

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $rank(A_J) = |J|$ where $J = \{j | x_j \neq 0\};$

x is a basic **feasible** solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with rank $(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_i = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu *B* assoziierte Basislösung)

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1,\ldots,n\}$ with |B| = m and

- \blacktriangleright A_B is non-singular
- ▶ $x_B = A_B^{-1}b \ge 0$
- $\blacktriangleright x_N = 0$

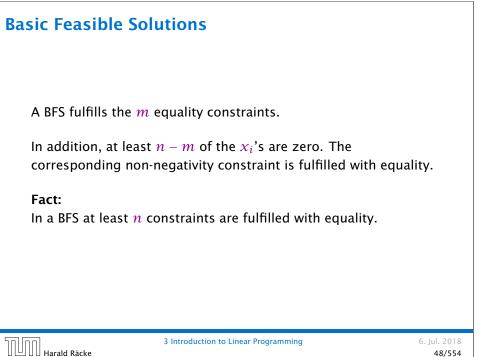
where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_i > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

3 Introduction to Linear Programming

Harald Räcke



6. Jul. 2018 47/554

Basic Feasible Solutions

Definition 25

For a general LP (max{ $c^T x | Ax \le b$ }) with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Harald Räcke	3 Introduction to Linear Programming	6. Jul. 2018 49/554

Linear Programming Problem (LP)

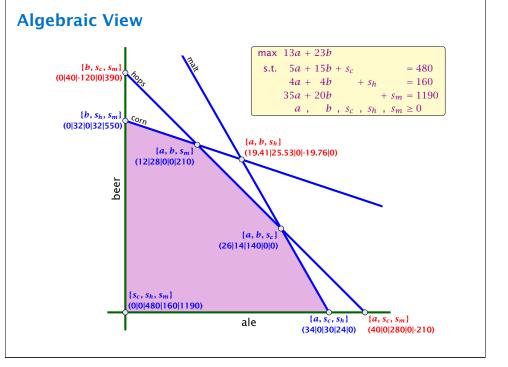
Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

• Given a basis *B* we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.



Observation

Harald Räcke

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n, m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

6. Jul. 2018 51/554

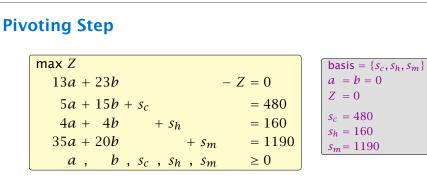
4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

4 Simplex Algorithm	
4 Simplex Algorithm	6. Jul. 2018 53/554



- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

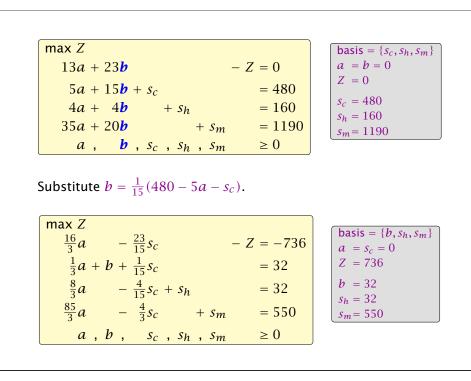
4 Simplex Algorithm

max	13a + 23b
s.t.	$5a + 15b + s_c = 480$
	$4a + 4b + s_h = 160$
	$35a + 20b + s_m = 1190$
	a , b , s_c , s_h , $s_m \ge 0$

4a + 35a + 2	$5b + s_c$ $4b + s_h$	- S _m	= 0 = 480 = 160 = 1190 ≥ 0	basis = $\{s_c, s_h, s_m\}$ a = b = 0 Z = 0 $s_c = 480$ $s_h = 160$ $s_m = 1190$	<i>a</i> }	
Harald Räcke		4 Simplex Algo	rithm		6. Jul. 2018 54/554	

max Z	basis	$= \{s_c, s_h, s_m\}$
13 <i>a</i> + 23 b	-Z=0 $a=b$	= 0
5a + 15 b + sc	= 480 $Z = 0$	
$4a + 4b + s_h$	$= 160$ $s_c = 4$	
$35a + 20b + s_m$	$= 1190$ $s_h = 1$ $s_m = 1$	
a, b, s_c, s_h, s_m	≥ 0	

- Choose variable with coefficient > 0 as entering variable.
- If we keep a = 0 and increase b from 0 to θ > 0 s.t. all constraints (Ax = b, x ≥ 0) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- Choosing \(\theta\) = min{480/15, 160/4, 1190/20}\) ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- The basic variable in the row that gives min{480/15, 160/4, 1190/20} becomes the leaving variable.



4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

Harald Räcke

any feasible solution satisfies all equations in the tableaux

4 Simplex Algorithm

- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- the current solution has value 800

max Z			
$\frac{16}{3}a$	$-\frac{23}{15}s_c$	-Z = -736	basis = $\{b, s_h, s_m\}$ $a = s_c = 0$
$\frac{1}{3}a +$	$b + \frac{1}{15}s_c$	= 32	Z = 736
$\frac{8}{3}a$	$-\frac{4}{15}s_c + s_h$	= 32	b = 32
$\frac{85}{3}a$	$-\frac{4}{3}s_c + s_m$	= 550	$s_h = 32$ $s_m = 550$
a ,	b , s_c , s_h , s_m	≥ 0	

Choose variable *a* to bring into basis.

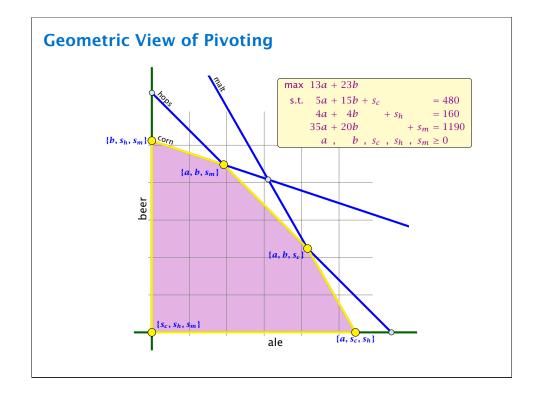
Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

max Z			basis = $\{a, b, s_m\}$
	$- s_c - 2s_h -$	-Z = -800	$s_c = s_h = 0$
	$b + \frac{1}{10}s_c - \frac{1}{8}s_h$	= 28	Z = 800
а	$-\frac{1}{10}s_{c}+\frac{3}{8}s_{h}$	= 12	b = 28
	$\frac{3}{2}s_c - \frac{85}{8}s_h + s_m$	= 210	$a = 12$ $s_m = 210$
а,	b , s_c , s_h , s_m	≥ 0	

et our linea	r program be
	$c_B^T x_B + c_N^T x_N = Z$
	$A_B x_B + A_N x_N = b$
	x_B , $x_N \ge 0$
	$(c_{N}^{T} - c_{B}^{T} A_{B}^{-1} A_{N}) x_{N} = Z - c_{B}^{T} A_{B}^{-1} b$ + $A_{B}^{-1} A_{N} x_{N} = A_{B}^{-1} b$, $x_{N} \ge 0$
x_B	, $x_N \ge 0$
he BFS is gi	ven by $x_N = 0, x_B = A_B^{-1}b$.

	d Räcke
I 🗆 Harai	а каске

6. Jul. 2018



Algebraic Definition of Pivoting

Definition 26 (*j***-th basis direction)**

Let *B* be a basis, and let $j \notin B$. The vector *d* with $d_j = 1$ and $d_{\ell} = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the *j*-th basis direction for *B*.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

 $\theta \cdot c^T d = \theta (c_j - c_B^T A_B^{-1} A_{*j})$

Harald Räcke

4 Simplex Algorithm

6. Jul. 2018 63/554

Algebraic Definition of Pivoting

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for d:

- $d_j = 1$ (normalization)
- ▶ $d_{\ell} = 0, \ell \notin B, \ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*j}$.

4 Simplex Algorithm Harald Räcke

Algebraic Definition of Pivoting
Definition 27 (Reduced Cost) For a basis <i>B</i> the value
$\tilde{c}_j = c_j - c_B^T A_B^{-1} A_{*j}$
is called the reduced cost for variable x_j .
Note that this is defined for every j . If $j \in B$ then the above term is 0 .

Harald Räcke

4 Simplex Algorithm

6. Jul. 2018

Algebraic Definition of Pivoting

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , \quad x_N \ge 0$$

The simplex tableaux for basis B is

$$\begin{array}{rclcrcrc} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &, & & x_{N} &\geq& 0 \end{array}$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

	4 Simplex Algorithm	6. Jul. 2018
Harald Räcke		65/554

Min Ratio Test

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ► Is there always a basis *B* such that

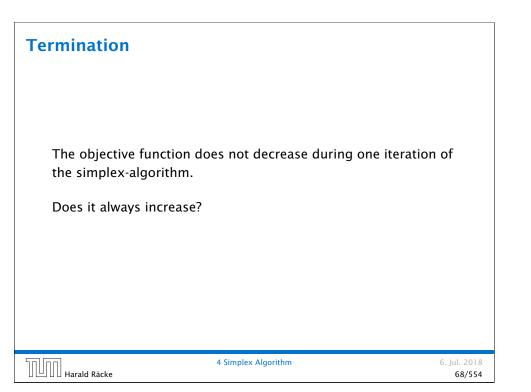
$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$?

Then we can terminate because we know that the solution is optimal.

If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm

6. Jul. 2018 66/554



Termination

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

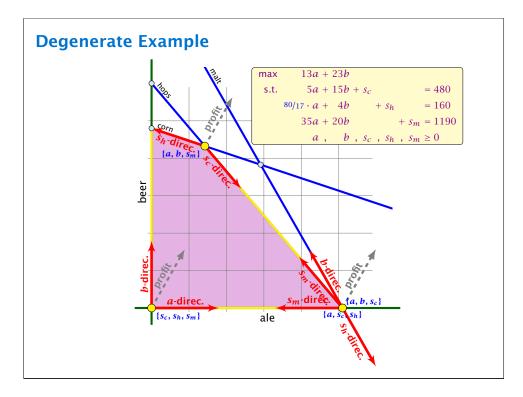
The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)

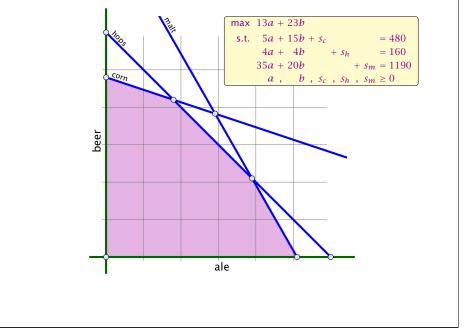
A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

Harald Räcke	4 Simplex Algorithm	6. Jul. 2018
UUU Harald Räcke		69/554



Non Degenerate Example



Summary: How to choose pivot-elements

- We can choose a column *e* as an entering variable if *c*_e > 0 (*c*_e is reduced cost for *x*_e).
- The standard choice is the column that maximizes \tilde{c}_e .
- If $A_{ie} \leq 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable l such that b_l/A_{le} is minimal among all variables i with A_{ie} > 0.
- ► If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of *l* it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is <u>unbounded</u>, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an <u>optimum solution</u>.

החוחר		
	Harald Räcke	

4 Simplex Algorithm

Two phase algorithm Suppose we want to maximize $c^T x$ s.t. $Ax = b, x \ge 0$. 1. Multiply all rows with $b_i < 0$ by -1. 2. maximize $-\sum_i v_i$ s.t. $Ax + Iv = b, x \ge 0, v \ge 0$ using Simplex. x = 0, v = b is initial feasible. 3. If $\sum_i v_i > 0$ then the original problem is infeasible. 4. Otw. you have $x \ge 0$ with Ax = b. 5. From this you can get basic feasible solution. 6. Now you can start the Simplex for the original problem.

How do we come up with an initial solution?

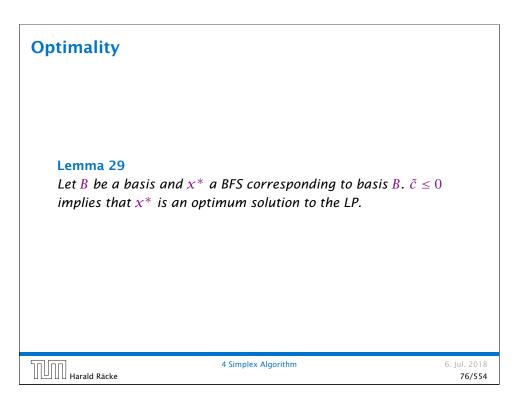
- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- The standard slack form for this problem is Ax + Is = b, x ≥ 0, s ≥ 0, where s denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Harald Räcke

4 Simplex Algorithm

6. Jul. 2018 74/554



6. Jul. 2018 75/554

6. Jul. 2018

Duality

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

```
5.1 Weak Duality
```

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $w = -\max\{-b^T y \mid -A^T y \leq -c, y \geq 0\}$

The dual problem is

►
$$z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$$

 $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Duality

Definition 30

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

is called the dual problem.

Harald Räcke

5.1 Weak Duality

6. Jul. 2018 **78/554**

Weak Duality Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair. x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$ y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$. Theorem 32 (Weak Duality) Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then $c^T \hat{x} \le z \le w \le b^T \hat{y}$.

Harald Räcke

6. Jul. 2018 **79/554**

6. Jul. 2018

Weak Duality

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

$$c^T \hat{x} \le \hat{y}^T A \hat{x} \le b^T \hat{y}$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

הח	5.1 Weak Duality	6. Jul. 2018
🛛 🕒 🛛 🖓 Harald Räcke		81/554

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

=
$$\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

]]]]|]|| Harald Räcke

$$\min\{\begin{bmatrix} b^T & -b^T \end{bmatrix} y \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} y \ge c, y \ge 0\}$$

=
$$\min\left\{\begin{bmatrix} b^T & -b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^T y' \mid A^T y' \ge c\right\}$$

5.2 Simplex and Duality

6. Jul. 2018

83/554

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

 $z = \max\{c^T x \mid Ax = b, x \ge 0\}$ $w = \min\{b^T y \mid A^T y \ge c\}$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

Harald Räcke

5.2 Simplex and Duality

6. Jul. 2018

```
Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

\tilde{c} = c^T - c_B^T A_B^{-1} A \leq 0

This is equivalent to A^T (A_B^{-1})^T c_B \geq c

\gamma^* = (A_B^{-1})^T c_B is solution to the dual min\{b^T \gamma | A^T \gamma \geq c\}.

b^T \gamma^* = (A \chi^*)^T \gamma^* = (A_B \chi_B^*)^T \gamma^*

= (A_B \chi_B^*)^T (A_B^{-1})^T c_B = (\chi_B^*)^T A_B^T (A_B^{-1})^T c_B

= c^T \chi^*

Hence, the solution is optimal.
```

5.3 Strong Duality

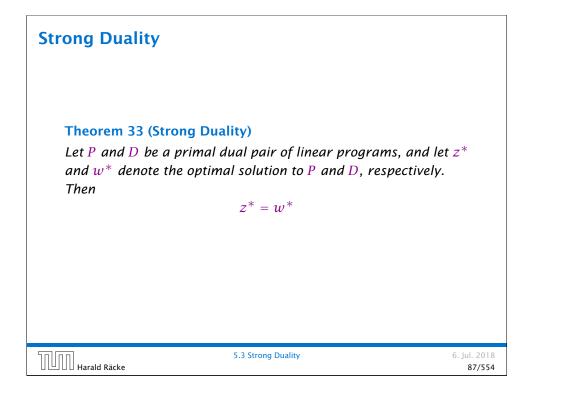
 $P = \max\{c^T x \mid Ax \le b, x \ge 0\}$ n_A : number of variables, m_A : number of constraints

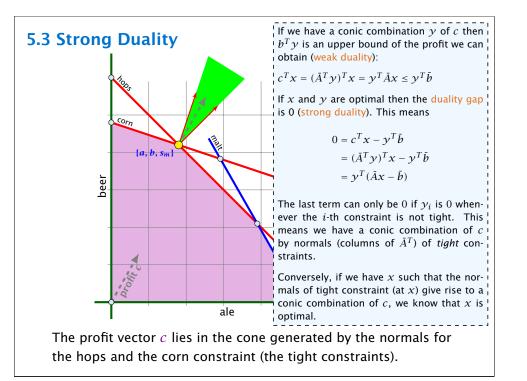
We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P} = \max\{c^T x \mid \bar{A}x \leq \bar{b}\}$

 $n_{\bar{A}} = n_A$, $m_{\bar{A}} = m_A + n_A$

```
Dual D = \min\{\bar{b}^T \gamma \mid \bar{A}^T \gamma = c, \gamma \ge 0\}.
```

[חח] [חר]	5.3 Strong Duality	6. Jul. 2018
UUU Harald Räcke		85/554





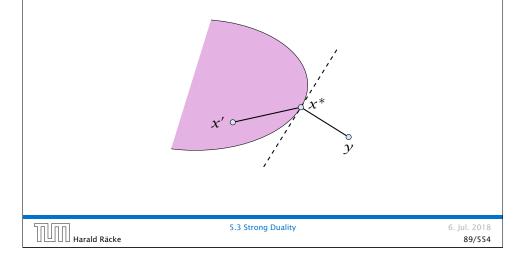
Let *X* be a compact set and let f(x) be a continuous function on *X*. Then $\min\{f(x) : x \in X\}$ exists.

(without proof)

5.3 Strong Duality

Lemma 35 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.



Proof of the Projection Lemma (continued)

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{aligned}$$

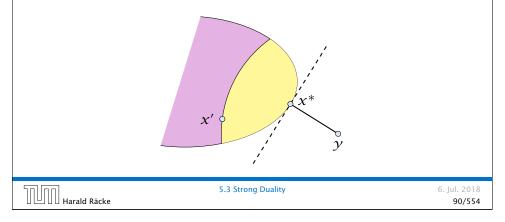
Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \rightarrow 0$ gives the result.

5000	5.3 Strong Duality	6. Jul. 2018
UUU Harald Räcke		91/554

Proof of the Projection Lemma

- Define f(x) = ||y x||.
- We want to apply Weierstrass but *X* may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



Theorem 36 (Separating Hyperplane)

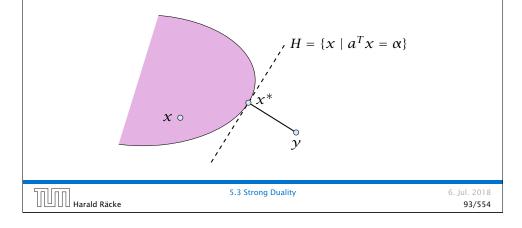
Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha;$ $a^T x \ge \alpha$ for all $x \in X$)

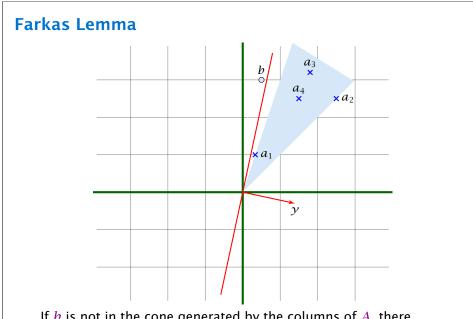
Harald Räcke

5.3 Strong Duality

Proof of the Hyperplane Lemma

- Let $x^* \in X$ be closest point to y in X.
- By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$





If b is not in the cone generated by the columns of A, there exists a hyperplane y that separates b from the cone.

Lemma 37 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^n$ with $Ax = b, x \ge 0$

2. $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

94/554

Hence, at most one of the statements can hold.

Harald Räcke	5.3 Strong Duality

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Lemma 38 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n$$
 with $\begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

Harald Räcke	5.3 Strong Duality	6. Jul. 2018 97/554

Proof of Strong Duality $z \leq w$: follows from weak duality $z \geq w$: We show $z < \alpha$ implies $w < \alpha$. $\exists x \in \mathbb{R}^n$ $\exists \gamma \in \mathbb{R}^m : \nu \in \mathbb{R}$ s.t. $A^T \gamma - c \nu \geq 0$ s.t. $Ax \leq b$ $-c^T x \leq -\alpha$ $b^T \gamma - \alpha \nu < 0$ $x \geq 0$ $\gamma, \nu \geq 0$ From the definition of α we know that the first system is infeasible; hence the second must be feasible. 5.3 Strong Duality 6. Jul. 2018 99/554

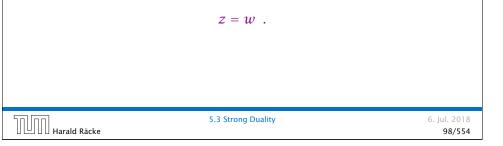
Proof of Strong Duality

 $P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

 $D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then



Proof of Strong Duality		
ſ	$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$	
	s.t. $A^T y - cv \ge 0$	
	$b^T y - \alpha v < 0$	
	$y, v \geq 0$	
If the solution	y, v has $v = 0$ we have that	
	$\exists y \in \mathbb{R}^m$	
	s.t. $A^{I} y \ge 0$	
	$b^T y < 0$	
	s.t. $A^T y \ge 0$ $b^T y < 0$ $y \ge 0$	

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

Harald Räcke

Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Harald Räcke	5.3 Strong Duality	(

Complementary Slackness

Lemma 41

Assume a linear program $P = \max\{c^T x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^T y \mid A^T y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

6. Jul. 2018 103/554

101/554

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

Harald Räcke	5.3 Strong Duality	6. Jul. 2018
UUU Harald Räcke		102/554

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

 $c^T x^* \le y^{*T} A x^* \le b^T y^*$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

 $\sum_{j} (\mathcal{Y}^T A - c^T)_j \mathbf{x}_j^* = 0$

From the constraint of the dual it follows that $\gamma^T A \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(\gamma^T A - c^T)_j > 0$ (the *j*-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

Harald Räcke

Interpretation of Dual Variables

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Harald Räcke

6. Jul. 2018 107/554

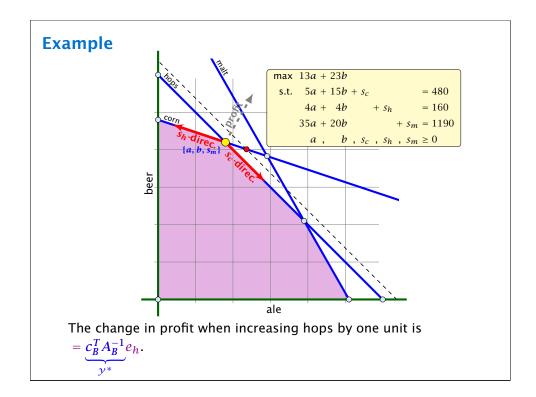
Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

	$\begin{array}{ccc} \min & (b^T + \epsilon^T)y \\ \text{s.t.} & A^Ty & \geq c \\ & y & \geq 0 \end{array}$	
Harald Räcke	5.4 Interpretation of Dual Variables	6. Jul. 2018 106/554



Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

החוהי	5.4 Interpretation of Dual Variables	6. Jul. 2018
UUU Harald Räcke		109/554

Flows

Definition 43

The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{X} f_{SX} - \sum_{X} f_{XS} .$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

Harald Räcke	5.5 Computing Duals	6. Jul. 2018 111/554

Flows

Definition 42

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies **1.** For each edge (x, y)

$$0 \leq f_{xy} \leq c_{xy} \ .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \; .$$

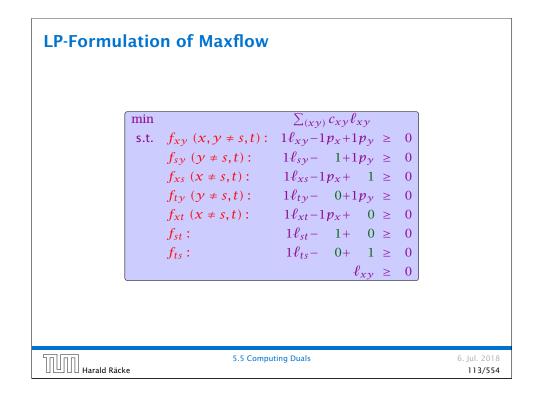
(flow conservation constraints)

Harald Räcke

5.5 Computing	Duals

6. Jul. 2018 110/554

max	Σ	$\sum_{z} f_{sz} - \sum_{z} f_{zs}$			
		12 J 32 212 J 23 fzw	< C ₂	n la	
		$f_{zw} - \sum_{z} f_{wz}$			
			≥ 0	Ρw	
min		$\sum_{(xy)} c_{xy} \ell$	- T		
s.t. f_{xy}	$(x, y \neq s, t)$:	$1\ell_{xy}-1p_x+1$	$ p_{\mathcal{Y}} \geq$	0	
f_{sy}	$(\gamma \neq s, t)$:	$1\ell_{sy}$ +1	$ p_{y} \geq$	1	
f_{xs}	$(x \neq s, t)$:	$1\ell_{xs}-1p_x$	\geq	-1	
f_{ty}	$(y \neq s, t)$:	$1\ell_{ty}$ +1	$ p_y \geq$	0	
f_{xt}	$(x \neq s, t)$:	$1\ell_{xt}-1p_x$	2	0	
f_{st} :		$1\ell_{st}$			
f_{ts} :		$1\ell_{ts}$			
513-		ℓ_{XY}	2		
		xy	_		



LP-Formulation of Maxflow $\begin{array}{ccc} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \colon 1 \ell_{xy} - 1 p_x + 1 p_y \geq 0 \\ & \ell_{xy} \geq 0 \\ & p_s = 1 \\ & p_t = 0 \end{array}$ We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

|||||||| Harald Räcke

6. Jul. 2018 115/554

LP-Formulation of Maxflow

min	n	$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t	t. $f_{xy}(x, y \neq s, t)$:	$1\ell_{xy}-1p_x+1p_y \ge$	0	
	$f_{sy} (y \neq s, t)$:	$1\ell_{sy} - p_s + 1p_y \ge$	0	
	$f_{xs} (x \neq s, t)$:	$1\ell_{xs}-1p_x+p_s \geq$	0	
	$f_{ty} (y \neq s, t)$:	$1\ell_{ty} - p_t + 1p_y \ge$	0	
	$f_{xt} (x \neq s, t)$:	$1\ell_{xt}-1p_x+p_t \geq$	0	
	f_{st} :	$1\ell_{st}$ - p_s + $p_t \ge$	0	
	f_{ts} :	$1\ell_{ts}-p_t+p_s \geq$	0	
		$\ell_{XY} \geq$	0	
with $p_t = 0$ ar	nd $p_s = 1$.			
Harald Räcke	5.5 Comput	ting Duals	(5. Jul. 2018 114/554
				,

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{\chi} = 1$ or $p_{\chi} = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Change LP := $\max\{c^T x, Ax = b; x \ge 0\}$ into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

- I. LP is feasible
- **II.** If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

6. Jul. 2018 117/554

6. Jul. 2018

119/554

III. LP has no degenerate basic solutions

Harald Räcke	6 Degeneracy Revisited	

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Harald Räcke

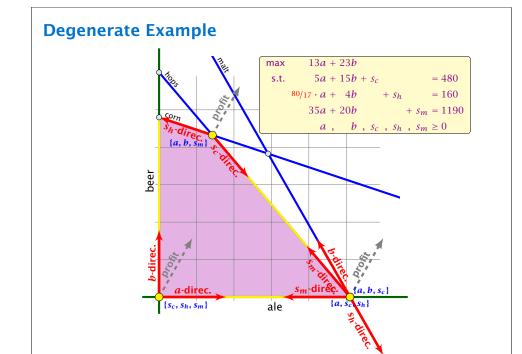
Given feasible LP := $\max\{c^T x, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

6 Degeneracy Revisited

III. LP' has no degenerate basic solutions



Perturbation Let *B* be index set of some basis with basic solution $x_B^* = A_B^{-1}b \ge 0, x_N^* = 0 \quad (i.e. \ B \ is \ feasible)$ Fix $b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix} \text{ for } \varepsilon > 0 \ .$ This is the perturbation that we are using.

Property I

The new LP is feasible because the set B of basis variables provides a feasible basis:

$$A_B^{-1}\left(b+A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right)=x_B^*+\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\geq 0$$

Harald Räcke	6 Degeneracy Revisited	6. Jul. 2018 121/554

Property III

Let \tilde{B} be a basis. It has an associated solution

 $x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{B}}^{-1}A_B$ has rank *m*. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

Property II

Harald Räcke

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i < 0$ for some row i.

Then for small enough $\epsilon > 0$

 $\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i} = (A_{\tilde{B}}^{-1}b)_{i} + \left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i} < 0$

Hence, \tilde{B} is not feasible.

Since, there are no degeneracies Simplex will terminate when run on LP'.

6 Degeneracy Revisited

If it terminates because the reduced cost vector fulfills

 $\tilde{c} = (c^T - c_B^T A_B^{-1} A) \le 0$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

If it terminates because it finds a variable x_j with c̃_j > 0 for which the *j*-th basis direction *d*, fulfills *d* ≥ 0 we know that LP' is unbounded. The basis direction does not depend on *b*. Hence, we also know that LP is unbounded.

6. Jul. 2018

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP^\prime without explicitly doing a perturbation.

6 Degeneracy Revisited 6. Jul. 2018 Harald Räcke 125/554

Lexicographic Pivoting In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where *B* is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm). Then the perturbed instance is $b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Harald Räcke

6 Degeneracy Revisited

6. Jul. 2018 126/554

Aatrix View Let our linear program be
$c_B^T x_B + c_N^T x_N = Z$
$A_B x_B + A_N x_N = b$
x_B , $x_N \ge 0$
The simplex tableaux for basis <i>B</i> is $(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$ $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$ $x_B , \qquad x_N \ge 0$
λ_B , $\lambda_N \geq 0$
The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.
If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Harald Räcke

6. Jul. 2018

127/554

6 Degeneracy Revisited

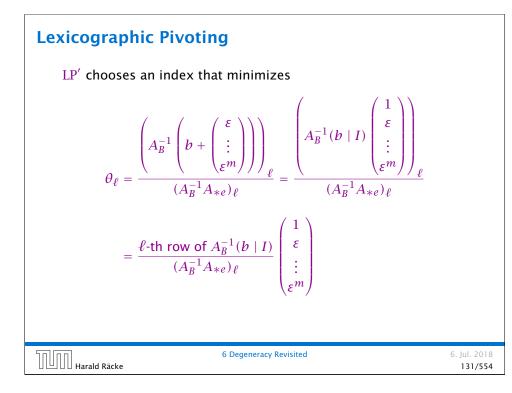
Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes

$$\theta_{\ell} = \frac{b_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \; .$$

 ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

Harald Räcke	6 Degeneracy Revisited	6. Jul. 2018 129/554



Lexicographic Pivoting

Definition 44

 $u \leq_{\mathsf{lex}} v$ if and only if the first component in which u and v differ fulfills $u_i \leq v_i$.

Harald Räcke	6 Degeneracy Revisited	6. Jul. 2018
UUU Harald Räcke		130/554

Lexicographic Pivoting This means you can choose the variable/row ℓ for which the vector $\frac{\ell \cdot \text{th row of } A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_{\ell}}$ is lexicographically minimal. Of course only including rows with $(A_B^{-1}A_{*e})_{\ell} > 0$. This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

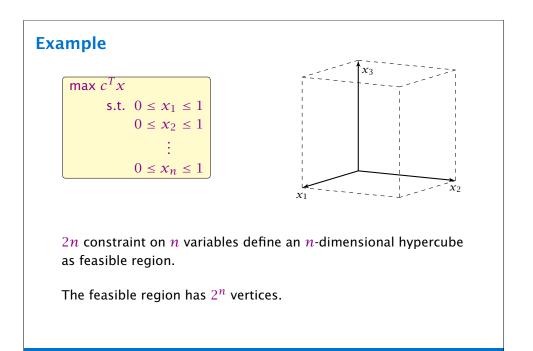
The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

Harald Räcke

	7 Klee Minty Cube	6. Jul. 2018
UUU Harald Räcke		133/554



7 Klee Minty Cube

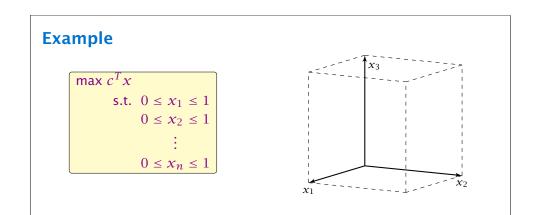
Number of Simplex Iterations

Observation Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

 7 Klee Minty Cube
 6. Jul. 2018

 Harald Räcke
 134/554



However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.

6. Jul. 2018

Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving variable for an iteration of Simplex.

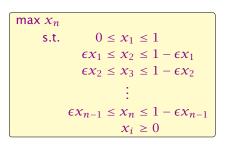
In the non-degenerate case after choosing the entering variable the leaving variable is unique.

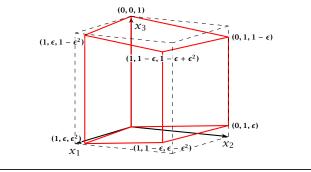
Harald Räcke	7 Klee Minty Cube	6. Jul. 2018 137/554
		- ,

Observations

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

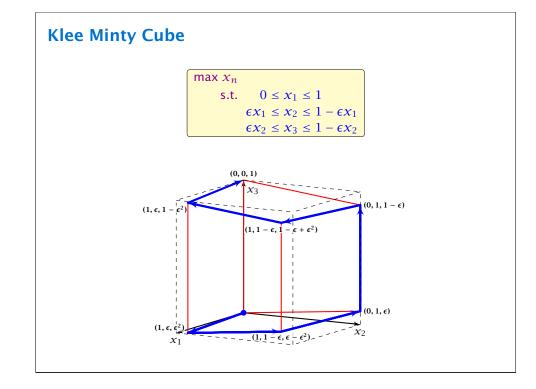
Klee Minty Cube





Analysis

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis $(0, \ldots, 0, 1)$ is the unique optimal basis.
- Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.



Analysis

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

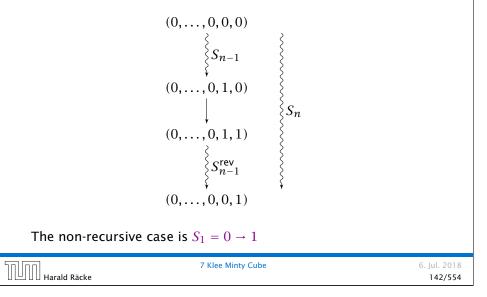
n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

$n-1 \rightarrow n$

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1}, hence, also x_n.
- Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ε.
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Analysis

The sequence S_n that visits every node of the hypercube is defined recursively



Remarks about Simplex **Observation** The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time $\mathcal{O}(mn)$. In practise it usually takes a linear number of iterations.

Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time ($\Omega(2^{\Omega(n)})$) (e.g. Klee Minty 1972).

7 Klee Minty Cube	6. Jul. 2018 145/554
	7 Klee Minty Cube

Remarks about Simplex

Conjecture (Hirsch 1957)

|||||||| Harald Räcke

The edge-vertex graph of an *m*-facet polytope in *d*-dimensional Euclidean space has diameter no more than m - d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form $\mathcal{O}(\mathrm{poly}(m,d))$ is open.

7 Klee Minty Cube

Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist subexponential lower bounds ($\Omega(2^{\Omega(n^{\alpha})})$ for $\alpha > 0$) (Friedmann, Hansen, Zwick 2011).

Harald Räcke

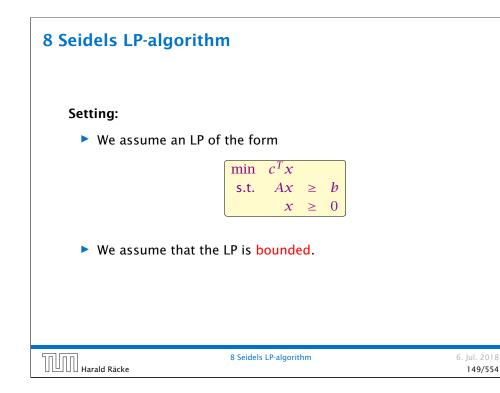
7 Klee Minty Cube

6. Jul. 2018 146/554

8 Seidels LP-algorithm Suppose we want to solve min{c^Tx | Ax ≥ b; x ≥ 0}, where x ∈ ℝ^d and we have m constraints. In the worst-case Simplex runs in time roughly O(m(m + d) (m+d)/m) ≈ (m + d)^m. (slightly better bounds on the running time exist, but will not be discussed here). If d is much smaller than m one can do a lot better. In the following we develop an algorithm with running time O(d! · m), i.e., linear in m.

6. Jul. 2018

147/554



Computing a Lower Bound Let *s* denote the smallest common multiple of all denominators of entries in *A*, *b*. Multiply entries in *A*, *b* by *s* to obtain integral entries. This does not change the feasible region. Add slack variables to *A*; denote the resulting matrix with \overline{A} . If *B* is an optimal basis then x_B with $\overline{A}_B x_B = \overline{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0).

Theorem 46 (Cramers Rule)

Let M be a matrix with $det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_i = \frac{\det(M_j)}{\det(M)} \; \; ,$$

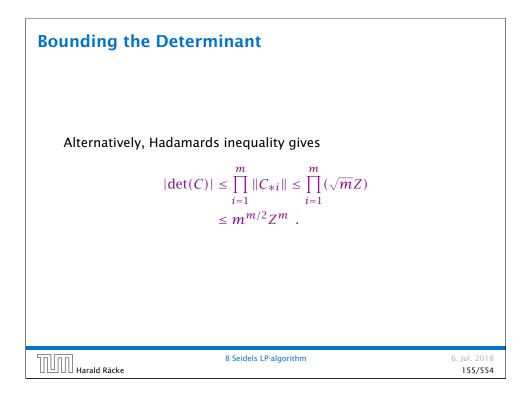
where M_i is the matrix obtained from M by replacing the *i*-th column by the vector b.

6. Jul. 2018 151/554

Proof:

	Define $X_{i} = \begin{pmatrix} & & & \\ e_{1} \cdots e_{i-1} \mathbf{x} e_{i+1} \cdots e_{n} \\ & & & \end{pmatrix}$
	Note that expanding along the <i>i</i> -th column gives that $det(X_i) = x_i$.
•	Further, we have
	$MX_{i} = \begin{pmatrix} & & & & \\ Me_{1} \cdots Me_{i-1} Mx Me_{i+1} \cdots Me_{n} \\ & & & \end{pmatrix} = M_{i}$ Hence, $x_{i} = \det(X_{i}) = \frac{\det(M_{i})}{\det(M)}$

Harald Räcke	8 Seidels LP-algorithm	6. Jul. 2018 153/554

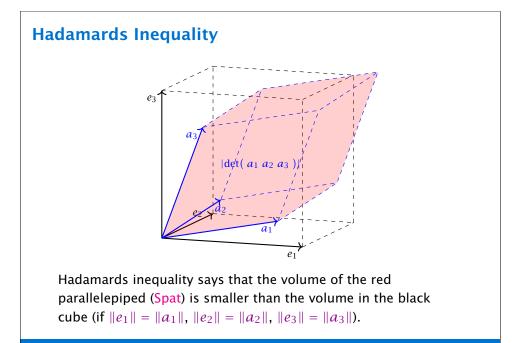


Bounding the Determinant

Let Z be the maximum absolute entry occuring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the *j*-th column with vector \bar{b} (for some *j*).

Observe that

det	$ C(C) = \left \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right $ $\leq \sum_{\pi \in S_m} \prod_{1 \le i \le m} C_{i\pi(i)} $ $\leq m! \cdot Z^m \text{Here sgn}(\pi) denotes the single tation, which is 1 if the period of the number of transposition the number of transposition the first identity is known as the second secon$	rmutation can be ber of transposi- nents), and -1 if is is odd.
Harald Räcke	8 Seidels LP-algorithm	6. Jul. 2018 154/554



Harald Räcke

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{|c|c|c|} \min & c^T x \\ \text{s.t.} & Ax & \ge & b \\ & x & \ge & 0 \end{array}$$

how can we obtain an LP of the required form?

Compute a lower bound on c^Tx for any basic feasible solution. Add the constraint c^Tx ≥ -dZ(m! · Z^m) - 1. Note that this constraint is superfluous unless the LP is unbounded.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^T x \ge -dZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H} , d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points.

In addition it obeys the implicit constraint $c^T x \ge -(dZ)(m! \cdot Z^m) - 1.$

]][][]]] Harald Räcke

Ensuring Conditions

Compute an optimum basis for the new LP.

- If the cost is $c^T x = -(dZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- Otw. we have an optimum basis.

8 Seidels LP-algorithm Harald Räcke

6. Jul. 2018 158/554

Algo	orithm 1 SeidelLP (\mathcal{H}, d)
1: i	f $d = 1$ then solve 1-dimensional problem and return;
2: i	if $\mathcal{H} = \emptyset$ then return x on implicit constraint hyperplane
3: c	choose random constraint $h\in\mathcal{H}$
4: 3	$\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
5: 2	$\hat{x}^* \leftarrow SeidelLP(\hat{\mathcal{H}}, d)$
6: i	f \hat{x}^* = infeasible then return infeasible
7: i	if \hat{x}^* fulfills h then return \hat{x}^*
8: /	// optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
9: 9	solve $a_h^T x = b_h$ for some variable x_l ;
10: €	eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
11: 2	$\hat{x}^* \leftarrow SeidelLP(\hat{\mathcal{H}}, d-1)$
12: i	f \hat{x}^* = infeasible then
13:	return infeasible
14: 6	else
15:	add the value of x_ℓ to \hat{x}^* and return the solution

8 Seidels LP-algorithm

6. Jul. 2018 159/554

8 Seidels LP-algorithm

Note that for the case d = 1, the asymptotic bound $\mathcal{O}(\max\{m, 1\})$ is valid also for the case m = 0.

6. Jul. 2018 161/554

- If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ► The first recursive call takes time T(m 1, d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill *h* we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_{ℓ} . Then we make a recursive call that takes time T(m-1, d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

Harald Räcke	8 Seidels LP-algorithm

8 Seidels LP-algorithm		
Let C be the largest constant in the $\mathcal O$ -notatio	ns.	
$T(m,d) = \begin{cases} C \max\{1,m\} \\ Cd \\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) \end{cases}$	if $d = 1$ if $d > 1$ and $m = 0$ otw.	
Note that $T(m, d)$ denotes the expected runn		
8 Seidels LP-algorithm Harald Räcke		6. Jul. 2018 163/554

8 Seidels LP-algorithm

This gives the recurrence

$$T(m,d) = \begin{cases} \mathcal{O}(\max\{1,m\}) & \text{if } d = 1\\ \mathcal{O}(d) & \text{if } d > 1 \text{ and } m = 0\\ \mathcal{O}(d) + T(m-1,d) + \\ \frac{d}{m}(\mathcal{O}(dm) + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

החוחר	8 Seidels LP-algorithm	6. Jul. 2018
🛛 🕒 🖯 Harald Räcke		162/554

8 Seidels LP-algorithm

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}.$

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\}$ for $f(1) \ge 1$

d > 1; m = 0:

 $T(0,d) \leq \mathcal{O}(d) \leq Cd \leq Cf(d) \max\{1,m\} \text{ for } f(d) \geq d$

d > 1; m = 1:

```
T(1,d) = O(d) + T(0,d) + d(O(d) + T(0,d-1))

\leq Cd + Cd + Cd^{2} + dCf(d-1)

\leq Cf(d) \max\{1,m\} \text{ for } f(d) \geq 3d^{2} + df(d-1)
```

8 Seidels LP-algorithm

d > 1; m > 1:(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m) $T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$ $\leq Cd + Cf(d)(m-1) + Cd^{2} + \frac{d}{m}Cf(d-1)(m-1)$ $\leq 2Cd^{2} + Cf(d)(m-1) + dCf(d-1)$ $\leq Cf(d)m$ if $f(d) \ge df(d-1) + 2d^{2}$.

Complexity

LP Feasibility Problem (LP feasibility A) Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$?

LP Feasiblity Problem (LP feasibility B)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Find $x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$!

LP Optimization A

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$. What is the maximum value of $c^T x$ for a feasible point $x \in \mathbb{R}^n$?

LP Optimization B

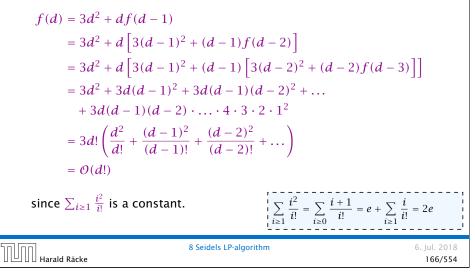
Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$. Return feasible point $x \in \mathbb{R}^n$ with maximum value of $c^T x$?

Note that allowing A, b to contain rational numbers does not make a difference, as we can multiply every number by a suitable large constant so that everything becomes integral but the feasible region does not change.

8 Seidels LP-algorithm

• Define
$$f(1) = 3 \cdot 1^2$$
 and $f(d) = df(d-1) + 3d^2$ for $d > 1$.

Then



The Bit Model

Input size

• The number of bits to represent a number $a \in \mathbb{Z}$ is

$\lceil \log_2(|a|) \rceil + 1$

Let for an $m \times n$ matrix M, L(M) denote the number of bits required to encode all the numbers in M.

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

- In the following we sometimes refer to L := ⟨A⟩ + ⟨b⟩ as the input size (even though the real input size is something in Θ(⟨A⟩ + ⟨b⟩)).
- Sometimes we may also refer to $L := \langle A \rangle + \langle b \rangle + n \log_2 n$ as the input size. Note that $n \log_2 n = \Theta(\langle A \rangle + \langle b \rangle)$.
- In order to show that LP-decision is in NP we show that if there is a solution x then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in L).

	Note that $m \log_2 m$ m than $\langle A \rangle + \langle b \rangle$.	ay be much larger
9 The Ellipsoid Algorit	hm	6. Jul. 2018 169/554

Note that n in the theorem denotes the number of columns in A which may be much smaller than m.

- A: original input matrix
- \overline{A} : transformation of A into standard form
- \bar{A}_B : submatrix of \bar{A} corresponding to basis B

Lemma 47

Harald Räcke

Let $\bar{A}_B \in \mathbb{Z}^{m \times m}$ and $b \in \mathbb{Z}^m$. Define $L = \langle A \rangle + \langle b \rangle + n \log_2 n$. Then a solution to $\bar{A}_B x_B = b$ has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \le 2^L$ and $|D| \le 2^L$.

Proof:

Cramers rules says that we can compute x_j as

$$x_j = \frac{\det(\bar{A}_B^j)}{\det(\bar{A}_B)}$$

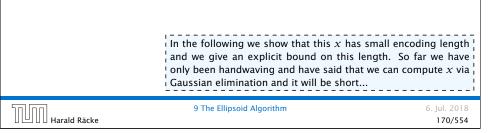
where \bar{A}_B^j is the matrix obtained from \bar{A}_B by replacing the *j*-th column by the vector *b*.

Suppose that $\bar{A}x = b$; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set B of basic variables such that

$$x_B = \bar{A}_B^{-1} b$$

and all other entries in x are 0.



Bounding the Determinant	
Let $X = \overline{A}_B$. Then	
$\begin{aligned} \det(X) &= \det(\bar{X}) \\ &= \left \sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le} \right. \\ &\leq \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \le i \le \tilde{n}} \bar{X}_{i\pi(i)} \\ &\leq n! \cdot 2^{\langle A \rangle + \langle b \rangle} \le 2^{L} \end{aligned}$ Here \bar{X} is an $\tilde{n} \times \tilde{n}$ submatrix of A with $\tilde{n} \le n$. Analogously for $\det(A_B^j)$.	
9 The Ellipsoid Al	at most $n \times n$. gorithm 6. Jul. 2018 172/554

Reducing LP-solving to LP decision.

Given an LP $\max\{c^T x \mid Ax \le b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L')$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2^{L'}}$.

Here we use $L' = \langle A \rangle + \langle b \rangle + \langle c \rangle + n \log_2 n$ (it also includes the encoding size of *c*).

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\max} + 1$ and check for feasibility.

```
Harald Räcke
```

9 The Ellipsoid Algorithm

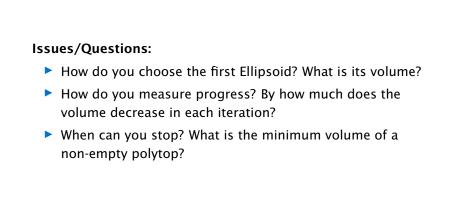
6. Jul. 2018 174/554

Ellipsoid Method

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $E \cap H$.
- REPEAT

Harald Räcke

9 The Ellipsoid Algorith



Κ

6. Jul. 2018

175/554

9 The Ellipsoid Algorithm

Definition 48

A mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where *L* is an invertible matrix is called an affine transformation.

Harald Räcke	9 The Ellipsoid Algorithm	6. Jul. 2018 177/554

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

= $\{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T L^{-1^T} L^{-1}(y-t) \le 1\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1\}$

9 The Ellipsoid Algorithm

6. Jul. 2018

179/554

where $Q = LL^T$ is an invertible matrix.

Definition 49

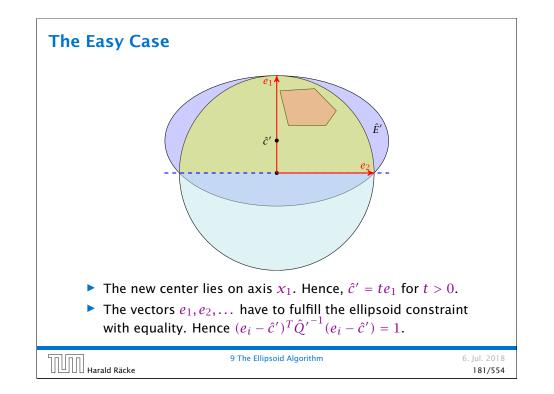
A ball in \mathbb{R}^n with center *c* and radius *r* is given by

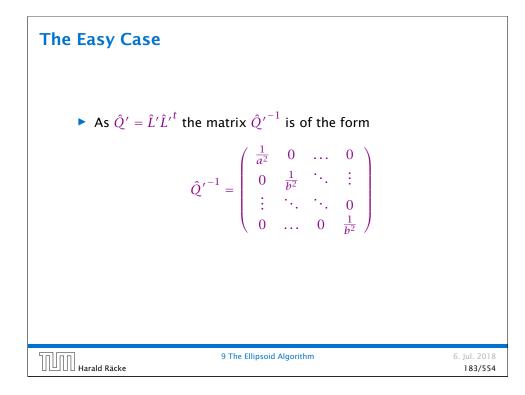
$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\} \\ = \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

B(0,1) is called the unit ball.

Harald Räcke	9 The Ellipsoid Algorithm	6. Jul. 2018 178/554

How to Compute the New Ellipsoid • Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball. • Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 . • Compute the new center \hat{c}' and the new matrix \hat{O}' for this simplified setting. Use the transformations R and f to get the â ea $\hat{E}' \ \bar{E}'$ new center c' and the new matrix O'for the original $E^{\hat{E}}$ ellipsoid *E*. 9 The Ellipsoid Algorithm 6. Jul. 2018 Harald Räcke 180/554



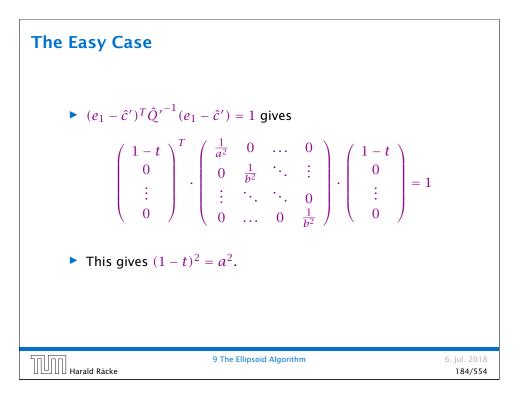


- To obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.
- Let a denote the radius along the x₁-axis and let b denote the (common) radius for the other axes.
- The matrix

	(a	0		0)
$\hat{L}' =$	0	b	${}^{*}\cdot,$:
L -	÷	${}^{*} \cdot ,$	${}^{*} \cdot ,$	0
	0	••••	0	b)

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

	9 The Ellipsoid Algorithm	6. Jul. 2018
UUU Harald Räcke		182/554



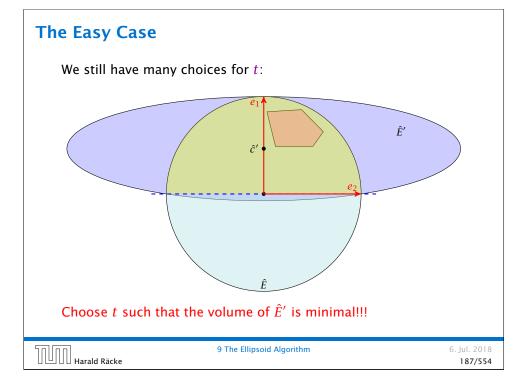
For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i = 2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

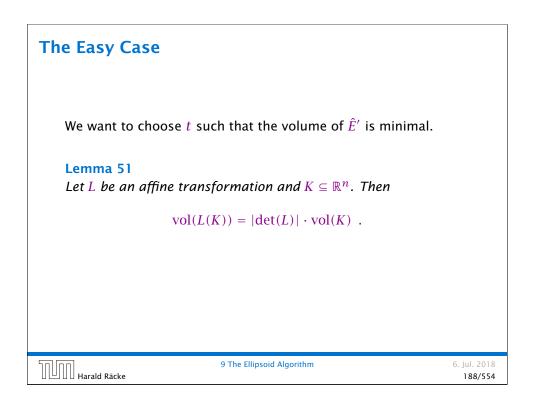
• This gives
$$\frac{t^2}{a^2} + \frac{1}{b^2} = 1$$
, and hence

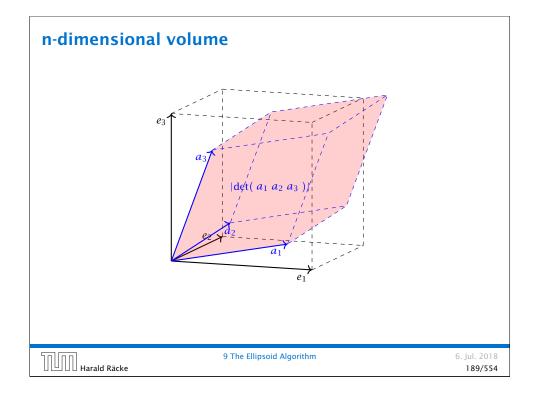
$$\frac{1}{b^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2} = \frac{1-2t}{(1-t)^2}$$

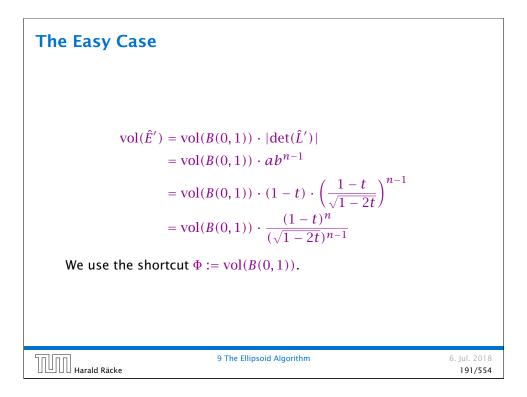
Harald Räcke	9 The Ellipsoid Algorithm	6. Jul. 2018 185/554



So far we have $a = 1 - t \quad \text{and} \quad b = \frac{1 - t}{\sqrt{1 - 2t}}$ $a = 1 - t \quad \text{and} \quad b = \frac{1 - t}{\sqrt{1 - 2t}}$







• We want to choose t such that the volume of \hat{E}' is minimal.

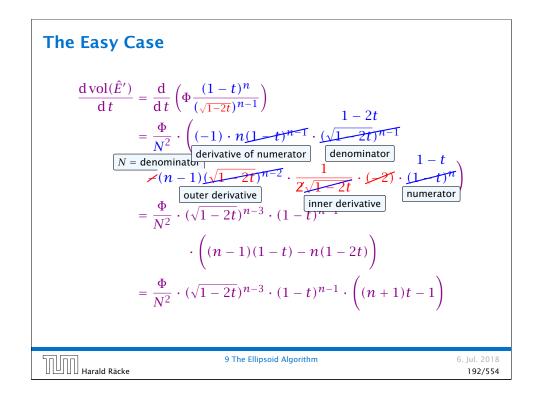
 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')|$,

Recall that

	(a	0		0)
$\hat{L}' =$	0	b	${}^{*}\cdot,$	÷
L –	÷	γ_{i_1}	γ_{i_1}	0
	0		0	b)

Note that a and b in the above equations depend on t, by the previous equations.

הח הר	9 The Ellipsoid Algorithm	6. Jul. 2018
UUU Harald Räcke		190/554



- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

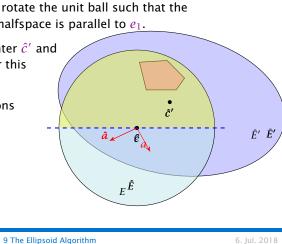
To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

Harald Räcke	9 The Ellipsoid Algorithm	6. Jul. 2018 193/554

How to Compute the New Ellipsoid

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- **Compute the new center** \hat{c}' and the new matrix \hat{Q}' for this simplified setting.
- Use the transformations R and f to get the new center c' and the new matrix Q'for the original ellipsoid *E*.



195/554

The Easy Case

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

= $\left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$
 $\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$
= $e^{-\frac{1}{n+1}}$

where we used $(1 + x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives
$$\gamma_n \leq e^{-\frac{1}{2(n+1)}}$$
.

החוחר	9 The Ellipsoid Algorithm	6. Jul. 2018
🛛 🕒 🛛 🖓 Harald Räcke		194/554

Our progress is the same:

$$e^{-\frac{1}{2(n+1)}} \in \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$

$$= \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(f(\hat{E}'))}{\operatorname{vol}(f(\hat{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$$
Here it is important that mapping a set with affine function $f(x) = Lx + t$ changes the volume by factor det(L).

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected:
$$H = \{x \mid a^T(x - c) \le 0\};$$

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x-c) \le 0\}$$

= $\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(Ly+c-c) \le 0\}$
= $\{y \mid (a^{T}L)y \le 0\}$

This means $\bar{a} = L^T a$.

The center \tilde{c} is of course at the origin.

6. Jul. 2018 199/554

החוהר	9 The Ellipsoid Algorithm	6. Jul. 2018
Harald Räcke		197/554

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}', \bar{E}' and E' refer to the ellipsoids centered in the origin.

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1}e_1 = -\frac{1}{n+1}\frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$
$$= -\frac{1}{n+1}L\frac{L^{T}a}{\|L^{T}a\|} + c$$
$$= c - \frac{1}{n+1}\frac{Qa}{\sqrt{a^{T}Qa}}$$



Harald Räcke	9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm $\bar{E}' = R(\hat{E}')$ $= \{R(x) \mid x^T \hat{O'}^{-1} x \le 1\}$ $= \{ \gamma \mid (R^{-1}\gamma)^T \hat{Q}'^{-1} R^{-1} \gamma \le 1 \}$ $= \{ y \mid y^{T}(R^{T})^{-1} \hat{Q}'^{-1} R^{-1} y \le 1 \}$ $= \{ \mathcal{Y} \mid \mathcal{Y}^T(\underbrace{R\hat{Q}'R^T}_{\bar{Q}'})^{-1}\mathcal{Y} \leq 1 \}$

Harald Räcke	9 The Ellipsoid Algorithm	6. Jul. 2018
🛛 🕒 🖯 Harald Räcke		201/554

9 The Ellipsoid Algorithm $E' = L(\bar{E}')$ $= \{L(x) \mid x^T \bar{O'}^{-1} x \le 1\}$ $= \{ y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1 \}$ $= \{ \gamma \mid \gamma^{T} (L^{T})^{-1} \bar{Q}'^{-1} L^{-1} \gamma \leq 1 \}$ $= \{ \boldsymbol{y} \mid \boldsymbol{y}^T (\underbrace{\boldsymbol{L} \bar{\boldsymbol{Q}}' \boldsymbol{L}^T}_{\bullet})^{-1} \boldsymbol{y} \leq 1 \}$ 9 The Ellipsoid Algorithm 6. Jul. 2018 Harald Räcke 203/554

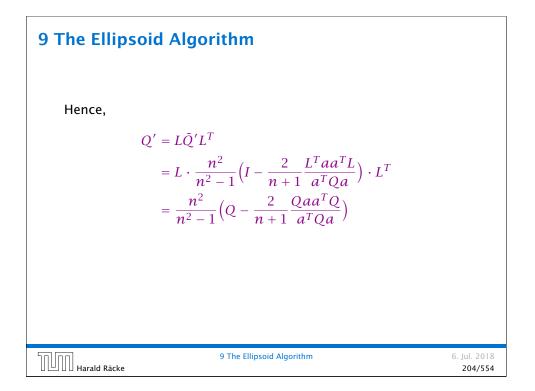
9 The Ellipsoid Algorithm

Hence,

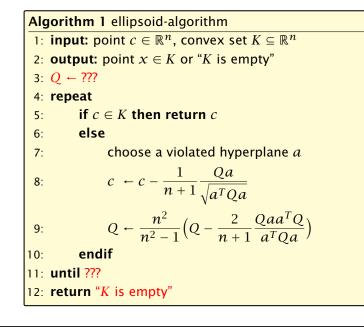
! w

$$\begin{split} \bar{Q}' &= R\hat{Q}'R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \left(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \right) \\ &= \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} \frac{L^T a a^T L}{\|L^T a\|^2} \right) \end{split}$$

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,
 $x^T I x = (Rx)^T (Rx) = x^T (R^T R) x$
which means $x^T (I - R^T R) x = 0$ for every vector x . It is easy to see that this can only be fulfilled if $I - R^T R = 0$.



Incomplete Algorithm



How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n} \delta$ from the origin.

Starting with the ball $E_0 := B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n \operatorname{vol}(B(0, 1)) \le (n\delta)^n \operatorname{vol}(B(0, 1))$.

6. Jul. 2018 207/554

Repeat: Size of basic solutions

Lemma 52

Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a bounded polyhedron. Let $L := 2\langle A \rangle + \langle b \rangle + 2n(1 + \log_2 n)$. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \le 2^L$.

In the following we use $\delta := 2^L$.

Proof:

We can replace *P* by $P' := \{x \mid A'x \le b; x \ge 0\}$ where A' = [A - A]. The lemma follows by applying Lemma 47, and observing that $\langle A' \rangle = 2\langle A \rangle$ and n' = 2n.

9 The Ellipsoid Algorithm 6. Jul. 2018 Harald Räcke 206/554

When can we terminate?

Let $P := \{x \mid Ax \le b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \leq b + rac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}
ight\},$$

where $\lambda = \delta^2 + 1$.

Note that the volume of P_{λ} cannot be 0

Making *P* full-dimensional

Lemma 53

 P_{λ} is feasible if and only if P is feasible.

\Leftarrow : obvious!

Harald Räcke	9 The Ellipsoid Algorithm	6. Jul. 2018 209/554

Making *P* full-dimensional

Let $\overline{A} = \begin{bmatrix} A & -A & I_m \end{bmatrix}$.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix}1\\\vdots\\1\end{pmatrix}$$

(The other *x*-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}b)_i < 0 \leq (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

Making *P* full-dimensional

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\} .$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

Making *P* full-dimensional

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)} \le -1/\delta$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{A}_B^j) \leq \delta$$
 ,

where \bar{A}_B^j is obtained by replacing the *j*-th column of \bar{A}_B by $\vec{1}$.

But then

$$(\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i \le -1/\delta + \delta/\lambda < 0$$
 ,

as we chose $\lambda = \delta^2 + 1$. Contradiction.

Harald Räcke

9 The Ellipsoid Algorithm

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

 $\begin{aligned} (A(x+\vec{\ell}))_i &= (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell} \\ &\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r \\ &\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda} \end{aligned}$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

החוהר	9 The Ellipsoid Algorithm	6. Jul. 2018
🛛 🕒 🛛 🖓 Harald Räcke		213/554

-	rithm 1 ellipsoid-algorithm
1: in	put: point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii <i>R</i> and <i>r</i>
2:	with $K \subseteq B(c, R)$, and $B(x, r) \subseteq K$ for some x
3: O I	Itput: point $x \in K$ or " K is empty"
4: Q	$\leftarrow \operatorname{diag}(R^2, \dots, R^2) // \text{ i.e., } L = \operatorname{diag}(R, \dots, R)$
5: re	peat
6:	if $c \in K$ then return c
7:	else
8:	choose a violated hyperplane <i>a</i>
9:	$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$
10:	$Q \leftarrow \frac{n^2}{n^2 - 1} \Big(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qa} \Big)$
11:	endif
12: u	ntil $det(Q) \le r^{2n}$ // i.e., $det(L) \le r^n$
13: re	turn "K is empty"

How many iterations do we need until the volume becomes too small?

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

$$i > 2(n+1) \ln \left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$= 2(n+1) \ln \left(n^n \delta^n \cdot \delta^{3n}\right)$$

$$= 8n(n+1) \ln(\delta) + 2(n+1)n \ln(n)$$

$$= \mathcal{O}(\operatorname{poly}(n) \cdot L)$$
9 The Ellipsoid Algorithm
6. Jul. 2018
214/554

Separation Oracle

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

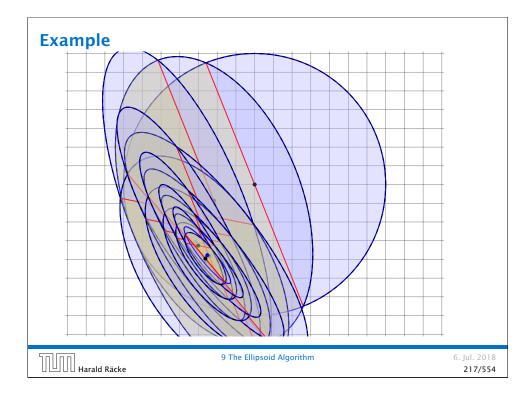
- certifies that $x \in K$,
- or finds a hyperplane separating x from K.

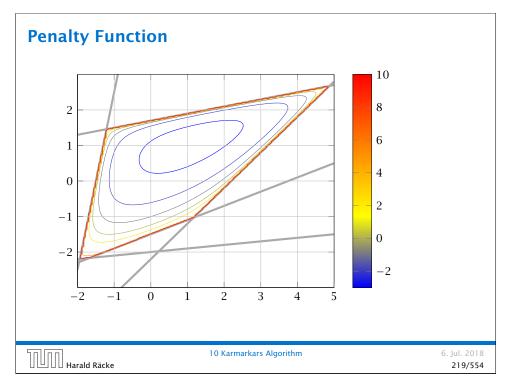
We will usually assume that A is a polynomial-time algorithm.

In order to find a point in *K* we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball B(c, R) with radius R that contains K,
- ▶ a separation oracle for *K*.

The Ellipsoid algorithm requires $O(\text{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.





10 Karmarkars Algorithm

- inequalities $Ax \leq b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^\circ$ define

 $s_i(x) := b_i - a_i^T x$

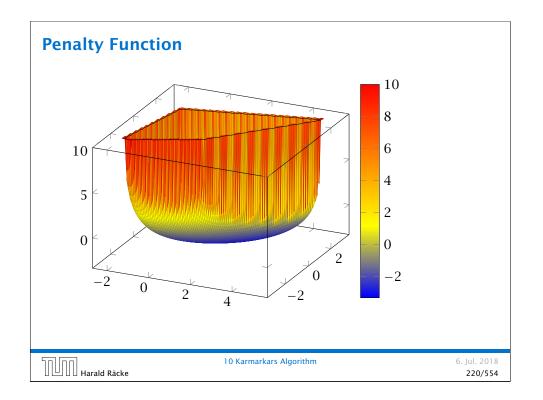
as the slack of the *i*-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^m \ln(s_i(x))$$

Penalty for point *x*; points close to the boundary have a very large penalty.

```
Throughout this section a_i denotes the i-th row as a column vector.
```



Gradient and Hessian

Taylor approximation:

$$\phi(x+\epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_{x} := \nabla^{2} \phi(x) = \sum_{i=1}^{m} \frac{1}{s_{i}(x)^{2}} a_{i} a_{i}^{T} = A^{T} D_{x}^{2} A$$

with $D_x = \operatorname{diag}(d_x)$.

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_{r} A_{ri}A_{rj} = (A^{T}A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

Hence the Hessian is

$$H_{\mathcal{X}} = A^T D^2 A$$

Proof for Gradient

$$\begin{aligned} \frac{\partial \phi(x)}{\partial x_i} &= \frac{\partial}{\partial x_i} \left(-\sum_r \ln(s_r(x)) \right) \\ &= -\sum_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right) = -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right) \\ &= -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right) = \sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right) \\ &= \sum_r \frac{1}{s_r(x)} A_{ri} \end{aligned}$$

The *i*-th entry of the gradient vector is $\sum_r 1/s_r(x) \cdot A_{ri}$. This gives that the gradient is

$$\nabla \phi(x) = \sum_{r} 1/s_{r}(x)a_{r} = A^{T}d_{x}$$

Properties of the Hessian

 H_x is positive semi-definite for $x \in P^\circ$

$$u^T H_X u = u^T A^T D_X^2 A u = \|D_X A u\|_2^2 \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_{χ} is positive definite for $\chi \in P^{\circ}$

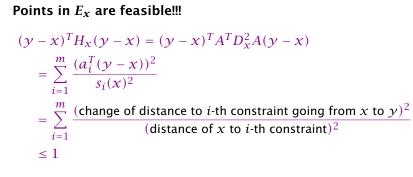
 $u^{T}H_{x}u = ||D_{x}Au||_{2}^{2} > 0$ for $u \neq 0$

This gives that $\phi(x)$ is strictly convex.

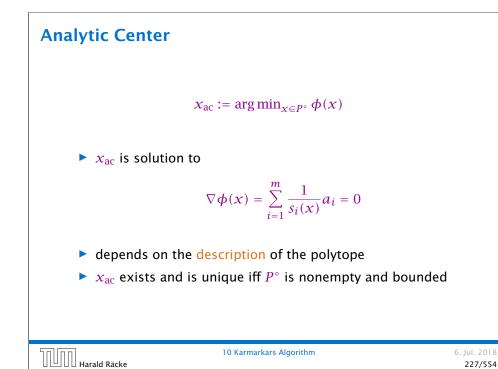
 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Dikin Ellipsoid

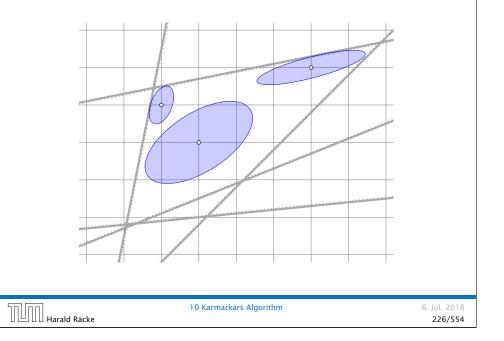
$$E_{x} = \{ y \mid (y - x)^{T} H_{x}(y - x) \leq 1 \} = \{ y \mid \| y - x \|_{H_{x}} \leq 1$$



In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.



Dikin Ellipsoids



Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

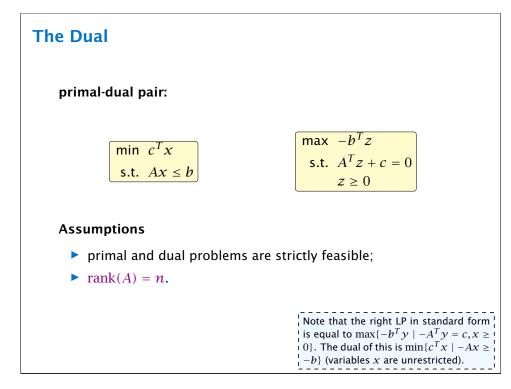
Central Path: Set of points $\{x^*(t) \mid t > 0\}$ with

 $x^*(t) = \operatorname{argmin}_{x} \{ tc^T x + \phi(x) \}$

- t = 0: analytic center
- $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

<section-header><section-header><section-header><section-header><section-header><image>



Central Path

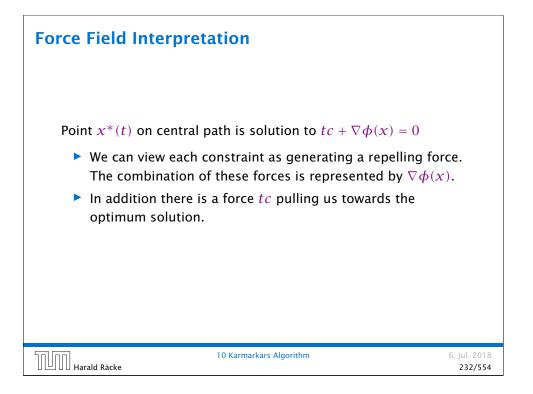
Intuitive Idea:

Find point on central path for large value of t. Should be close to optimum solution.

Questions:

- ▶ Is this really true? How large a *t* do we need?
- How do we find corresponding point $x^*(t)$ on central path?

החוחר	10 Karmarkars Algorithm	6. Jul. 2018
🛛 🕒 🗋 Harald Räcke		230/554



How large should *t* be?

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

- $z^*(t)$ is strictly dual feasible: $(A^T z^* + c = 0; z^* > 0)$
- duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

 $c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$

• if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point

Newton Method

Quadratic approximation of f_t

$$f_t(x+\epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Then gradient is given by:

$$\nabla f_t(x + \epsilon) = \nabla f_t(x) + H_{f_t}(x) \cdot \epsilon$$

Note that for the one-dimensional case $g(\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2$, then $g'(\epsilon) = f'(x) + f''(x)\epsilon$.

6. Jul. 2018 235/554

 _
Harald Räcke
Harald Räcke

10 Karmarkars Algorithm

How t	o find $x^*(t)$
Firs	t idea:
►	start somewhere in the polytope
•	use iterative method (Newtons method) to minimize $f_t(x) := tc^T x + \phi(x)$

Harald Räcke	10 Karmarkars Algorithm	6. Jul. 2018 234/554

Newton Method	Observe that $H_{f_t}(x) = H(x)$, where $H(x)$ is the Hessian for the function $\phi(x)$ (adding a linear term like $tc^T x$ does not affect the Hessian).
We want to move to a	Also $\nabla f_t(x) = tc + \nabla \phi(x)$. a point where this gradient is 0:
Newton Step at $x \in I$	P°
$\Delta x_{\sf nt}$	$= -H_{f_t}^{-1}(x)\nabla f_t(x)$
	$= -H_{f_t}^{-1}(x)(tc + \nabla \phi(x))$
	$= -(A^{T}D_{x}^{2}A)^{-1}(tc + A^{T}d_{x})$
Newton Iteration:	

Measuring Progress of Newton Step

Newton decrement:

$$\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\|$$
$$= \|\Delta x_{\mathsf{nt}}\|_{H_x}$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$$

- $\lambda_t(x) = 0$ iff $x = x^*(t)$
- $\lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Recall that Δx_{nt} fulfills $-H(x)\Delta x_{nt} = \nabla f_t()$.

Convergence of Newtons Method

Theorem 55 If $\lambda_t(x) < 1$ then $\lambda_t := x + \Delta x_{nt} \in P^\circ$ (new point feasible)

 $\blacktriangleright \lambda_t(x_+) \le \lambda_t(x)^2$

This means we have quadratic convergence. Very fast.

Convergence of Newtons Method

feasibility:

λ_t(x) = ||∆x_{nt}||_{H_x} < 1; hence x₊ lies in the Dikin ellipsoid around x.

Convergence of Newtons Method

bound on $\lambda_t(x^+)$: we use $D := D_x = \operatorname{diag}(d_x)$ and $D_+ := D_{x^+} = \operatorname{diag}(d_{x^+})$

 $\lambda_t (x^+)^2 = \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2$ $\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$ $= \|(I - D_+^{-1}D) D A \Delta x_{\mathsf{nt}}\|^2$

To see the last equality we use Pythagoras

 $||a||^2 + ||a + b||^2 = ||b||^2$

if $a^T(a+b) = 0$.

Convergence of Newtons Method

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} - D^{-1}_{+}\vec{1})$
= $(I - D^{-1}_{+}D)\vec{1}$

 $a^T(a+b)$

$$= \Delta x_{\mathsf{nt}}^{+T} A^T D_+ \left(D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^T D_+^2 A \Delta x_{\mathsf{nt}}^+ - A^T D^2 A \Delta x_{\mathsf{nt}} + A^T D_+ D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_+ \Delta x_{\mathsf{nt}}^+ - H \Delta x_{\mathsf{nt}} + A^T D_+ \vec{1} - A^T D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(-\nabla f_t(x^+) + \nabla f_t(x) + \nabla \phi(x^+) - \nabla \phi(x) \right)$$

$$= 0$$

If $\lambda_t(x)$ is large we do not have a guarantee.

Try to avoid this case!!!

Harald Räcke

10 Karmarkars Algorithm

6. Jul. 2018 243/554

Convergence of Newtons Method

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$

$$\begin{split} \lambda_{t}(x^{+})^{2} &= \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} \\ &\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2} \\ &= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2} \\ &= \|(I - D_{+}^{-1}D)^{2}\vec{1}\|^{2} \\ &\leq \|(I - D_{+}^{-1}D)\vec{1}\|^{4} \\ &= \|DA\Delta x_{\mathsf{nt}}\|^{4} \\ &= \lambda_{t}(x)^{4} \end{split}$$

The second inequality follows from $\sum_{i} y_{i}^{4} \leq (\sum_{i} y_{i}^{2})^{2}$

Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

- 1: start at analytic center
- 2: while solution not good enough do
- 3: make step to improve objective function
- 4: recenter to return to central path

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $x^*(t)$ is computed exactly in each iteration

 $\boldsymbol{\epsilon}$ is approximation we are aiming for

```
start at t = t_0, repeat until m/t \le \epsilon
```

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- ► *t* := *µt*

where $\mu = 1 + 1/(2\sqrt{m})$

Short Step Barrier Method

gradient of f_{t^+} at ($x = x^*(t)$)

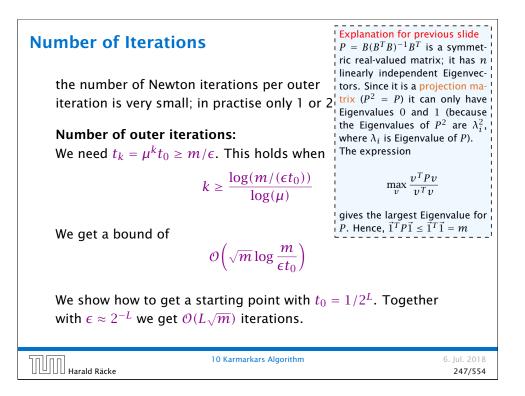
$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_X \vec{1}$$

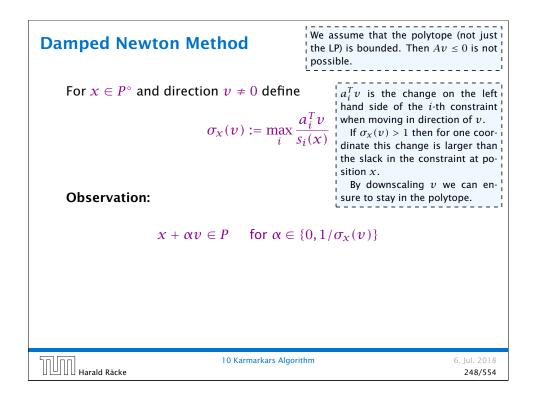
This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\begin{split} \lambda_{t^+}(x)^2 &= \nabla f_{t^+}(x)^T H^{-1} \nabla f_{t^+}(x) \\ &= (\mu - 1)^2 \vec{1}^T B (B^T B)^{-1} B^T \vec{1} \qquad B = D_x^T A \\ &\leq (\mu - 1)^2 m \\ &= 1/4 \end{split}$$

This means we are in the range of quadratic convergence!!!





Damped Newton Method

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

 $\phi(x + \alpha v) - \phi(x) = -\sum_{i} \log(s_i(x + \alpha v)) + \sum_{i} \log(s_i(x))$ $= -\sum_{i} \log(s_i(x + \alpha v)/s_i(x))$ $= -\sum_{i} \log(1 - a_i^T \alpha v / s_i(x))$

 $s_i(x + \alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$

החוחר	10 Karmarkars Algorithm	6. Jul. 2018
UUU Harald Räcke		249/554

Damped Newton Method

$$\begin{bmatrix}
\text{For } x \ge 0 \\
\frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x))
\end{bmatrix}$$

$$\le -\sum_i \frac{w_i^2}{\sigma^2} (\alpha \sigma + \log(1 - \alpha \sigma))$$

$$= -\frac{1}{\sigma^2} \|v\|_{H_x}^2 (\alpha \sigma + \log(1 - \alpha \sigma))$$

Damped Newton Iteration:

In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{\mathsf{nt}})} \Delta x_{\mathsf{nt}}$$

¹This means that in the above expressions we choose $\alpha = \frac{1}{1+\alpha}$ and $\nu = \Delta x_{nt}$. Note that it wouldn't make sense to choose lpha larger than 1 as this would mean that our real target ' $(x + \Delta x_{nt})$ is inside the polytope but we overshoot and go further than this target.

2	
Δx_{nt}) Δx_{nt}	

6. Jul. 2018

251/554

Damped Newton Method $= (tc^T + \sum_i a_i^T / s_i(x)) \alpha v$ $= tc^T \alpha v + \sum_i \alpha w_i$ Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then Note that $||w|| = ||v||_{H_x}$. $f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$ $= -\sum_{i} (\alpha w_i + \log(1 - \alpha w_i))$ $\leq -\sum_{w_i>0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w_i<0} \frac{\alpha^2 w_i^2}{2}$ $\leq -\sum_{w>0} \frac{w_i^2}{\sigma^2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right) + \frac{(\alpha \sigma)^2}{2} \sum_{w>0} \frac{w_i^2}{\sigma^2}$ For $|x| < 1, x \le 0$: $x + \log(1-x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots \ge -\frac{x^2}{2} = -\frac{y^2}{2}\frac{x^2}{y^2}$

 $\nabla f_t(x)^T \alpha v$

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

For $|x| < 1, 0 < x \le y$: $x + \log(1-x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots = \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^2x}{3} - \frac{y^2x^2}{4} - \dots \right)$

 $\geq \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^3}{3} - \frac{y^4}{4} - \dots \right) = \frac{x^2}{y^2} \left(y + \log(1 - y) \right)$

 $\lambda_t(x) - \log(1 + \lambda_t(x))$

Proof: The decrease in cost is

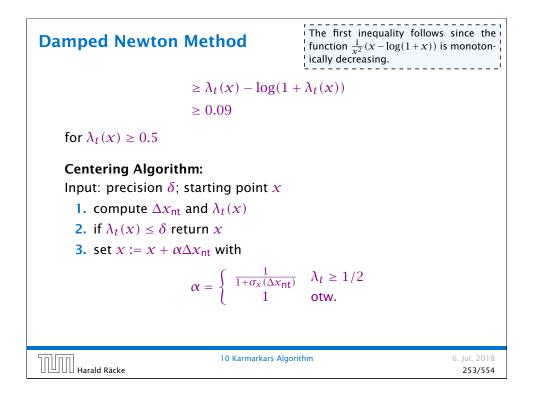
$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x}^2 (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\alpha}$ and $\nu = \Delta x_{nt}$ gives

$$\begin{split} \frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \bigg(\frac{\sigma}{1+\sigma} + \log\left(1-\frac{\sigma}{1+\sigma}\right)\bigg) \\ &= \frac{\lambda_t(x)^2}{\sigma^2} \Big(\sigma - \log(1+\sigma)\Big) \end{split}$$

With $v = \Delta x_{\rm nt}$ we have $\|w\|_2 = \|v\|_{H_x} = \lambda_t(x)$; further recall that $\sigma = \|w\|_{\infty}$; hence $\sigma \le \lambda_t(x)$.

10 Karmarkars Algorithm



How to get close to analytic center? Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point. We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

Centering

Lemma 56

The centering algorithm starting at x_0 reaches a point with $\lambda_t(x) \le \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.09} + \mathcal{O}(\log \log(1/\delta))$$

iterations.

This can be very, very slow...

Harald Räcke

6. Jul. 2018 254/554

Lemma [without proof] The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = det(M)$.

10 Karmarkars Algorithm

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^T x_B - c^T x_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}})$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t \approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^T x$ is at most $n2^M 2^L$, where $M \leq L$ is the encoding length of the largest entry in \bar{c} .

Harald Räcke

6. Jul. 2018 255/554

How to get close to analytic center?

Start at x_0 .

Note that an entry in \hat{c} fulfills $|\hat{c}_i| \le 2^{2L}$. This holds since the slack in every constraint at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient is the vector of inverse slacks.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Choose $\hat{c} := -\nabla \phi(x)$.

Let x_c denote the point that minimizes

$t \cdot c^T x + \phi(x)$

(i.e., same value for t but different c, hence, different central path).

How to get close to analytic center?

Clearly,

 $t \cdot \hat{c}^T \boldsymbol{x}_{\hat{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\hat{c}}) \leq t \cdot \hat{c}^T \boldsymbol{x}_{\boldsymbol{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\boldsymbol{c}})$

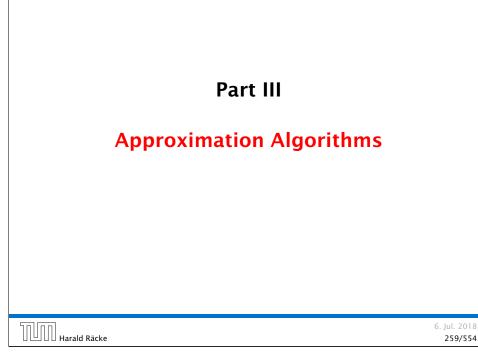
The difference between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$\begin{aligned} t \boldsymbol{c}^T \boldsymbol{x}_{\hat{c}} + \boldsymbol{\phi}(\boldsymbol{x}_{\hat{c}}) - t \boldsymbol{c}^T \boldsymbol{x}_c - \boldsymbol{\phi}(\boldsymbol{x}_c) \\ &\leq t (\boldsymbol{c}^T \boldsymbol{x}_{\hat{c}} + \hat{\boldsymbol{c}}^T \boldsymbol{x}_c - \hat{\boldsymbol{c}}^T \boldsymbol{x}_{\hat{c}} - \boldsymbol{c}^T \boldsymbol{x}_c) \\ &\leq 4t n 2^{3L} \end{aligned}$$

For $t = 1/2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $ilde{\mathcal{O}}(m^3)$ time.



There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Definition 57

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

	11 Introduction to Approximation	6. Jul. 2018
UUU Harald Räcke		261/554

Definition 58

An optimization problem $P = (\mathcal{I}, \text{sol}, m, \text{goal})$ is in **NPO** if

- $x \in \mathcal{I}$ can be decided in polynomial time
- $y \in sol(\mathcal{I})$ can be verified in polynomial time
- m can be computed in polynomial time
- ▶ goal \in {min, max}

In other words: the decision problem is there a solution y with m(x, y) at most/at least z is in NP.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Harald Räcke	11 Introduction to Approximation	6. Jul. 2018
UUU Harald Räcke		262/554

- ► *x* is problem instance
- y is candidate solution
- $m^*(x)$ cost/profit of an optimal solution

Definition 59 (Performance Ratio)

$$R(x, y) := \max\left\{\frac{m(x, y)}{m^*(x)}, \frac{m^*(x)}{m(x, y)}\right\}$$

6. Jul. 2018 263/554

Definition 60 (r-approximation)

An algorithm A is an r-approximation algorithm iff

$\forall x \in \mathcal{I} : R(x, A(x)) \leq r$,

and A runs in polynomial time.

Jul. 2018 265/554

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Definition 61 (PTAS)

A PTAS for a problem *P* from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon > 0$ and produces a solution \mathcal{Y} for x with

$R(x, y) \leq 1 + \epsilon$.

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

Harald Räcke

11 Introduction to Approximation

6. Jul. 2018 266/554

Definition 62 (FPTAS)

An FPTAS for a problem *P* from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon > 0$ and produces a solution \mathcal{Y} for x with

$R(x, y) \leq 1 + \epsilon$.

The running time is polynomial in |x| and $1/\epsilon$.

approximation with arbitrary good factor... fast!

6. Jul. 2018 267/554

Problems that have an FPTAS

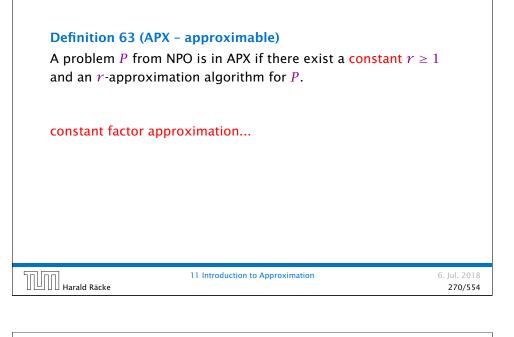
KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Harald Räcke	11 Introduction to Approximation	6. Jul. 2018 269/554

Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.



Problems with polylogarithmic approximation guarantees

- Set Cover
- Minimum Multicut
- Sparsest Cut
- Minimum Bisection

There is an *r*-approximation with $r \leq O(\log^{c}(|x|))$ for some constant *c*.

Note that only for some of the above problem a matching lower bound is known.

6. Jul. 2018 271/554

There are really difficult problems!

Theorem 64

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph *G* with *n* nodes unless P = NP.

Note that an *n*-approximation is trivial.

Harald Räcke	11 Introduction to Approximation	

Class APX not important in practise.

Instead of saying problem *P* is in APX one says problem *P* admits a 4-approximation.

One only says that a problem is APX-hard.

There are weird problems! Asymmetric *k*-Center admits an $O(\log^* n)$ -approximation.

There is no $o(\log^* n)$ -approximation to Asymmetric *k*-Center unless $NP \subseteq DTIME(n^{\log \log \log n})$.

Harald Räcke

11 Introduction to Approximation

6. Jul. 2018 274/554

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

6. Jul. 2018 275/554

6. Jul. 2018

273/554

Definition 65

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 66

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

12 Integer Programs 6. Jul. 20 Harald Räcke 277/5

Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the *i*-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

 $\forall u \in U \exists i \in I : u \in S_i$ (every element is covered)

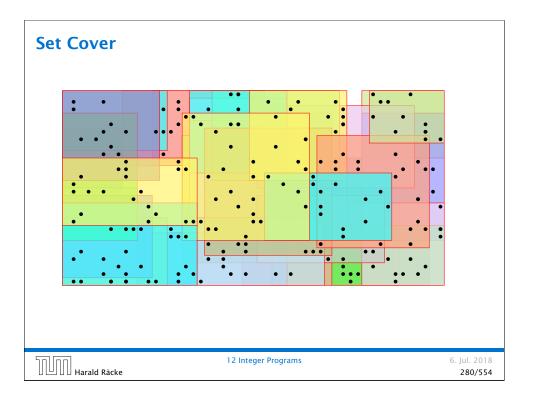
and

 $\sum w_i$ is minimized. i∈I

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

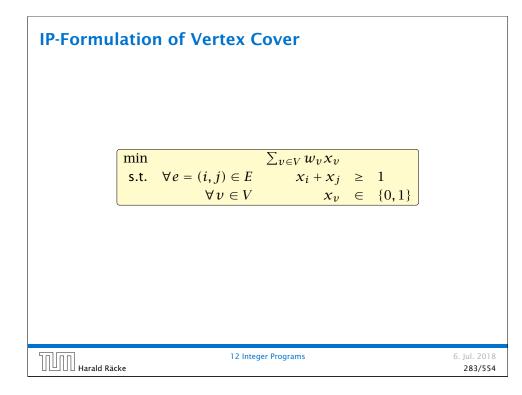
החוחר	12 Integer Programs	6. Jul. 2018
🛛 🕒 🗋 Harald Räcke		278/554



12 Integer Programs

6. Jul. 2018 279/554

IP-Formul	atior	n of Set Cove	r			
	min s.t.	$orall u \in U$ $orall i \in \{1, \dots, k\}$ $orall i \in \{1, \dots, k\}$	x_i	\geq	1	
Harald Räck	ĸe	12 Integ	er Programs			6. Jul. 2018 281/554



Vertex Cover

 Π

Given a graph G = (V, E) and a weight w_v for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

6. Jul. 2018 282/554

Harald Räcke	12 Integer Programs

<text><equation-block><equation-block><text>

Maximum Independent Set

Given a graph G = (V, E), and a weight w_v for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

max		$\sum_{v \in V} w_v x_v$		
s.t.	$\forall e = (i, j) \in E$	$x_i + x_j$	\leq	1
	$\forall \nu \in V$	x_v	\in	$\{0,1\}$

	12 Integer Programs	6. Jul. 2018
🛛 🕒 🛛 Harald Räcke		285/554

Relaxations

Harald Räcke

Definition 67

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

12 Integer Programs

Knapsack

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold *K*. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most *K* such that the profit is maximized.

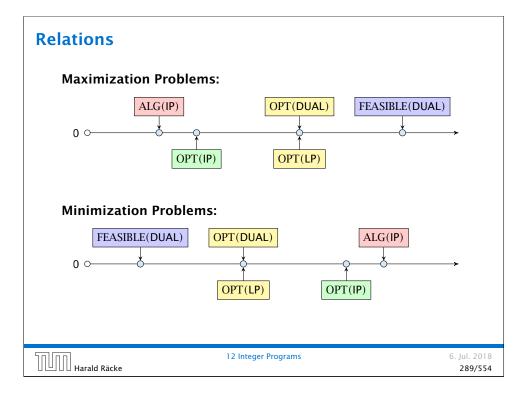
max s.t.		$\frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} w_i x_i}$	≤	K
	$\forall i \in \{1, \ldots, n\}$	x_i	\in	$\{0, 1\}$

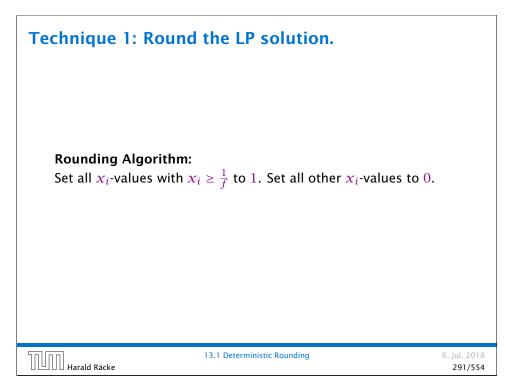
החוחר	12 Integer Programs	6. Jul. 2018
🛛 🕒 🖯 Harald Räcke		286/554

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

6. Jul. 2018

287/554





Technique 1: Round the LP solution.

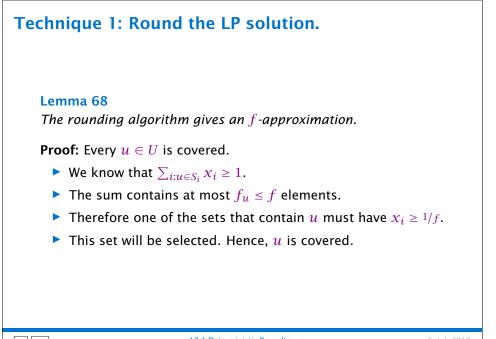
We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

min		$\sum_{i=1}^k w_i x_i$		
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	\geq	1
	$\forall i \in \{1, \dots, k\}$	x_i	\in	[0,1]

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

החוחר	13.1 Deterministic Rounding	6. Jul. 2018
Harald Räcke		290/554

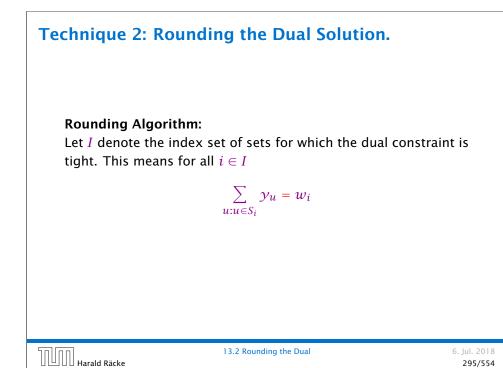


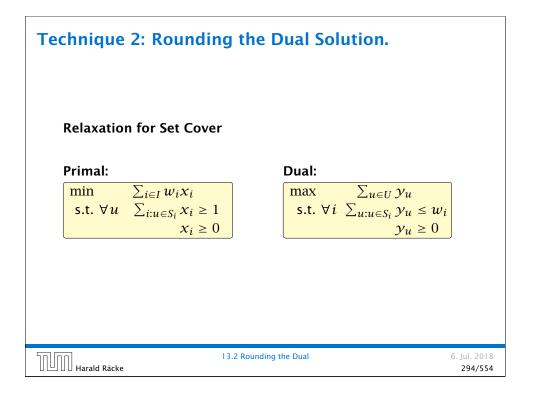
Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \operatorname{cost}(x)$$
$$\le f \cdot \operatorname{OPT} .$$

החוחר	13.1 Deterministic Rounding	6. Jul. 2018
Harald Räcke		6. Jul. 2018 293/554





Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Harald Räcke

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u:u \in S_i} y_u$$
$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_{u} f_u y_u$$
$$\leq f \sum_{u} y_u$$
$$\leq f \operatorname{cost}(x^*)$$
$$\leq f \cdot \operatorname{OPT}$$

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

6. Jul. 2018 **299/554** Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

 $I\subseteq I'$.

This means I' is never better than I.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_i .

Harald Räcke	13.2 Rounding the Dual	6. Jul. 2018 298/554
		230,331

Technique	3: The Primal Dual Method	
Algorit	.hm 1 PrimalDual	
1: <i>y</i> ←	- 0	
2: <i>I</i> ←	\emptyset ile exists $u \notin \bigcup_{i \in I} S_i$ do	
4:	increase dual variable y_u until constraint for some	
	new set S_ℓ becomes tight	-
5:	$I \leftarrow I \cup \{\ell\}$	
		_
	12.2 Drimal Dual Tachainna	6. Jul. 2018
Harald Räcke	13.3 Primal Dual Technique	300/554

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy	
1: $I \leftarrow \emptyset$	
2: $\hat{S}_j \leftarrow S_j$ for all j	
3: while I not a set of	cover do
4: $\ell \leftarrow \arg \min_{j:}$	$\hat{S}_j \neq 0 \; \frac{w_j}{ \hat{S}_j }$
5: $I \leftarrow I \cup \{\ell\}$	
6: $\hat{S}_j \leftarrow \hat{S}_j - S_\ell$	for all <i>j</i>

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Harald Räcke	13.4 Greedy	6. Jul. 2018
UUU Harald Räcke		301/554

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

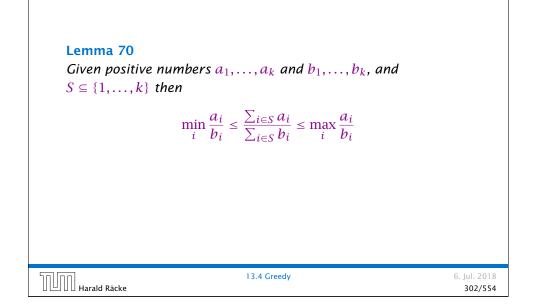
In the ℓ -th iteration

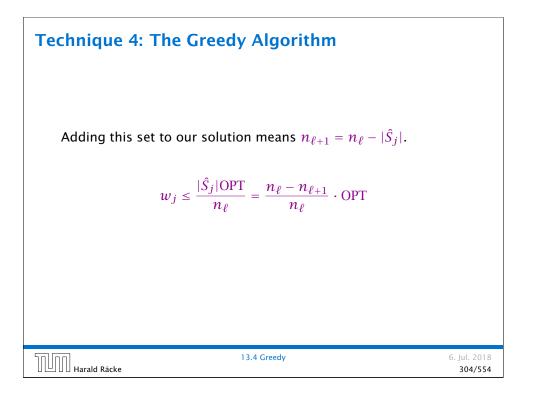
 $\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \le \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \le \frac{\text{OPT}}{n_{\ell}}$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Technique 4: The Greedy Algorithm





6. Jul. 2018 303/554

Technique 4: The Greedy Algorithm

$$\sum_{j \in I} w_j \leq \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\leq \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$= \text{OPT} \sum_{i=1}^n \frac{1}{i}$$

$$= H_n \cdot \text{OPT} \leq \text{OPT}(\ln n + 1) .$$
13.4 Gredy
6. Jul. 2018
305/554

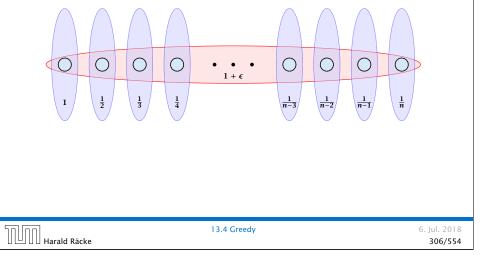
Technique 5: Randomized Rounding

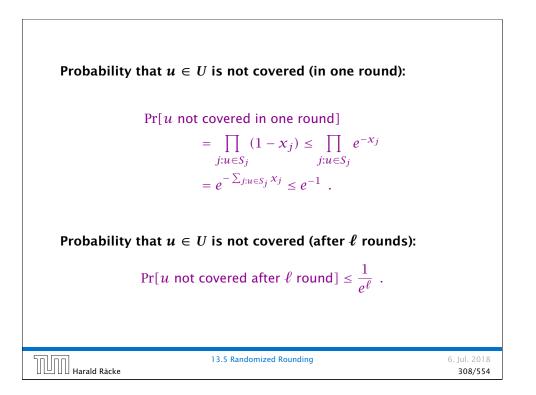
One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all *j*).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

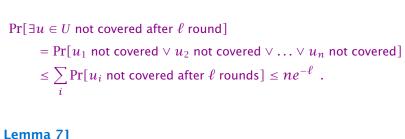
Technique 4: The Greedy Algorithm A tight example:





6. Jul. 2018 307/554

305/554



```
With high probability O(\log n) rounds suffice.
```

With high probability:

For any constant α the number of rounds is at most $O(\log n)$ with probability at least $1 - n^{-\alpha}$.

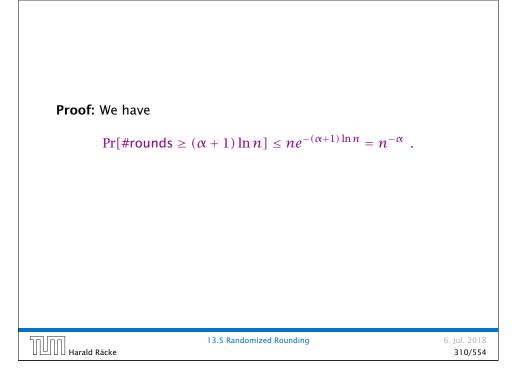
חחווחר	Harald Räcke
	Harald Räcke

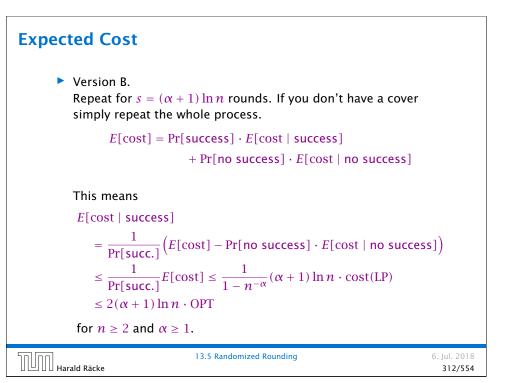
13.5 Randomized Rounding

6. Jul. 2018

309/554

Expected Cost • Version A. Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u. $E[cost] \le (\alpha+1) \ln n \cdot cost(LP) + (n \cdot OPT)n^{-\alpha} = O(\ln n) \cdot OPT$



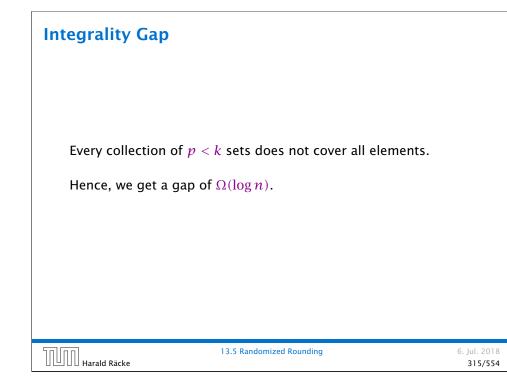


Randomized rounding gives an $O(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 72 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\operatorname{poly}(\log n)}$).

Harald Räcke	13.5 Randomized Rounding	6. Jul. 2018 313/554



Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- ▶ $n = 2^k 1$
- Elements are all vectors \vec{x} over GF[2] of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

 $S_{\vec{y}} := \{ \vec{x} \mid \vec{x}^T \vec{y} = 1 \}$

• each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets

•
$$x_i = \frac{1}{2^{k-1}} = \frac{2}{n+1}$$
 is fractional solution.

	13.5 Randomized Rounding	6. Jul. 2018
UUU Harald Räcke		314/554

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

Harald Räcke	14.1 Local Search	6

Lower Bounds on the Solution
The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$. Therefore, $C_{\max}^{*} \ge \frac{1}{m} \sum_{j} p_{j}$
14.1 Local Search 6. Jul. 2018 Harald Räcke 319/554

Lower Bounds on the Solution

Let for a given schedule C_j denote the finishing time of machine j, and let C_{\max} be the makespan.

Let C^*_{max} denote the makespan of an optimal solution.

Clearly

 $C_{\max}^* \ge \max_i p_j$

as the longest job needs to be scheduled somewhere.

Harald Räcke

. lul. 2018

317/554

14.1 Local Search

6. Jul. 2018 318/554

<section-header><text><text><text><text><page-footer>

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

החוחר	14.1 Local Search	6. Jul. 2018
UUU Harald Räcke		6. Jul. 2018 321/554

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ} .

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C^*_{\max}$.

During the first interval $[0, S_{\ell}]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_\ell \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

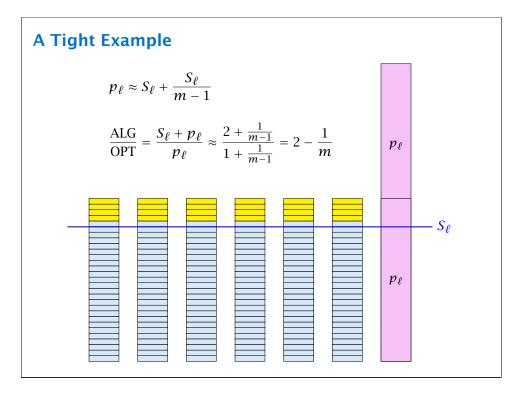
Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Local Search Analysis

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

[مد] [مد]	14.1 Local Search	6. Jul. 2018
🛛 🕒 🛛 🖓 Harald Räcke		322/554



Harald Räcke

14.1 Local Search

6. Jul. 2018 323/554

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

Harald Räcke	14.2 Greedy	6. Jul. 2018 325/554

Proof:

- Let p₁ ≥ · · · ≥ p_n denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If p_n ≤ C^{*}_{max}/3 the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$

Hence, $p_n > C_{\max}^*/3$.

- This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- > For such instances Longest-Processing-Time-First is optimal.

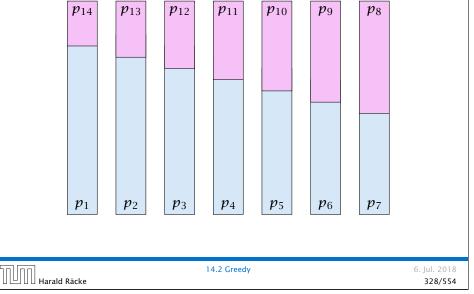
A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

5000	14.2 Greedy	6. Jul. 2018
Harald Räcke		326/554

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.



- We can assume that one machine schedules p₁ and p_n (the largest and smallest job).
- If not assume wlog. that p₁ is scheduled on machine A and p_n on machine B.
- Let *p_A* and *p_B* be the other job scheduled on *A* and *B*, respectively.
- *p*₁ + *p*_n ≤ *p*₁ + *p*_A and *p*_A + *p*_B ≤ *p*₁ + *p*_A, hence scheduling *p*₁ and *p*_n on one machine and *p*_A and *p*_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

Harald Räcke	14.2 Greedy	6. Jul. 2018 329/554

15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1, \ldots, n\}$, where the *i*-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1, \ldots, n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

	max s.t.	$\forall i \in \{1, \dots, n\}$	$\frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} w_i x_i}$	≤ ∈	W {0,1}	
		15.1 Kr	napsack			6. Jul. 2018
Harald Räck	e	13.1 14				331/554

Tight Example

- ▶ 2m + 1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*

15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack
1: $A(1) \leftarrow [(0,0), (p_1, w_1)]$
2: for $j \leftarrow 2$ to n do
3: $A(j) \leftarrow A(j-1)$
4: for each $(p, w) \in A(j-1)$ do
5: if $w + w_j \le W$ then
6: $add (p + p_j, w + w_j) \text{ to } A(j)$
7: remove dominated pairs from $A(j)$
8: return $\max_{(p,w)\in A(n)} p$

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

Harald Räcke

15 Rounding Data + Dynamic Programming

Definition 74

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

. החוחר	15.1 Knapsack	6. Jul. 2018
UUUU Harald Räcke		333/554

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT} .$$
15.1 Knapsack

15 Rounding Data + Dynamic Programming

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\Big(n\sum_i p'_i\Big) = \mathcal{O}\Big(n\sum_i \Big\lfloor \frac{p_i}{\epsilon M/n}\Big\rfloor\Big) \le \mathcal{O}\Big(\frac{n^3}{\epsilon}\Big) \ .$$

50,00	15.1 Knapsack	6. Jul. 2018
Harald Räcke		334/554

Scheduling Revisited The previous analysis of the scheduling algorithm gave a makespan of $\frac{1}{m} \sum_{j \neq \ell} p_j + p_\ell$ where ℓ is the last job to complete. Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

6. Jul. 2018

335/554

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

 $p_j \le \frac{1}{km} \sum_i p_i$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

Harald Räcke
manufa mache

15.2 Scheduling Revisited

Hence we get a schedule of length at most

 $\left(1+\frac{1}{k}\right)C_{\max}^*$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

15.2 Scheduling Revisited

6. Jul. 2018 339/554

6. Jul. 2018

337/554

We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$p_{\ell} \leq \sum_{j} p_j / (mk)$$

which is at most C_{\max}^*/k .

 15.2 Scheduling Revisited
 6. Jul. 2018

 Harald Räcke
 338/554

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \ge \frac{1}{m} \sum_{j} p_{j}$).

We partition the jobs into long jobs and short jobs:

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

Harald Räcke	15.2 Scheduling Revisited	

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$T + \frac{T}{k} \leq \left(1 + \frac{1}{k}\right)T \ .$

Harald Räcke

15.2 Scheduling Revisited

6. Jul. 2018 343/554

341/554

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

Harald Räcke

15.2 Scheduling Revisited

6. Jul. 2018 342/554

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

Let $OPT(n_1, ..., n_{k^2})$ be the number of machines that are required to schedule input vector $(n_1, ..., n_{k^2})$ with Makespan at most T.

If $OPT(n_1, \ldots, n_{k^2}) \le m$ we can schedule the input.

We have

 $OPT(n_1,\ldots,n_{k^2})$

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0\\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \operatorname{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

```
Hence, the running time is roughly (k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}.
```

Harald Räcke	15.2 Scheduling Revisited	6. Jul. 2018 345/554

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

 $\operatorname{ALG} \le \left(1 + \frac{1}{k}\right)\operatorname{OPT} \le \operatorname{OPT} + \frac{1}{2}$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

Harald Räcke

6. Jul. 2018 347/554 We can turn this into a PTAS by choosing $k = \lceil 1/\epsilon \rceil$ and using binary search. This gives a running time that is exponential in $1/\epsilon$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 76

There is no FPTAS for problems that are strongly NP-hard.

Harald Räcke

15.2 Scheduling Revisited

6. Jul. 2018 346/554

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

$OPT(n_1,\ldots,n_A)$

$$= \begin{cases} 0 & (n_1, \dots, n_A) = 0 \\ 1 + \min_{(s_1, \dots, s_A) \in C} OPT(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where *B* is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

 $1 > s_1 \ge \cdots \ge s_n > 0$.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 77

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Harald Räcke

15.3 Bin Packing

Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1 + \epsilon)$ OPT + c for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Bin Packing

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

15.3 Bin Packing	6. Jul. 2018 350/554
	330/334

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

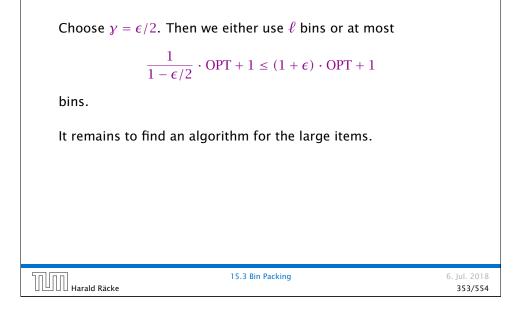
Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$ bins, where $SIZE(I) = \sum_i s_i$ is the sum of all item sizes.

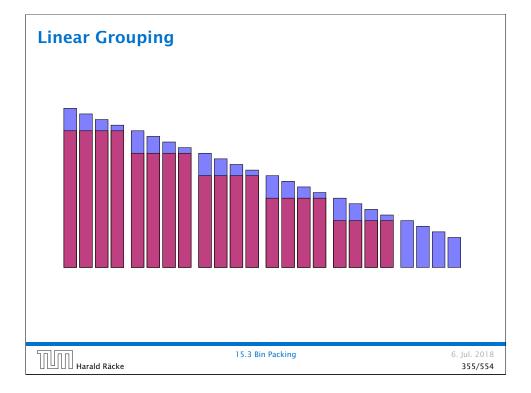
- ► If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, r(1 y) ≤ SIZE(I) where r is the number of nearly-full bins.
- This gives the lemma.

6. Jul. 2018 351/554

6. Jul. 2018

349/554





Bin Packing

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

החוחר	15.3 Bin Packing	6. Jul. 2018
Harald Räcke		354/554

Lemma 80 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 1:

- Any bin packing for *I* gives a bin packing for *I*' as follows.
- Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- ▶ ...

Lemma 81 OPT $(I') \le OPT(I) \le OPT(I') + k$

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

▶ ...

Harald Räcke	15.3 Bin Packing	6. Jul. 2018 357/554

Can we do better?

]][][]] Harald Räcke

In the following we show how to obtain a solution where the number of bins is only

OPT(I) + 0	$\mathcal{O}(\log^2(\mathrm{SIZE}(I)))$.
------------	---

Note that this is usually better than a guarantee of

$(1+\epsilon)\operatorname{OPT}(I)+1$.

15.4 Advanced Rounding for Bin Packing

Assume that our instance does not contain pieces smaller than $\epsilon/2$. Then SIZE(I) $\geq \epsilon n/2$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (note that $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

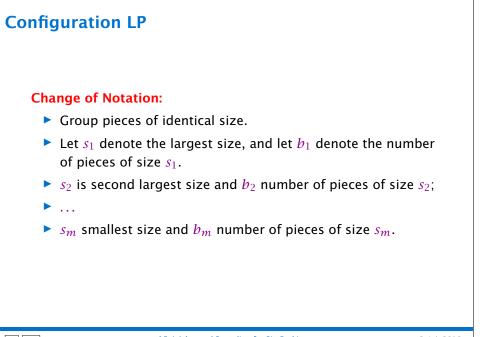
Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

• running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.



6. Jul. 2018

359/554

Configuration LP

A possible packing of a bin can be described by an *m*-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

 $\sum_{i} t_i \cdot s_i \leq 1 \; .$

We call a vector that fulfills the above constraint a configuration.

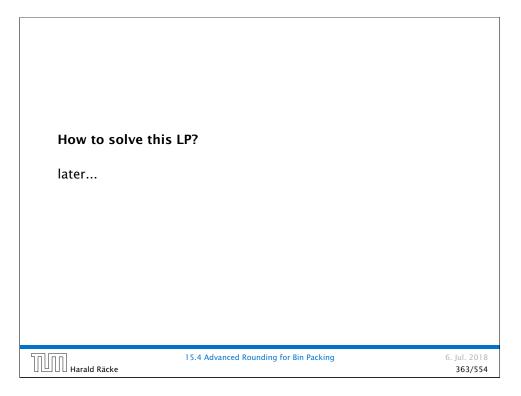
Harald Räcke	15.4 Advanced Rounding for Bin Packing	6. Jul. 2018
UUU Harald Räcke		361/554

Conti	guration	ΙΡ
Com	guiation	

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

	min s.t.	$\forall i \in \{1 \dots m\}$ $\forall j \in \{1, \dots, N\}$ $\forall j \in \{1, \dots, N\}$	$\frac{\sum_{j=1}^N x_j}{\sum_{j=1}^N T_{ji} x_j}$	≥	b _i	
	_	$\forall j \in \{1, \dots, N\} \\ \forall j \in \{1, \dots, N\}$	$egin{array}{c} x_j \ x_j \end{array}$	≥ integral	0	
Harald R	äcke	15.4 Advanced Ro	ounding for Bin Packin	g		6. Jul. 2018 362/554



We can assume that each item has size at least 1/SIZE(I).

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G₁ is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G₂,..., G_{r-1}.
- Only the size of items in the last group G_γ may sum up to less than 2.

החוחר	15.4 Advanced Rounding for Bin Packing	6. Jul. 2018
Harald Räcke		365/554

Lemma 82

The number of different sizes in I' is at most SIZE(I)/2.

- Each group that survives (recall that G₁ and G_r are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in I'.

Harmonic Grouping

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- Observe that $n_i \ge n_{i-1}$.

MM		
	Harald	Räcke

15.4 Advanced Rounding for Bin Packing

6. Jul. 2018 366/554

Lemma 83

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} .
- It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only $3/n_i$.

Summing over all *i* that have n_i > n_{i-1} gives a bound of at most

 n_{r-1}
 3

 $\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \ .$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

15.4 Advanced Rounding for Bin Packing

6. Jul. 2018 367/554

Algorithm 1 BinPack

- 1: if SIZE(I) < 10 then
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $O(\log(SIZE(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

15.4 Advanced Roun	ding for Bin Packing 6. Jul. 2018 369/554

Analysis

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mbox{OPT}_{\mbox{LP}}$ many bins.

Pieces of type 1 are packed into at most

$\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

many bins where L is the number of recursion levels.

6. Jul. 2018 371/554

Analysis

$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT_{LP}(I') ≤ OPT_{LP}(I)
- $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $x_j \lfloor x_j \rfloor$ is feasible solution for I_2 .

Harald Räcke

15.4 Advanced Rounding for Bin Packing

```
6. Jul. 2018
370/554
```

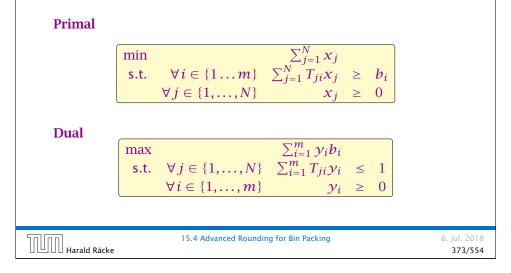
Analysis

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $O(\log(SIZE(I_{original})))$ in total.

- The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (≤ SIZE(I)/2).
- ► The total size of items in I_2 can be at most $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .



Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal'

min		$(1+\epsilon')\sum_{j=1}^N x_j$		
s.t.		$\sum_{j=1}^{N} T_{ji} x_j$	\geq	b_i
	$\forall j \in \{1, \dots, N\}$			0

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_j = (T_{j1}, \ldots, T_{jm})$ that

▶ is feasible, i.e.,

 $\sum_{i=1}^m T_{ji} \cdot s_i \leq 1$,

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.

Harald Räcke	15.4 Advanced Rounding for Bin Packing	6. Jul. 2018
🛛 🕒 🗋 Harald Räcke		374/554

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$OPT \le z \le (1 + \epsilon')OPT$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')OPT$.
- We can compute the corresponding solution in polytime.

This gives that overall we need at most

 $(1 + \epsilon')$ OPT_{LP} $(I) + O(\log^2(SIZE(I)))$

bins.

We can choose $\epsilon' = \frac{1}{OPT}$ as $OPT \le \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

Harald Räcke	15.4 Advanced Rounding for Bin Packing	6. Jul. 2018 377/554

Lemma 85 For $0 \le \delta \le 1$ we have that $\left(\frac{e^{\delta}}{(1+\delta)^1}\right)$ and

 $\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}} \right)^U \le e^{-U\delta^2/3}$ $\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}} \right)^L \le e^{-L\delta^2/2}$

Harald Räcke	16.1 Chernoff Bounds	6. Jul. 2018 379/554

Lemma 84 (Chernoff Bounds)

Let $X_1, ..., X_n$ be *n* independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L ,$$

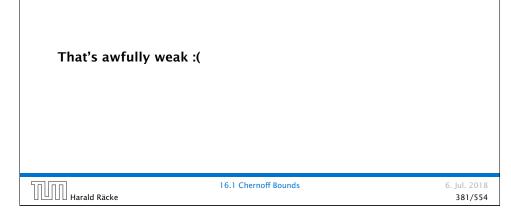
Harald Räcke	16.1 Chernoff Bounds	6. Jul. 2018 378/554
Harald Racke		378/55

Markovs Ineq	-	
	om variable taking non-negative values	-
Then		
	$\Pr[X \ge a] \le \mathbb{E}[X]/a$	
Trivial!		

Proof of Chernoff Bounds

Hence:

$$\Pr[X \ge (1+\delta)U] \le \frac{\mathbb{E}[X]}{(1+\delta)U} \approx \frac{1}{1+\delta}$$



Proof of Chernoff Bounds
$$E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right] = E\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}E\left[e^{tX_{i}}\right]$$
 $E\left[e^{tX_{i}}\right] = (1 - p_{i}) + p_{i}e^{t} = 1 + p_{i}(e^{t} - 1) \le e^{p_{i}(e^{t} - 1)}$ $\prod_{i}E\left[e^{tX_{i}}\right] \le \prod_{i}e^{p_{i}(e^{t} - 1)} = e^{\sum p_{i}(e^{t} - 1)} = e^{(e^{t} - 1)U}$ 16.1 Chernoff Bounds6. Jul. 2018
383/554

Proof of Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all *i*.

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Now, we apply Markov:

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathrm{E}[e^{tX}]}{e^{t(1+\delta)U}} \ .$$

This may be a lot better (!?)

החוחר	16.1 Chernoff Bounds	6. Jul. 2018
UUU Harald Räcke		382/554

Now, we apply Markov:

$$Pr[X \ge (1 + \delta)U] = Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

$$\leq \frac{E[e^{tX}]}{e^{t(1+\delta)U}} \le \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}} \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
We choose $t = \ln(1 + \delta)$.
We choose $t = \ln(1 + \delta)$.

Lemma 86
For
$$0 \le \delta \le 1$$
 we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Harald Räcke	16.1 Chernoff Bounds	6. Jul. 2018 385/554

 $f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$

A convex function ($f^{\prime\prime}(\delta)\geq 0)$ on an interval takes maximum at the boundaries.

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

$$f(0) = 0 \text{ and } f(1) = -\ln(2) + 2/3 < 0$$

Show:

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

Take logarithms:

$$U(\delta - (1 + \delta)\ln(1 + \delta)) \le -U\delta^2/3$$

True for $\delta = 0$. Divide by *U* and take derivatives:

 $-\ln(1+\delta) \le -2\delta/3$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

Harald Räcke	16.1 Chernoff Bounds	6. Jul. 2018
Harald Räcke		386/554

```
For \delta \ge 1 we show

\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta/3}
Take logarithms:

U(\delta - (1+\delta)\ln(1+\delta)) \le -U\delta/3
```

True for $\delta = 0$. Divide by *U* and take derivatives:

 $-\ln(1+\delta) \le -1/3 \iff \ln(1+\delta) \ge 1/3$ (true)

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

Harald Räcke

Show:

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Take logarithms:

$$L(-\delta - (1 - \delta)\ln(1 - \delta)) \le -L\delta^2/2$$

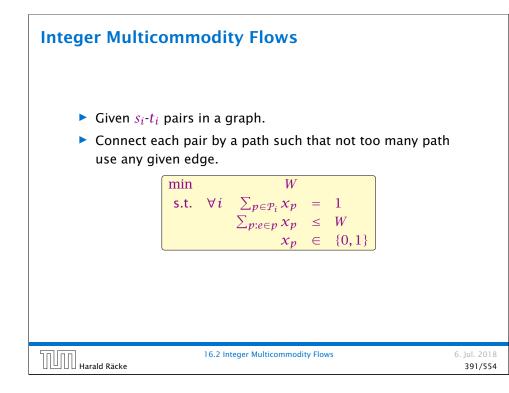
True for $\delta = 0$. Divide by *L* and take derivatives:

 $\ln(1-\delta) \le -\delta$

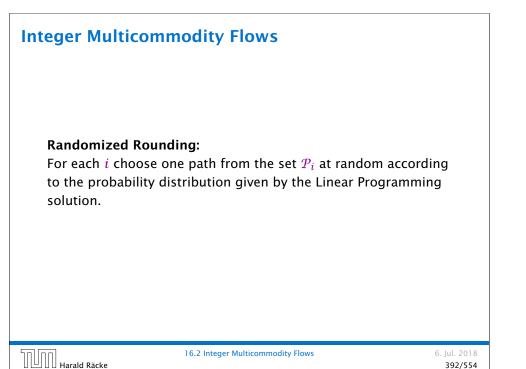
Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

Harald Räcke	16.1 Chernoff Bounds	6. Jul. 2018
UUU Harald Räcke		389/554



	$\ln(1-\delta) \le -\delta$	
True for $\delta = 0$. Tak	e derivatives:	
	$-\frac{1}{1-\delta} \leq -1$	
This holds for $0 \le 0$	$\delta < 1.$	
Harald Räcke	16.1 Chernoff Bounds	6. Jul. 2018 390/554



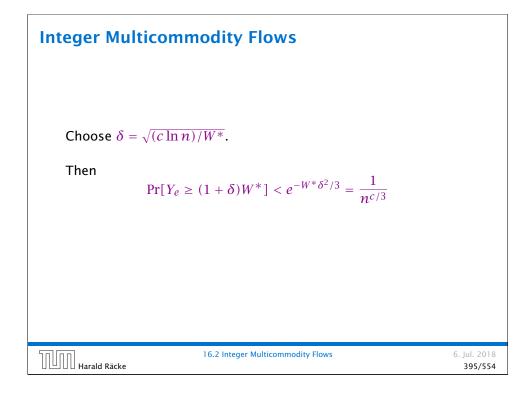
Theorem 87

If $W^* \ge c \ln n$ for some constant c, then with probability at least $1 - n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n} = \mathcal{O}(W^*).$

Theorem 88

With probability at least $1 - n^{-c/3}$ the total number of paths using any edge is at most $\mathcal{O}(W^* + c \ln n)$.

Harald Räcke	16.2 Integer Multicommodity Flows	6. Jul. 2018 393/554



Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_i \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

החוחר	16.2 Integer Multicommodity Flows	6. Jul. 2018
🛛 🕒 🛛 🖓 Harald Räcke		394/554

Probl	em definition:
► Y	\imath Boolean variables
► γ	n clauses C_1, \ldots, C_m . For example
	$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$
► N	Non-negative weight w_j for each clause C_j .
	ind an assignment of true/false to the variables sucht that he total weight of clauses that are satisfied is maximum.
ι	ne total weight of clauses that are satisfied is maximum.

16.3 MAXSAT

Terminology:

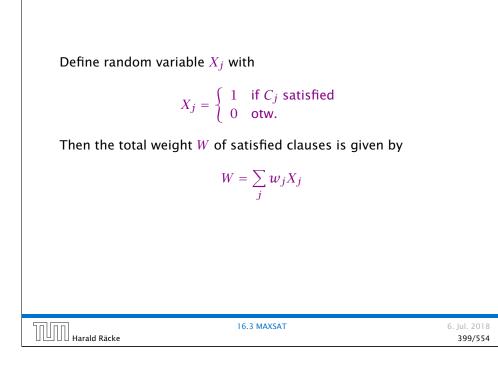
- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x̄_j is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any *i*.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

5000	16.3 MAXSAT	6. Jul. 2018
UUU Harald Räcke		397/554

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Harald Räcke	16.3 MAXSAT	6. Jul. 2018 398/554



$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

$$= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$$

$$\geq \frac{1}{2} \sum_{j} w_{j}$$

$$\geq \frac{1}{2} \text{OPT}$$

16.3 MAXSAT 6. Jul. 2018
400/554

MAXSAT: LP formulation

Let for a clause C_j, P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x}_i$$

$$\begin{array}{rcl}
\max & & \sum_{j} w_{j} z_{j} \\
\text{s.t.} & \forall j & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \geq z_{j} \\
& \forall i & y_{i} \in \{0, 1\} \\
& \forall j & z_{j} \leq 1
\end{array}$$

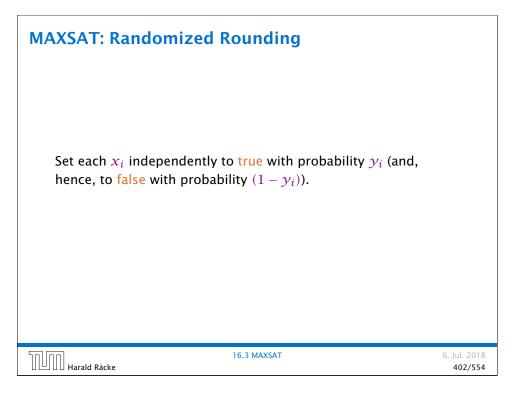
16.3 MAXSAT	6. Jul. 2018 401/554

Lemma 89 (Geometric Mean < Arithmetic Mean)

For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

החהר	16.3 MAXSAT	6. Jul. 2018
UUU Harald Räcke		403/554



Definition 90

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

 $f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$

Lemma 91

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

6. Jul. 2018

404/554

for $\lambda \in [0, 1]$.

Ш

Л	Harald Räcke	16.3 MAXSAT

$$\Pr[C_{j} \text{ not satisfied}] = \prod_{i \in P_{j}} (1 - y_{i}) \prod_{i \in N_{j}} y_{i}$$

$$\leq \left[\frac{1}{\ell_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}) + \sum_{i \in N_{j}} y_{i} \right) \right]^{\ell_{j}}$$

$$= \left[1 - \frac{1}{\ell_{j}} \left(\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \right) \right]^{\ell_{j}}$$

$$\leq \left(1 - \frac{z_{j}}{\ell_{j}} \right)^{\ell_{j}}.$$

$$16.3 \text{ MXSAT}$$

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

$$\geq \left(1 - \frac{1}{\ell_{j}}\right) \text{ OPT }.$$

$$E[W] = \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

$$\geq \left(1 - \frac{1}{\ell_{j}}\right) \text{ OPT }.$$

$$E[W] = \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

$$\geq \left(1 - \frac{1}{\ell_{j}}\right) \text{ OPT }.$$

$$E[W] = \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

$$\geq \left(1 - \frac{1}{\ell_{j}}\right) \text{ OPT }.$$

$$E[W] = \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

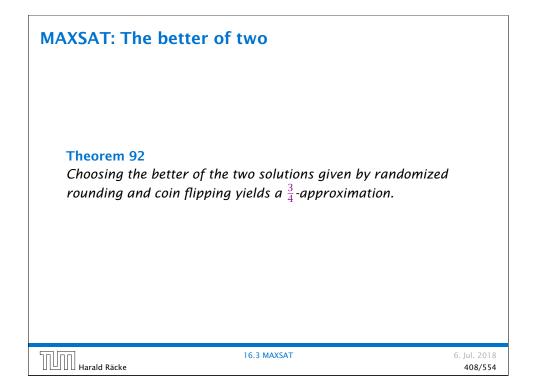
The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$
$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

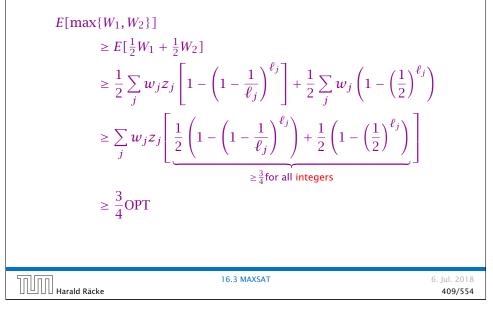
 $f''(z) = -\frac{\ell-1}{\ell} \Big[1 - \frac{z}{\ell} \Big]^{\ell-2} \le 0$ for $z \in [0,1]$. Therefore, f is concave.

 16.3 MAXSAT
 6. Jul. 2018

 Harald Räcke
 406/554



Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.



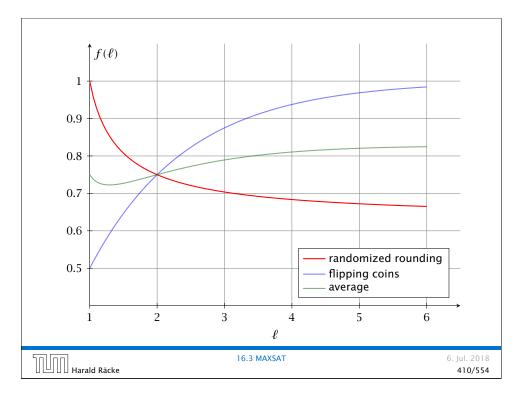
MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

```
We could define a function f : [0,1] \rightarrow [0,1] and set x_i to true with probability f(y_i).
```

16.3 MAXSAT

Harald Räcke



MAXSAT: Nonlinear Randomized Rounding

Let $f : [0,1] \rightarrow [0,1]$ be a function with

 $1 - 4^{-x} \le f(x) \le 4^{x-1}$

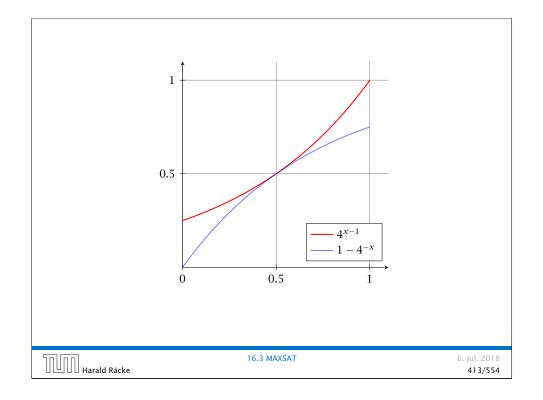
Theorem 93

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

Harald Räcke

6. Jul. 2018

411/554



The function $g(z) = 1 - 4^{-z}$ is concave on [0,1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \operatorname{OPT}$$

Harald Räcke	16.3 MAXSAT	6. Jul. 2018 415/554

$$\Pr[C_{j} \text{ not satisfied}] = \prod_{i \in P_{j}} (1 - f(y_{i})) \prod_{i \in N_{j}} f(y_{i})$$

$$\leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1}$$

$$= 4^{-(\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}))}$$

$$\leq 4^{-z_{j}}$$

$$\stackrel{16.3 \text{ MAXSAT}}{\longrightarrow} 6. \text{ Jul. 2018}$$

$$414/554$$

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 94 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

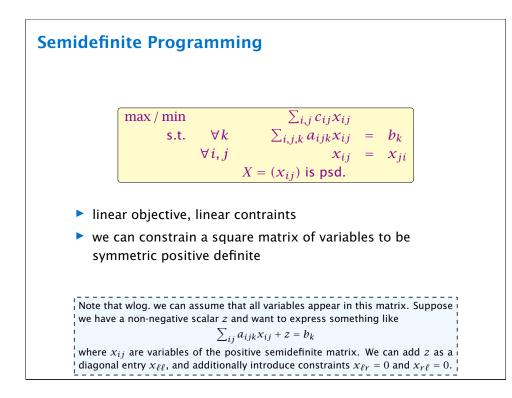
Lemma 95

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- ▶ hence, the LP has value 4.

الما المح	16.3 MAXSAT	6. Jul. 2018
UUU Harald Räcke		417/554



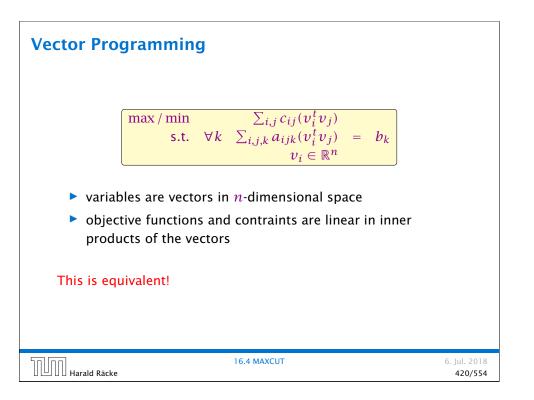
MaxCut

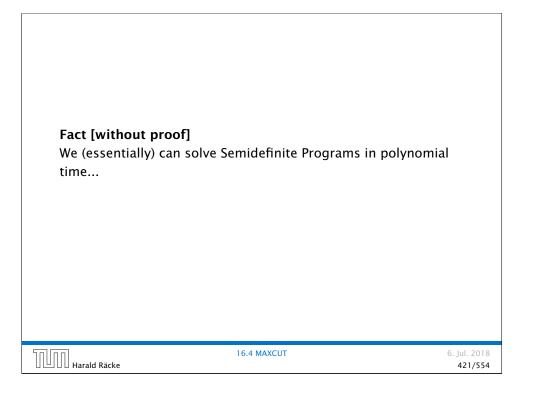
MaxCut

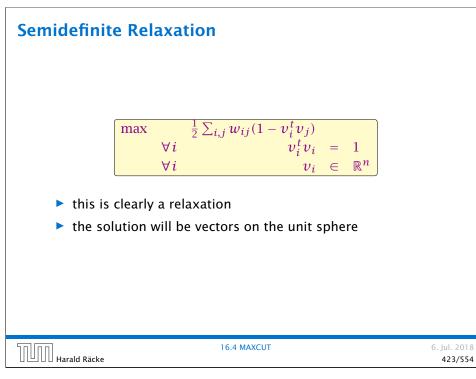
Given a weighted graph G = (V, E, w), $w(v) \ge 0$, partition the vertices into two parts. Maximize the weight of edges between the parts.

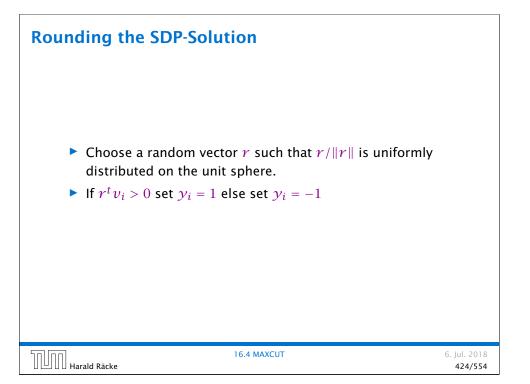
Trivial 2-approximation

Harald Räcke	16.4 MAXCUT	6. Jul. 2018 418/554









Rounding the SDP-Solution

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0, 1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, \dots, x_n)]$$

= $\frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot \dots \cdot e^{x_n^2/2} dx_1 \cdot \dots \cdot dx_n$
= $\frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + \dots + x_n^2)} dx_1 \cdot \dots \cdot dx_n$

Hence the probability for a point only depends on its distance to the origin.

Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection (r'/||r'||) is uniformly distributed on the unit circle within the hyperplane.

Harald Räcke

16.4 MAXCUT

6. Jul. 2018 427/554

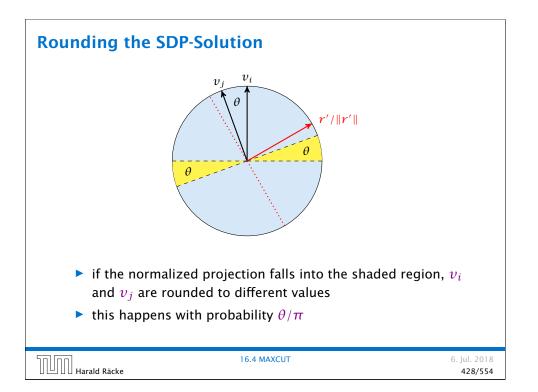
Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e_1 and e_2 are independent and are normally distributed with mean 0 and variance 1 iff e_1 and e_2 are orthogonal.

Note that this is clear if e_1 and e_2 are standard basis vectors.

החוחר	16.4 MAXCUT	6. Jul. 2018
UUU Harald Räcke		426/554



Rounding the SDP-Solution

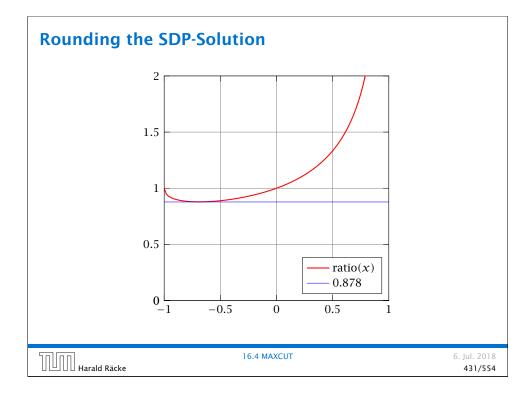
• contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\left(1-v_i^tv_j\right)$$

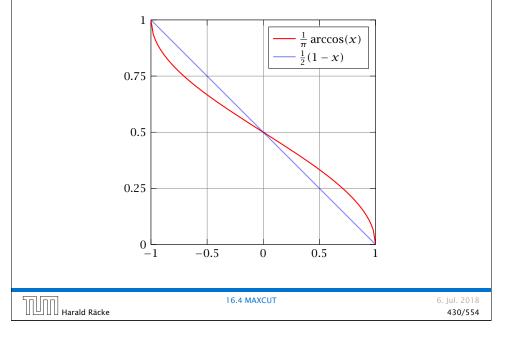
- (expected) contribution of edge (*i*, *j*) to the rounded instance w_{ij} arccos(v^t_iv_j)/π
- ratio is at most

$$\min_{x \in [-1,1]} \frac{2 \arccos(x)}{\pi(1-x)} \ge 0.878$$

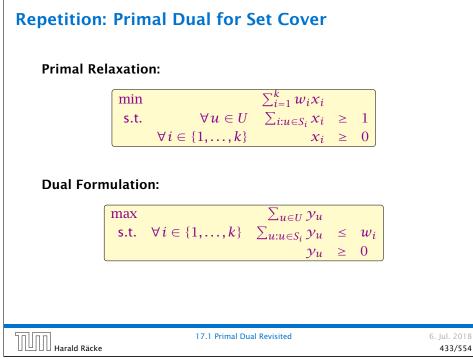
Harald Räcke	16.4 MAXCUT	6. Jul. 2018 429/554



Rounding the SDP-Solution



Rounding the SDP-Solution Theorem 96 Given the unique games conjecture, there is no α -approximation for the maximum cut problem with constant $\alpha > \min_{x \in [-1,1]} \frac{2 \arccos(x)}{\pi(1-x)}$ unless P = NP.



Repetition: Primal Dual for Set Cover

Analysis:

For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$
$$\leq f \cdot \sum_{e} y_{e} \leq f \cdot \text{OPT}$$

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set x_j = 1 (add this set to your solution).
- 17.1 Primal Dual Revisited
 6. Jul. 2018

 Harald Räcke
 434/554

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

Harald Räcke

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

 $y_e > 0 \Rightarrow \sum_{j:e \in S_j} x_j = 1$

then the solution would be optimal!!!

17.1 Primal Dual Revisited

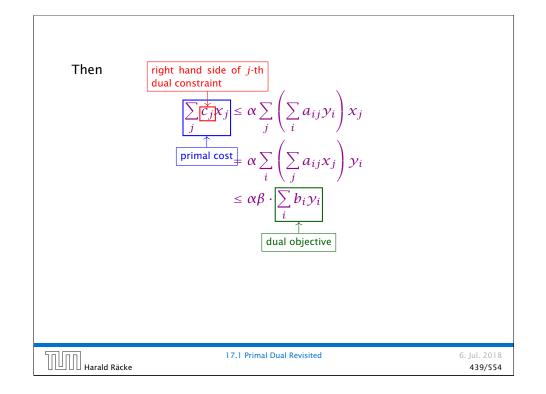
6. Jul. 2018 435/554 17.1 Primal Dual Revisited

We don't fulfill these constraint but we fulfill an approximate version:

 $y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$

This is sufficient to show that the solution is an $f\mbox{-}{\rm approximation}.$

החוהר	17.1 Primal Dual Revisited	6. Jul. 2018
UUU Harald Räcke		437/554

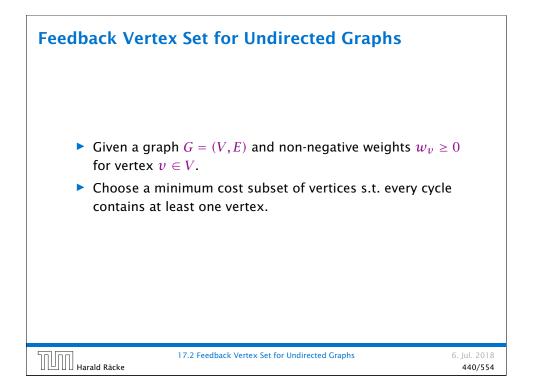


Suppose we have a primal/dual pair

min \sum	$\sum_{j} c_j x_j$	max		$\sum_i b_i y_i$		
s.t. $\forall i \sum_{j}$	$a_{ij}x_j \geq b_i$	s.t.	$\forall j$	$\sum_i a_{ij} y_i$	\leq	c_j
$\forall j$	$x_j \ge 0$		∀i	${\mathcal Y}_i$	\geq	0

and solutions that fulfill approximate slackness conditions:

	$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$ $y_{i} > 0 \Rightarrow \sum_{j} a_{ij} x_{j} \le \beta b_{i}$	
Harald Räcke	17.1 Primal Dual Revisited	6. Jul. 2018 438/554



We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- The O(log n)-approximation for Set Cover does not help us to get a good solution.

Harald Räcke	17.2 Feedback Vertex Set for Undirected Graphs	6. Jul. 2018 441/554

If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- While there is a cycle C that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.
 - set $x_v = 1$.

Let $\ensuremath{\mathbb{C}}$ denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

min		$\sum_{v} w_{v} x_{v}$		
s.t.	$\forall C \in \mathfrak{C}$	$\sum_{v \in C} x_v$	\geq	1
	$\forall v$	x_v	\geq	0

Dual Formulation:

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Harald Räcke	17.2 Feedback Vertex Set for Undirected Graphs	6. Jul. 2018 442/554

Then

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

6. Jul. 2018 443/554

Algorithm 1 FeedbackVertexSet

1: $y \leftarrow 0$

- 2: $x \leftarrow 0$
- 3: while exists cycle C in G do
- 4: increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$
- 5: $x_v = 1$
- 6: remove v from G
- 7: repeatedly remove vertices of degree 1 from *G*

6. Jul. 2018 445/554

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Theorem 97

In any graph with no vertices of degree 1, there always exists a cycle that has at most $O(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$y_C > 0 \Rightarrow |S \cap C| \le \mathcal{O}(\log n)$$
.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

Harald Räcke

17.2 Feedback Vertex Set for Undirected Graphs

6. Jul. 2018 446/554

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes $s, t \in V$ and edge-weights $c : E \to \mathbb{R}^+$ find a shortest path between s and tw.r.t. edge-weights c.

min		$\sum_{e} c(e) x_{e}$		
s.t.	$\forall S \in S$	$\sum_{e:\delta(S)} x_e$	\geq	1
	$\forall e \in E$	x_e	\in	$\{0, 1\}$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

6. Jul. 2018 447/554

Primal Dual for Shortest Path

The Dual:

$$\begin{array}{|c|c|c|c|c|c|} \hline max & & \sum_{S} y_{S} \\ s.t. & \forall e \in E & \sum_{S:e \in \delta(S)} y_{S} & \leq & c(e) \\ & \forall S \in S & y_{S} & \geq & 0 \end{array}$$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}.$

Harald Räcke	17.3 Primal Dual for Shortest Path	6. Jul. 2018 449/554

Algo	rithm 1 PrimalDualShortestPath
1: Y	$v \leftarrow 0$
2: F	$' \leftarrow \emptyset$
3: N	vhile there is no s - t path in (V, F) do
4:	Let C be the connected component of (V, F) con-
	taining s
5:	Increase $\mathcal{Y}_{\mathcal{C}}$ until there is an edge $e'\in\delta(\mathcal{C})$ such
	that $\sum_{S:e'\in\delta(S)} y_S = c(e')$.
6:	$F \leftarrow F \cup \{e'\}$
7: L	et P be an s - t path in (V, F)
8: r e	eturn P

Primal Dual for Shortest Path

We can interpret the value y_S as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

הח הר	Harald Räcke
	Harald Räcke

17.3 Primal Dual for Shortest Path

6. Jul. 2018 450/554

Lemma 98

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from δ(C) to F.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

6. Jul. 2018 451/554

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} \gamma_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot \gamma_S .$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} \gamma_{S} \le \text{OPT}$$

by weak duality.

Hence, we find a shortest path.

החוחר	17.3 Primal Dual for Shortest Path	6. Jul. 2018
🛛 🕒 🛛 🖓 Harald Räcke		453/554

Steiner Forest Problem:

|||||||| Harald Räcke

Given a graph G = (V, E), together with source-target pairs s_i, t_i , i = 1, ..., k, and a cost function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that for every $i \in \{1, ..., k\}$ there is a path between s_i and t_i only using edges in F.

 $\begin{array}{lll} \min & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \subseteq V : S \in S_{i} \text{ for some } i & \sum_{e \in \delta(S)} x_{e} \geq 1 \\ & \forall e \in E & x_{e} \in \{0, 1\} \end{array}$

17.4 Steiner Forest

Here S_i contains all sets S such that $s_i \in S$ and $t_i \notin S$.

If *S* contains two edges from *P* then there must exist a subpath P' of *P* that starts and ends with a vertex from *S* (and all interior vertices are not in *S*).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

החוחר	17.3 Primal Dual for Shortest Path	6. Jul. 2018
UUU Harald Räcke		454/554

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

6. Jul. 2018

455/554

Algorithm 1 Fir	rstTry	
1: $y \leftarrow 0$		
2: $F \leftarrow \emptyset$		
3: while not al	I s_i - t_i pairs connected in I	⁷ do
4: Let <i>C</i>	be some connected com	ponent of (V, F)
such th	at $ C \cap \{s_i, t_i\} = 1$ for sor	me <i>i</i> .
5: Increas	e y_C until there is an edge	ge $e' \in \delta(C)$ s.t.
$\sum_{S \in S_i:e'}$	$y_{\in \delta(S)} y_S = c_{e'}$	
$6: \qquad F \leftarrow F \cup$	$\cup \{e'\}$	
7: return $\bigcup_i P_i$	ţ	

Algorithm 1 SecondTry 1: $\gamma \leftarrow 0$; $F \leftarrow \emptyset$; $\ell \leftarrow 0$ 2: while not all s_i - t_i pairs connected in F do $\ell \leftarrow \ell + 1$ 3: Let \mathbb{C} be set of all connected components *C* of (V, F)4: such that $|C \cap \{s_i, t_i\}| = 1$ for some *i*. Increase γ_C for all $C \in \mathfrak{C}$ uniformly until for some edge 5: $e_{\ell} \in \delta(C'), C' \in \mathbb{C}$ s.t. $\sum_{S:e_{\ell} \in \delta(S)} y_S = c_{e_{\ell}}$ $F \leftarrow F \cup \{e_\ell\}$ 6: 7: $F' \leftarrow F$ 8: for $k \leftarrow \ell$ downto 1 do // reverse deletion **if** $F' - e_k$ is feasible solution **then** 9: remove e_k from F'10: 11: **return** *F*'

17.4 Steiner Forest

,] ∐ ∏] Harald Räcke

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S .$$

If we show that $\gamma_S > 0$ implies that $|\delta(S) \cap F| \le \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on k + 1 vertices v_0, v_1, \ldots, v_k .
- ▶ The *i*-th pair is v_0 - v_i .
- The first component C could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- The final set *F* contains all edges $\{v_0, v_i\}, i = 1, ..., k$.
- $y_{\{v_0\}} > 0$ but $|\delta(\{v_0\}) \cap F| = k$.

17.4 Steiner Forest	6. Jul. 2018
Harald Räcke	458/554

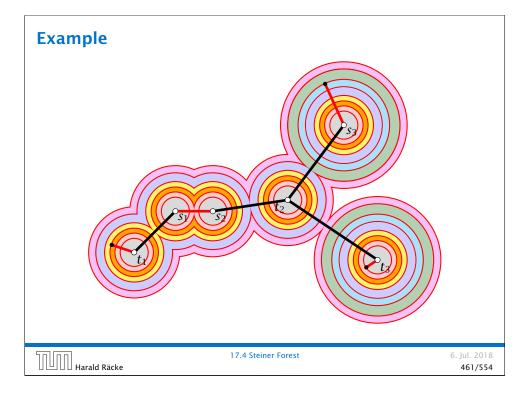
The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

```
Harald Räcke
```

6. Jul. 2018

459/554

17.4 Steiner Forest



$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |F' \cap \delta(S)| \cdot y_S .$$

We want to show that

|||||||| Harald Räcke

$$\sum_{S} |F' \cap \delta(S)| \cdot y_{S} \le 2 \sum_{S} y_{S}$$

▶ In the *i*-th iteration the increase of the left-hand side is

 $\epsilon \sum_{C \in \mathfrak{C}} |F' \cap \delta(C)|$

and the increase of the right hand side is $2\epsilon |C|$.

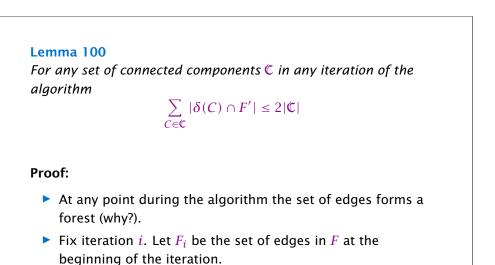
Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

Lemma 99 For any C in any iteration of the algorithm $\sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$ This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats. Proof: later...

Harald Räcke

17.4 Steiner Forest

6. Jul. 2018 462/554



- Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

17.4 Steiner Forest

6. Jul. 2018

463/554

- Contract all edges in F_i into single vertices V'.
- We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let *B* the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

 $\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathfrak{C}| = 2|R|$

Harald Räcke	17.4 Steiner Forest	6. Jul. 2018 465/554

18 Cuts & Metrics Shortest Path

S is the set of subsets that separate s from t.

The Dual:

ma	X		$\sum_{S} \gamma_{S}$		
s.1	t.	$\forall e \in E$	$\sum_{S:e\in\delta(S)} \gamma_S$	\leq	c(e)
		$\forall S \in S$	$\mathcal{Y}s$	\geq	0

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

nn	18 Cuts & Metrics	6. Jul. 2018
Harald Räcke		467/554

- Suppose that no node in *B* has degree one.
- Then

$$\sum_{\nu \in R} \deg(\nu) = \sum_{\nu \in R \cup B} \deg(\nu) - \sum_{\nu \in B} \deg(\nu)$$
$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting b ∈ B comes from H, and, hence, is necessary.
 - But this means that the cluster corresponding to b must separate a source-target pair.
 - But then it must be a red node.

5000	17.4 Steiner Forest	6. Jul. 2018
Harald Räcke		466/554

18 Cuts & Metrics Minimum Cut					
	min		$\sum_{e} c(e) x_{e}$		
	s.t.	$\forall P \in \mathcal{P}$	$\sum_{e \in P} x_e$	≥	1
		$\forall e \in E$	x_e	\in	{0,1}
${\cal P}$ is the set ${f c}$	of path	that conr	nect s and t.		
	max		$\sum_{P} y_{P}$		
	s.t.	$\forall e \in E$	$\sum_{P:e\in P} \gamma_P$	\leq	<i>c</i> (<i>e</i>)
		$\forall P \in \mathcal{P}$		\geq	0

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

Harald Räcke

18 Cuts & Metrics

18 Cuts & Metrics

Observations:

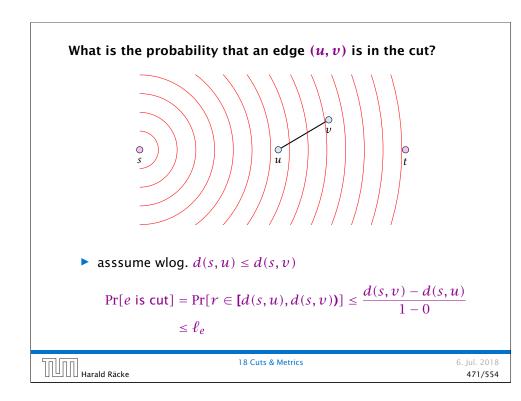
Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u, v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- We have d(u, v) = l_e for every edge e = (u, v), as otw. we could reduce l_e without affecting the distance between s and t.

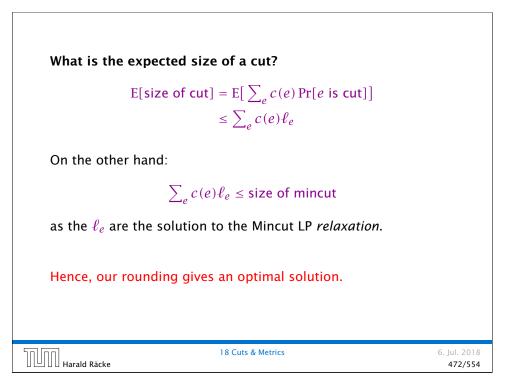
Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.

Harald Bäcke	18 Cuts & Metrics	6. Jul. 2018
🛛 🕒 🗋 Harald Räcke		469/554



How do we round the LP? • Let B(s, r) be the ball of radius r around s (w.r.t. metric d). Formally: $B = \{v \in V \mid d(s, v) \leq r\}$ • For $0 \leq r < 1$, B(s, r) is an s-t-cut. Which value of r should we choose? choose randomly!!! Formally: choose r u.a.r. (uniformly at random) from interval [0, 1)



6. Jul. 2018

470/554

Minimum Multicut:

|||||||| Harald Räcke

Given a graph G = (V, E), together with source-target pairs s_i, t_i , i = 1, ..., k, and a capacity function $c : E \to \mathbb{R}^+$ on the edges. Find a subset $F \subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G = (V, E \setminus F)$.

min		$\sum_{e} c(e) \ell_{e}$		
s.t.	$\forall P \in \mathcal{P}_i \text{ for some } i$	$\sum_{e\in P} \ell_e$	\geq	1
	$\forall e \in E$	ℓ_e	\in	{0,1}

Here \mathcal{P}_i contains all path P between s_i and t_i .

18 Cuts & Metrics	6. Jul. 2018
Harald Räcke	473/554

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- Replace the graph *G* by a graph *G'*, where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

	rithm 1 RegionGrowing (s_i, p)
	$z \leftarrow 0$
2: r	epeat
3:	flip a coin ($Pr[heads] = p$)
4:	$z \leftarrow z + 1$
5: u	I ntil heads
6: r	eturn $B(s_i, z)$

18 Cuts & Metrics

Re-using the analysis for the single-commodity case is difficult.
Pr[e is cut] ≤ ?
If for some R the balls B(s_i, R) are disjoint between different sources, we get a 1/R approximation.
However, this cannot be guaranteed.

Algo	rithm 1 Multicut(G')	
1: W	hile $\exists s_i \cdot t_i$ pair in G' do	
2:	$C \leftarrow \text{RegionGrowing}(s_i, p)$	
3:	$G' = G' \setminus C // \text{ cuts edges leaving } C$	
	eturn $B(s_i, z)$	

- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

6. Jul. 2018

475/554

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

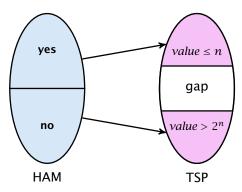
	18 Cuts & Metrics	6. Jul. 2018
UUU Harald Räcke		477/554

What is expected cost?
$$E[cutsize] = Pr[success] \cdot E[cutsize | success]$$

 $+ Pr[no success] \cdot E[cutsize | no success]$
 $E[cutsize | succ.] = \frac{E[cutsize] - Pr[no succ.] \cdot E[cutsize | no succ.]}{Pr[success]}$
 $= \frac{E[cutsize]}{Pr[success]} \le \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot 0PT \le 8 \ln k \cdot 0PT$
denomentation of the summer of

If we are not successful we simply perform a trivial k-approximation. This only increases the expected cost by at most $\frac{1}{k^2} \cdot k \text{OPT} \leq \text{OPT}/k$. Hence, our final cost is $\mathcal{O}(\ln k) \cdot \text{OPT}$ in expectation.

Gap Introducing Reduction



Reduction from Hamiltonian cycle to TSP

- instance that has Hamiltonian cycle is mapped to TSP instance with small cost
- otherwise it is mapped to instance with large cost
- \Rightarrow there is no $2^n/n$ -approximation for TSP

PCP theorem: Proof System View

Definition 102 (NP)

A language $L \in NP$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

$[x \in L]$ completeness

There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = "accept".

$[x \notin L]$ soundness

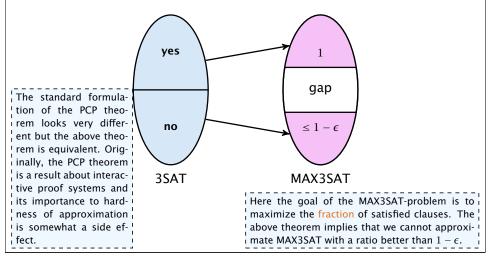
For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (**why?**).

PCP theorem: Approximation View

Theorem 101 (PCP Theorem A)

There exists $\epsilon > 0$ for which there is gap introducing reduction between 3SAT and MAX3SAT.



Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle π_{TSP} would allow M to write a TSP-instance x on a special oracle tape and obtain the answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query complexity, i.e., how often the machine queries the oracle.

For a proof string γ , π_{γ} is an oracle that upon given an index *i* returns the *i*-th character γ_i of γ .

6. Jul. 2018 483/554 Harald Räcke

6. Jul. 2018

484/554

Probabilistic Checkable Proofs ond proof-bit read by the verifier may

Non-adaptive means that e.g. the secnot depend on the value of the first bit.

Definition 103 (PCP)

A language $L \in PCP_{c(n),s(n)}(r(n),q(n))$ if there exists a polynomial time, non-adaptive, randomized verifier V, s.t.

- $[x \in L]$ There exists a proof string γ , s.t. $V^{\pi_{\gamma}}(x) =$ "accept" with probability $\geq c(n)$.
- [$x \notin L$] For any proof string γ , $V^{\pi_{\gamma}}(x) =$ "accept" with probability $\leq s(n)$.

The verifier uses at most $\mathcal{O}(r(n))$ random bits and makes at most $\mathcal{O}(q(n))$ oracle queries.

Note that the proof itself does not count towards the input of the verifier. The verifier has to write the number of a bit-position it wants to read onto a special tape, and then the corresponding bit from the proof is returned to the verifier. The proof may only be exponentially long, as a polynomial time verifier cannot address longer proofs.

Probabilistic Checkable Proofs

RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

P = PCP(0, 0)

verifier without randomness and proof access is deterministic algorithm

 \blacktriangleright PCP(log $n, 0) \subseteq$ P

we can simulate $O(\log n)$ random bits in deterministic, polynomial time

 \blacktriangleright PCP(0, log n) \subseteq P

we can simulate short proofs in polynomial time

 \blacktriangleright PCP(polv(n), 0) = coRP $\stackrel{?!}{=}$ P

by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

6. lul. 2018 487/554

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

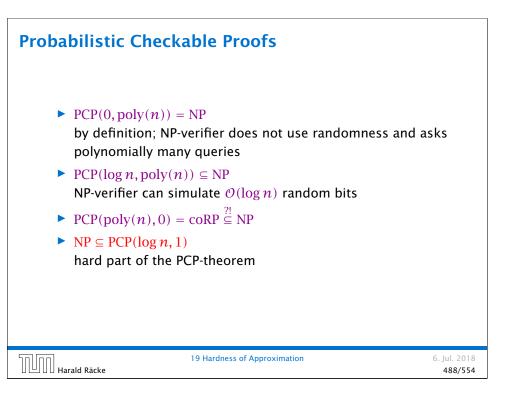
r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

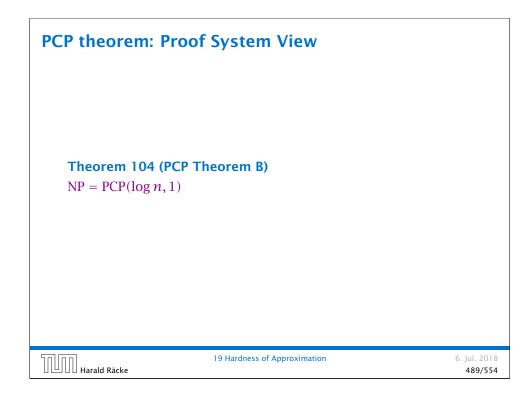
q(n) is the query complexity of the verifier.

Harald Räcke

19 Hardness of Approximation

6. lul. 2018 486/554





Probabilistic Proof for Graph NonIsomorphism

Verifier:

- choose $b \in \{0, 1\}$ at random
- take graph G_b and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If $G_0 \neq G_1$ then by using the obvious proof the verifier will always accept.

If $G_0 \equiv G_1$ a proof only accepts with probability 1/2.

- Suppose $\pi(G_0) = G_1$
- if we accept for b = 1 and permutation π_{rand} we reject for b = 0 and permutation $\pi_{rand} \circ \pi$

	Harald Räcke
--	--------------

19 Hardness of Approximation

6. Jul. 2018 491/554

Probabilistic Proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with *n*-nodes)

It expects a proof of the following form:

For any labeled *n*-node graph *H* the *H*'s bit *P*[*H*] of the proof fulfills

```
G_0 \equiv H \implies P[H] = 0

G_1 \equiv H \implies P[H] = 1

G_0, G_1 \neq H \implies P[H] = \text{arbitrary}
```

19 Hardness of Approximation Harald Räcke

```
6. Jul. 2018
490/554
```

Version $B \Rightarrow$ Version A For 3SAT there exists a verifier that uses $c \log n$ random bits, reads q = O(1) bits from the proof, has completeness 1 and soundness 1/2. Fix x and r: proof bits input $\pi_{j_1},\ldots,\pi_{j_a}$ x, rcomputation $f_{x,r}(\pi_{i_1},\ldots,\pi_{i_a})$ 0 reject accept 19 Hardness of Approximation 6. Jul. 2018 Harald Räcke 492/554

Version $B \Rightarrow$ Version A

- transform Boolean formula f_{x,r} into 3SAT formula C_{x,r} (constant size, variables are proof bits)
- consider 3SAT formula $C_X := \bigwedge_{r} C_{x,r}$
- $[x \in L]$ There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- $[x \notin L]$ For any proof string γ , at most 50% of formulas $C_{x,\gamma}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.

this means we have gap introducing reduction

	19 Hardness of Approximation	6. Jul. 2018
🛛 🕒 🛛 🖓 Harald Räcke		493/554

Version $A \Rightarrow$ Version B

- $[x \in L]$ There exists proof string y, s.t. all clauses in C_x evaluate to 1. In this case the verifier returns 1.
- $[x \notin L]$ For any proof string γ , at most a (1ϵ) -fraction of clauses in C_{χ} evaluate to 1. The verifier will reject with probability at least ϵ .

To show Theorem B we only need to run this verifier a constant number of times to push rejection probability above 1/2.

Version $A \Rightarrow$ Version B

We show: Version A \implies NP \subseteq PCP_{1,1- ϵ}(log *n*, 1).

given $L \in \mathbb{NP}$ we build a PCP-verifier for L

Verifier:

- ► 3SAT is NP-complete; map instance x for L into 3SAT instance I_x , s.t. I_x satisfiable iff $x \in L$
- map I_x to MAX3SAT instance C_x (PCP Thm. Version A)
- interpret proof as assignment to variables in C_X
- choose random clause X from C_X
- query variable assignment σ for X;
- accept if $X(\sigma)$ = true otw. reject

$NP \subseteq PCP(poly(n), 1)$

Note that this approach has strong connections to error correction codes.

PCP(poly(n), 1) means we have a potentially exponentially long proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment (say n bits)) by a code whose code-words have 2^n bits.

A wrong proof is either

- a code-word whose pre-image does not correspond to a satisfying assignment
- or, a sequence of bits that does not correspond to a code-word

We can detect both cases by querying a few positions.

The Code

 $u \in \{0,1\}^n$ (satisfying assignment)

Walsh-Hadamard Code: WH_u : $\{0,1\}^n \rightarrow \{0,1\}, x \mapsto x^T u$ (over GF(2))

The code-word for u is WH_u . We identify this function by a bit-vector of length 2^n .

Harald Räcke	19 Hardness of Approximation	

The Code

Suppose we are given access to a function $f: \{0,1\}^n \rightarrow \{0,1\}$ and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions $\{0,1\}^n$ to $\{0,1\}$ we can check

f(x + y) = f(x) + f(y)

for all 2^{2n} pairs x, y. But that's not very efficient.

החוחר	Harald Räcke
	Harald Räcke

6. Jul. 2018 499/554

6. Jul. 2018

497/554

The Code

Lemma 105 If $u \neq u'$ then WH_u and $WH_{u'}$ differ in at least 2^{n-1} bits.

Proof: Suppose that $u - u' \neq 0$. Then

 $\operatorname{WH}_{u}(x) \neq \operatorname{WH}_{u'}(x) \iff (u - u')^{T} x \neq 0$

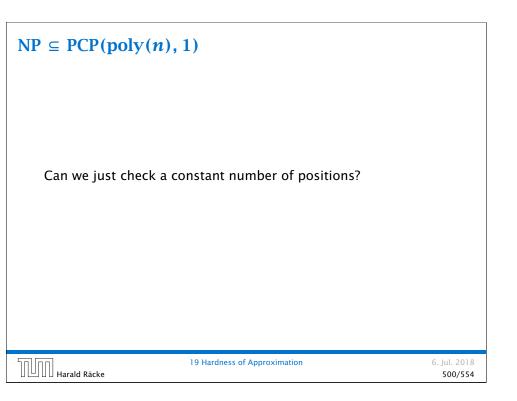
19 Hardness of Approximation

6. Jul. 2018

498/554

This holds for 2^{n-1} different vectors x.

Harald Räcke



Observe that for two codewords $\Pr_{x \in \{0,1\}^n}[f(x) = g(x)] = 1/2.$

Definition 106 Let $\rho \in [0,1]$. We say that $f, g : \{0,1\}^n \to \{0,1\}$ are ρ -close if

 $\Pr_{x \in \{0,1\}^n} [f(x) = g(x)] \ge \rho \; \; .$

Theorem 107 (proof deferred)

Let $f: \{0, 1\}^n \to \{0, 1\}$ with

 $\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2} \ .$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

19 Hardness of Approximation	6. Jul. 2018 501/554
	19 Hardness of Approximation

NP \subseteq PCP(poly(*n*), 1)

Suppose for $\delta < 1/4 f$ is $(1 - \delta)$ -close to some linear function \tilde{f} .

 \tilde{f} is uniquely defined by f, since linear functions differ on at least half their inputs.

Suppose we are given $x \in \{0,1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

 $NP \subseteq PCP(poly(n), 1)$

We need $\mathcal{O}(1/\delta)$ trials to be sure that f is $(1-\delta)$ -close to a linear function with (arbitrary) constant probability.

19 Hardness of Approximation

```
6. Jul. 2018
502/554
```

NP \subseteq PCP(poly(*n*), 1)

Suppose we are given $x \in \{0, 1\}^n$ and access to f. Can we compute $\tilde{f}(x)$ using only constant number of queries?

- **1.** Choose $x' \in \{0, 1\}^n$ u.a.r.
- **2.** Set x'' := x + x'.
- **3.** Let y' = f(x') and y'' = f(x'').
- **4.** Output y' + y''.

x' and x'' are uniformly distributed (albeit dependent). With probability at least $1 - 2\delta$ we have $f(x') = \tilde{f}(x')$ and $f(x'') = \tilde{f}(x'')$.

Then the above routine returns $\tilde{f}(x)$.

This technique is known as local decoding of the Walsh-Hadamard code.

Harald Räcke	

ากปกก

6. Jul. 2018 503/554

We show that $QUADEQ \in PCP(poly(n), 1)$. The theorem follows since any PCP-class is closed under polynomial time reductions.

QUADEQ

Given a system of quadratic equations over GF(2). Is there a solution?

Harald Räcke	19 Hardness of Approximation	6. Jul. 2018
🛛 🕒 🗋 Harald Räcke		505/554

NP \subseteq PCP(poly(*n*), 1)

Note that over $GF(2) \ x = x^2$. Therefore, we can assume that there are no terms of degree 1.

We encode an instance of QUADEQ by a matrix A that has n^2 columns; one for every pair *i*, *j*; and a right hand side vector *b*.

For an *n*-dimensional vector x we use $x \otimes x$ to denote the n^2 -dimensional vector whose i, j-th entry is $x_i x_j$.

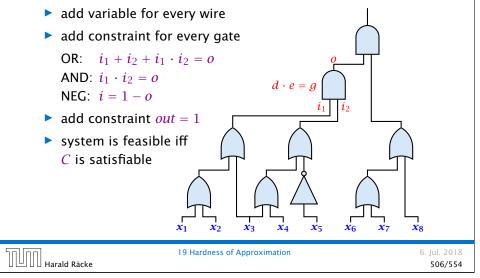
Then we are asked whether

 $A(x \otimes x) = b$

has a solution.

QUADEQ is NP-complete

• given 3SAT instance *C* represent it as Boolean circuit e.g. $C = (x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \bar{x}_5) \land (x_6 \lor x_7 \lor x_8)$



$NP \subseteq PCP(poly(n), 1)$

Let A, b be an instance of QUADEQ. Let u be a satisfying assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u and $u \otimes u$. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not correspond to codewords for vectors of the form u, and $u \otimes u$.

We also have to reject proofs that correspond to codewords for vectors of the form z, and $z \otimes z$, where z is not a satisfying assignment.

Recall that for a correct proof there is no difference between f and \tilde{f} .

Step 1. Linearity Test.

The proof contains $2^n + 2^{n^2}$ bits. This is interpreted as a pair of functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^{n^2} \to \{0,1\}$.

We do a 0.999-linearity test for both functions (requires a constant number of queries).

We also assume that for the remaining constant number of accesses WH-decoding succeeds and we recover $\tilde{f}(x)$.

Hence, our proof will only ever see \tilde{f} . To simplify notation we use f for \tilde{f} , in the following (similar for g, \tilde{g}).

$NP \subseteq PCP(poly(n), 1)$

Step 2. Verify that g encodes $u \otimes u$ where u is string encoded by f.

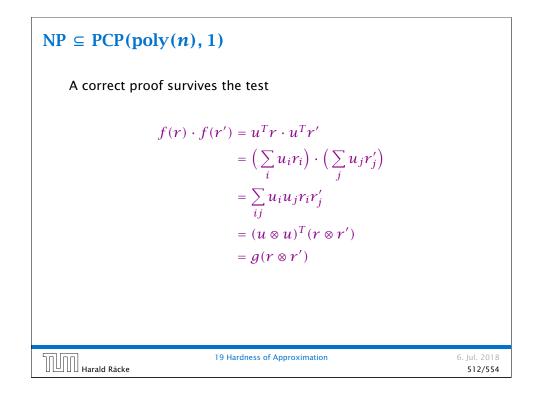
 $f(r) = u^T r$ and $g(z) = w^T z$ since f, g are linear.

- choose r, r' independently, u.a.r. from $\{0, 1\}^n$
- if $f(r)f(r') \neq g(r \otimes r')$ reject

repeat 3 times

$NP \subseteq PCP(p)$	poly(<i>n</i>), 1)	
! We need to show th	at the probability of accepting a wrong proof is small.	
This first step needs to be very cl	means that in order to fool us with reasonable prol ose to a linear function. The probability that we acc ose to linear is just a small constant.	pability a wrong proof
Similarly, if the decoding fails (for small constant error linear function f is	functions are close to linear then the probability tha <i>any</i> of the remaining accesses) is just a small const or then a malicious prover could also provide a line "rounded" by us to the corresponding linear function the sense for the prover to provide a function that	ant. If we ignore this ar function (as a near \tilde{f}). If this rounding is
Harald Bäcke	19 Hardness of Approximation	6. Jul. 201 510/55

Harald Räcke	19 Hardness of Approximation	6. Jul. 2018
Harald Räcke		510/554



6. Jul. 2018 511/554

Suppose that the proof is not correct and $w \neq u \otimes u$.

Let *W* be $n \times n$ -matrix with entries from *w*. Let *U* be matrix with $U_{ij} = u_i \cdot u_j$ (entries from $u \otimes u$).

$$g(r \otimes r') = w^T(r \otimes r') = \sum_{ij} w_{ij} r_i r'_j = r^T W r'$$

$$f(\mathbf{r})f(\mathbf{r}') = \mathbf{u}^T\mathbf{r}\cdot\mathbf{u}^T\mathbf{r}' = \mathbf{r}^T U\mathbf{r}'$$

If $U \neq W$ then $Wr' \neq Ur'$ with probability at least 1/2. Then $r^TWr' \neq r^TUr'$ with probability at least 1/4.

For a non-zero vector x and a random vector r (both with elements from GF(2)), we have $\Pr[x^T r \neq 0] = \frac{1}{2}$. This holds because the product is zero iff the number of ones in r that "hit" ones in x in the product is even.

NP \subseteq PCP(poly(*n*), 1)

We used the following theorem for the linearity test:

Theorem 107 Let $f : \{0, 1\}^n \to \{0, 1\}$ with

$$\Pr_{x,y \in \{0,1\}^n} \left[f(x) + f(y) = f(x+y) \right] \ge \rho > \frac{1}{2} \ .$$

Then there is a linear function \tilde{f} such that f and \tilde{f} are ρ -close.

NP \subseteq PCP(poly(*n*), 1)

Step 3. Verify that f encodes satisfying assignment.

We need to check

 $A_k(u \otimes u) = b_k$

where A_k is the *k*-th row of the constraint matrix. But the left hand side is just $g(A_k^T)$.

We can handle this by a single query but checking all constraints would take O(m) steps.

We compute $r^T A$, where $r \in_R \{0, 1\}^m$. If u is not a satisfying assignment then with probability 1/2 the vector r will hit an odd number of violated constraints.

In this case $r^T A(u \otimes u) \neq r^T b_k$. The left hand side is equal to $g(A^T r)$.

$NP \subseteq PCP(poly(n), 1)$

Fourier Transform over GF(2)

In the following we use $\{-1,1\}$ instead of $\{0,1\}$. We map $b \in \{0,1\}$ to $(-1)^b$.

This turns summation into multiplication.

The set of function $f : \{-1, 1\}^n \to \mathbb{R}$ form a 2^n -dimensional Hilbert space.

Harald Räcke

6. Jul. 2018 515/554

Hilbert space

- addition (f + g)(x) = f(x) + g(x)
- scalar multiplication $(\alpha f)(x) = \alpha f(x)$
- ▶ inner product $\langle f, g \rangle = E_{x \in \{-1,1\}^n}[f(x)g(x)]$ (bilinear, $\langle f, f \rangle \ge 0$, and $\langle f, f \rangle = 0 \Rightarrow f = 0$)
- completeness: any sequence x_k of vectors for which

$$\sum_{k=1}^{\infty} \|x_k\| < \infty \text{ fulfills } \left\| L - \sum_{k=1}^{N} x_k \right\| \to 0$$

for some vector L.

5000	19 Hardness of Approximation	6. Jul. 2018
UUU Harald Räcke		517/554

 $NP \subseteq PCP(poly(n), 1)$

fourier basis

For $\alpha \subseteq [n]$ define

$$\chi_{\alpha}(x) = \prod_{i \in \alpha} x_i$$

Note that

|||||||| Harald Räcke

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle = E_x \Big[\chi_{\alpha}(x) \chi_{\beta}(x) \Big] = E_x \Big[\chi_{\alpha \bigtriangleup \beta}(x) \Big] = \begin{cases} 1 & \alpha = \beta \\ 0 & \text{otw.} \end{cases}$$

This means the χ_{α} 's also define an orthonormal basis. (since we have 2^n orthonormal vectors...)

NP \subseteq PCP(poly(*n*), 1)

standard basis

$$e_{x}(y) = \begin{cases} 1 & x = y \\ 0 & \text{otw.} \end{cases}$$

Then, $f(x) = \sum_i \alpha_i e_i(x)$ where $\alpha_x = f(x)$, this means the functions e_i form a basis. This basis is orthonormal.

החוחר	Harald	.
	Harald	Räcke

19 Hardness of Approximation

6. Jul. 2018 518/554

NP ⊆ PCP(poly(*n*), 1) A function χ_{α} multiplies a set of x_i 's. Back in the GF(2)-world this means summing a set of z_i 's where $x_i = (-1)^{z_i}$. This means the function χ_{α} correspond to linear functions in the

This means the function χ_{α} correspond to linear functions in the GF(2) world.

19 Hardness of Approximation

6. Jul. 2018 519/554

We can write any function $f: \{-1, 1\}^n \to \mathbb{R}$ as

 $f = \sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}$

We call \hat{f}_{α} the α^{th} Fourier coefficient.

Lemma 108

1. $\langle f, g \rangle = \sum_{\alpha} f_{\alpha} g_{\alpha}$ 2. $\langle f, f \rangle = \sum_{\alpha} f_{\alpha}^2$

Note that for Boolean functions $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$, $\langle f, f \rangle = 1$.

 $\langle f, f \rangle = E_{\mathcal{X}}[f(x)^2] = 1$

521/554

Harald Räcke	19 Hardness of Approximation

Linearity Test

For Boolean functions $\langle f, g \rangle$ is the fraction of inputs on which f, g agree **minus** the fraction of inputs on which they disagree.

 $2\epsilon \leq \hat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = \text{agree} - \text{disagree} = 2\text{agree} - 1$

This gives that the agreement between f and χ_{α} is at least $\frac{1}{2} + \epsilon$.

החנהר	Harald Räcke
	Haraiu Kacke

6. Jul. 2018 523/554

Linearity Test

in GF(2):

We want to show that if $\Pr_{x,y}[f(x) + f(y) = f(x + y)]$ is large than f has a large agreement with a linear function.

in Hilbert space: (we will prove) Suppose $f : \{\pm 1\}^n \rightarrow \{-1, 1\}$ fulfills

$$\Pr_{x,y}[f(x)f(y) = f(x \circ y)] \ge \frac{1}{2} + \epsilon .$$

Then there is some $\alpha \subseteq [n]$, s.t. $\hat{f}_{\alpha} \ge 2\epsilon$.

	Here $x \circ y$ denotes the <i>n</i> -dimension $x_i y_i$ in position <i>i</i> (Hadamard prod Observe that we have $\chi_{\alpha}(x \circ y) =$	uct).
Harald Räcke	19 Hardness of Approximation	6. Jul. 2018 522/554

```
Linearity Test \begin{aligned} & \prod_{x,y} [f(x \circ y) = f(x)f(y)] \geq \frac{1}{2} + \epsilon \\ \\ \text{means that the fraction of inputs } x, y \text{ on which } f(x \circ y) \text{ and } f(x)f(y) \text{ agree is at least } 1/2 + \epsilon. \end{aligned}This gives \begin{aligned} & E_{x,y}[f(x \circ y)f(x)f(y)] = \text{ agreement } - \text{ disagreement } \\ & = 2\text{ agreement } - 1 \\ & \geq 2\epsilon \end{aligned}
```

$$2\epsilon \leq E_{x,y} \left[f(x \circ y)f(x)f(y) \right]$$

$$= E_{x,y} \left[\left(\sum_{\alpha} \hat{f}_{\alpha} \chi_{\alpha}(x \circ y) \right) \cdot \left(\sum_{\beta} \hat{f}_{\beta} \chi_{\beta}(x) \right) \cdot \left(\sum_{\gamma} \hat{f}_{\gamma} \chi_{\gamma}(y) \right) \right]$$

$$= E_{x,y} \left[\sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \chi_{\alpha}(x) \chi_{\alpha}(y) \chi_{\beta}(x) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha,\beta,\gamma} \hat{f}_{\alpha} \hat{f}_{\beta} \hat{f}_{\gamma} \cdot E_{x} \left[\chi_{\alpha}(x) \chi_{\beta}(x) \right] E_{y} \left[\chi_{\alpha}(y) \chi_{\gamma}(y) \right]$$

$$= \sum_{\alpha} \hat{f}_{\alpha}^{3}$$

$$\leq \max_{\alpha} \hat{f}_{\alpha} \cdot \sum_{\alpha} \hat{f}_{\alpha}^{2} = \max_{\alpha} \hat{f}_{\alpha}$$

$$= \max_{\alpha} \hat{f}_{\alpha} \cdot \sum_{\alpha} \hat{f}_{\alpha}^{2} = \max_{\alpha} \hat{f}_{\alpha}$$

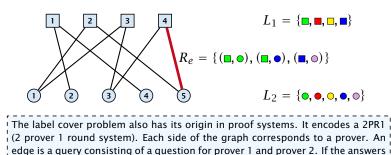
$$= \max_{\alpha} \hat{f}_{\alpha} \cdot \sum_{\alpha} \hat{f}_{\alpha}^{2} = \max_{\alpha} \hat{f}_{\alpha}$$

Label Cover

Input:

- **b** bipartite graph $G = (V_1, V_2, E)$
- label sets L_1, L_2
- ▶ for every edge $(u, v) \in E$ a relation $R_{u,v} \subseteq L_1 \times L_2$ that describe assignments that make the edge happy.
- maximize number of happy edges

are consistent the verifer accepts otw. it rejects.



Approximation Preserving Reductions

AP-reduction

- $\blacktriangleright x \in I_1 \Rightarrow f(x,r) \in I_2$
- ► $SOL_1(x) \neq \emptyset \Rightarrow SOL_2(f(x,r)) \neq \emptyset$
- $y \in SOL_2(f(x,r)) \Rightarrow g(x,y,r) \in SOL_2(x)$
- f, g are polynomial time computable
- $\blacktriangleright R_2(f(x,r),y) \le r \Rightarrow R_1(x,g(x,y,r)) \le 1 + \alpha(r-1)$

החוחר	19 Hardness of Approximation	6. Jul. 201
Harald Räcke		526/55

Label Cover

- an instance of label cover is (d₁, d₂)-regular if every vertex in L₁ has degree d₁ and every vertex in L₂ has degree d₂.
- if every vertex has the same degree d the instance is called d-regular

Minimization version:

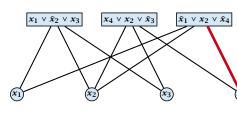
- assign a set L_x ⊆ L₁ of labels to every node x ∈ L₁ and a set L_y ⊆ L₂ to every node y ∈ L₂
- ▶ make sure that for every edge (x, y) there is $\ell_x \in L_x$ and $\ell_y \in L_y$ s.t. $(\ell_x, \ell_y) \in R_{x,y}$
- minimize $\sum_{x \in L_1} |L_x| + \sum_{y \in L_2} |L_y|$ (total labels used)

MAX E3SAT via Label Cover

instance:

$\Phi(x) = (x_1 \lor \bar{x}_2 \lor x_3) \land (x_4 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_4)$

corresponding graph:



The verifier accepts if the labelling (assignment to variables in clauses at the top + assignment to variables at the bottom) causes the clause to evaluate to true and is consistent, i.e., the assignment of e.g. x_4 at the bottom is the same as the assignment given to x_4 in the labelling of the clause.

label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause *C* is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies *C*

$$\begin{split} R &= \{ ((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), \\ &\quad ((T,T,T),T), ((T,T,F),F), ((T,F,F),F) \} \end{split}$$

MAX E3SAT via Label Cover

Lemma 110

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

Proof:

- the labeling of nodes in V₂ gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- hence at most 3m (m k) = 2m + k edges are happy

MAX E3SAT via Label Cover

Lemma 109

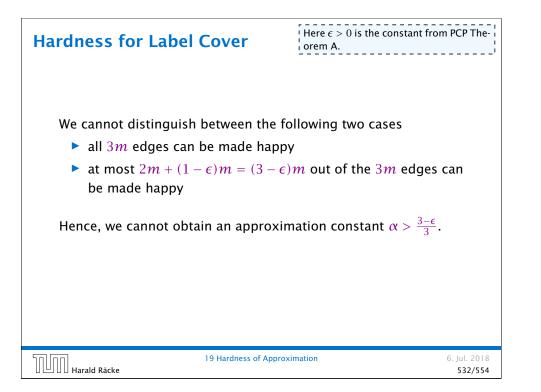
If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

Proof:

- for V₂ use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V₁ use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m - k) happy edges)

6. Jul. 2018

530/554



6. Jul. 2018 531/554

(3, 5)-regular instances

Theorem 111

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- ▶ the resulting Label Cover instance is (3, 5)-regular
- it is hard to approximate for a constant $\alpha < 1$
- given a label l₁ for x there is at most one label l₂ for y that makes edge (x, y) happy (uniqueness property)

Harald Räcke	19 Hardness of Approximation	6. Jul. 2018 533/554
		,

Regular instances	We take the (3, 5)-regular instance. We make 3 copies of every clause vertex and 5 copies of every variable vertex. Then we add edges between clause vertex and variable vertex iff the clause contains the variable. This increases the size by a constant factor. The gap instance can still either only satisfy a constant fraction of the edges or all edges. The uniqueness property still holds for the new instance.
	1 such if there is an α -approximation
	ver on 15-regular instances than P=NP.
	v_1 there is at most one label ℓ_2 for y
that makes (x, y) happ	y. (uniqueness property)
that makes (x, y) happ	y. (uniqueness property)
that makes (x, y) happ	y. (unqueness property)
that makes (x, y) happ	y. (uniqueness property)

(3, 5)-regular instances

The previous theorem can be obtained with a series of gap-preserving reductions:

- $\blacktriangleright \text{ MAX3SAT} \le \text{MAX3SAT}(\le 29)$
- MAX3SAT(≤ 29) \leq MAX3SAT(≤ 5)
- $MAX3SAT(\leq 5) \leq MAX3SAT(= 5)$
- $MAX3SAT(= 5) \le MAXE3SAT(= 5)$

Here MAX3SAT(≤ 29) is the variant of MAX3SAT in which a variable appears in at most 29 clauses. Similar for the other problems.

Harald Räcke

19 Hardness of Approximation

6. Jul. 2018 534/554

Parallel Repetition

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance probability of a wrong proof (or as here: a pair of wrong proofs) one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several rounds in parallel and hope that the acceptance probability of wrong proofs goes down.

6. Jul. 2018 535/554

Parallel Repetition

Given Label Cover instance I with $G = (V_1, V_2, E)$, label sets L_1 and L_2 we construct a new instance I':

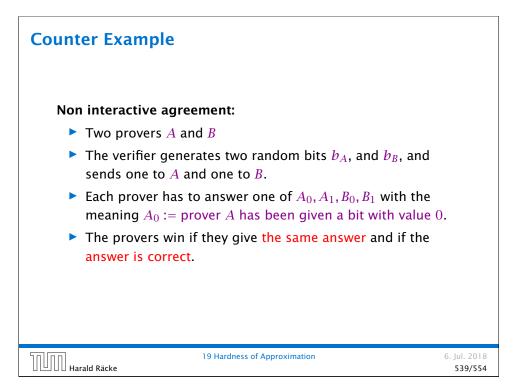
- $\blacktriangleright V_1' = V_1^k = V_1 \times \cdots \times V_1$
- $\blacktriangleright V_2' = V_2^k = V_2 \times \cdots \times V_2$
- $\blacktriangleright L_1' = L_1^k = L_1 \times \cdots \times L_1$
- $\blacktriangleright L'_2 = L^k_2 = L_2 \times \cdots \times L_2$
- $\blacktriangleright E' = E^k = E \times \cdots \times E$

An edge $((x_1, \ldots, x_k), (y_1, \ldots, y_k))$ whose end-points are labelled by $(\ell_1^x, \ldots, \ell_k^x)$ and $(\ell_1^y, \ldots, \ell_k^y)$ is happy if $(\ell_i^x, \ell_i^y) \in R_{x_i, y_i}$ for all *i*.

Harald Räcke	19 H

lardness of Approximation

6. Jul. 2018 537/554



Parallel Repetition

If I is regular than also I'.

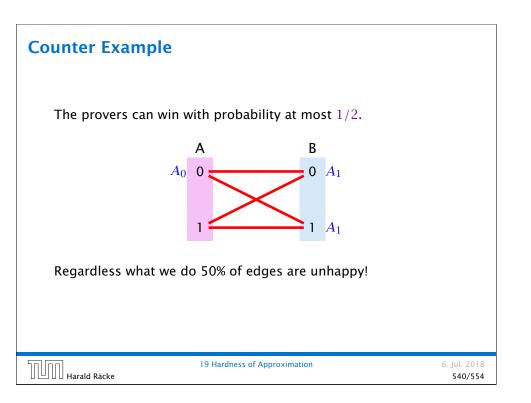
If I has the uniqueness property than also I'.

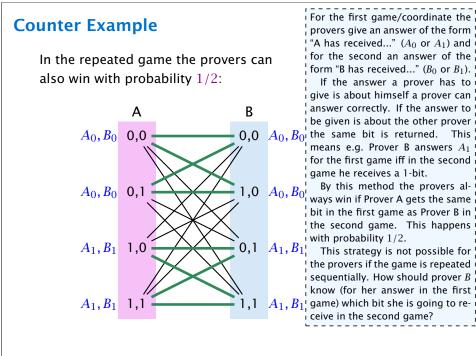
Did the gap increase?

- Suppose we have labelling ℓ₁, ℓ₂ that satisfies just an α-fraction of edges in *I*.
- We transfer this labelling to instance I': vertex (x₁,...,x_k) gets label (ℓ₁(x₁),...,ℓ₁(x_k)), vertex (y₁,...,y_k) gets label (ℓ₂(y₁),...,ℓ₂(y_k)).
- How many edges are happy? only (α|E|)^k out of |E|^k!!! (just an α^k fraction)

Does this always work?

6. Jul. 2018
0. jul. 2010
538/554





For the first game/coordinate the provers give an answer of the form "A has received..." (A_0 or A_1) and for the second an answer of the form "B has received..." (B_0 or B_1). If the answer a prover has to give is about himself a prover can answer correctly. If the answer to be given is about the other prover means e.g. Prover B answers A_1 for the first game iff in the second game he receives a 1-bit. By this method the provers albit in the first game as Prover B in the second game. This happens the provers if the game is repeated sequentially. How should prover B know (for her answer in the first

Hardness of Label Cover

Theorem 114

There are constants c > 0, $\delta < 1$ s.t. for any k we cannot distinguish regular instances for Label Cover in which either

- \triangleright OPT(I) = |E|, or
- $\blacktriangleright \text{ OPT}(I) = |E|(1-\delta)^{ck}$

unless each problem in NP has an algorithm running in time $\mathcal{O}(n^{\mathcal{O}(k)}).$

Corollary 115

There is no α -approximation for Label Cover for any constant α .

Boosting

Theorem 113

There is a constant c > 0 such if $OPT(I) = |E|(1 - \delta)$ then $OPT(I') \le |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L = |L_1| + |L_2|$ denotes total number of labels in I.

proof is highly non-trivial

Harald Räcke

19 Hardness of Approximation

6. Jul. 2018 542/554

Hardness of Set Cover

Theorem 116

Harald Räcke

There exist regular Label Cover instances s.t. we cannot distinguish whether

▶ all edges are satisfiable, or

• at most a $1/\log^2(|L_1||E|)$ -fraction is satisfiable

unless NP-problems have algorithms with running time $\mathcal{O}(n^{\mathcal{O}(\log \log n)}).$

choose $k \ge \frac{2}{c} \log_{1/(1-\delta)} (\log(|L_1||E|)) = \mathcal{O}(\log\log n)$.

Harald Räcke

19 Hardness of Approximation

6. Jul. 2018 543/554 19 Hardness of Approximation

Hardness of Set Cover

Partition System (s, t, h)

- universe U of size s
- ▶ t pairs of sets $(A_1, \bar{A}_1), \dots, (A_t, \bar{A}_t);$ $A_i \subseteq U, \bar{A}_i = U \setminus A_i$
- choosing from any h pairs only one of A_i, A_i we do not cover the whole set U

we will show later:

for any h, t with $h \le t$ there exist systems with $s = |U| \le 4t^2 2^h$

חר	ПП]	
1111		Harald	Räcke

19 Hardness of Approximation

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets S_{u,ℓ_1} 's and S_{v,ℓ_2} 's, where ℓ_1 is the label we assigned to u, and ℓ_2 the label for v. ($|V_1|+|V_2|$ sets)

For an edge (u, v), S_{v,ℓ_2} contains $\{(u, v)\} \times A_{\ell_2}$. For a happy edge S_{u,ℓ_1} contains $\{(u, v)\} \times \overline{A}_{\ell_2}$.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover with $|V_1| + |V_2|$ sets.

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is $E \times U$, where U is the universe of some partition system; ($t = |L_1|$, $h = \log(|E||L_1|)$)

for all $u \in V_1$, $\ell_1 \in L_1$

$$S_{u,\ell_1} = \{((u,v),a) \mid (u,v) \in E, a \in A_{\ell_1}\}$$

for all $v \in V_2$, $\ell_2 \in L_2$

 $S_{v,\ell_2} = \{((u,v),a) \mid (u,v) \in E, a \in \bar{A}_{\ell_1}, \text{ where } (\ell_1,\ell_2) \in R_{(u,v)}\}$

note that S_{v,ℓ_2} is well defined because of uniqueness property

5000	19 Hardness of Approximation	6. Jul. 2018
Harald Räcke		546/554

Hardness of Set Cover

Lemma 117

Given a solution to the set cover instance using at most $\frac{h}{8}(|V_1| + |V_2|)$ sets we can find a solution to the Label Cover instance satisfying at least $\frac{2}{h^2}|E|$ edges.

If the Label Cover instance cannot satisfy a $2/h^2$ -fraction we cannot cover with $\frac{h}{8}(|V_1| + |V_2|)$ sets.

Since differentiating between both cases for the Label Cover instance is hard, we have an $\mathcal{O}(h)$ -hardness for Set Cover.

6. Jul. 2018 547/554

6. Jul. 2018 545/554

Hardness of Set Cover

- n_u : number of $S_{u,i}$'s in cover
- n_v : number of $S_{v,j}$'s in cover
- ► at most 1/4 of the vertices can have n_u, n_v ≥ h/2; mark these vertices
- at least half of the edges have both end-points unmarked, as the graph is regular
- ► for such an edge (u, v) we must have chosen $S_{u,i}$ and a corresponding $S_{v,j}$, s.t. $(i, j) \in R_{u,v}$ (making (u, v) happy)
- we choose a random label for u from the (at most h/2) chosen S_{u,i}-sets and a random label for v from the (at most h/2) S_{v,i}-sets
- (u, v) gets happy with probability at least $4/h^2$
- hence we make a $2/h^2$ -fraction of edges happy

Harald Räcke	19 H

```
ardness of Approximation
```

6. Jul. 2018

549/554

Given label cover instance (V_1, V_2, E) , label sets L_1 and L_2 ;

- Set $h = \log(|E||L_1|)$ and $t = |L_1|$; Size of partition system is
 - $s = |U| = 4t^2 2^h = 4|L_1|^2 (|E||L_1|)^2 = 4|E|^2 |L_1|^4$

The size of the ground set is then

 $n = |E||U| = 4|E|^3|L_2|^4 \le (|E||L_2|)^4$

for sufficiently large |E|. Then $h \ge \frac{1}{4} \log n$.

If we get an instance where all edges are satisfiable there exists a cover of size only $|V_1| + |V_2|$.

If we find a cover of size at most $\frac{h}{8}(|V_1| + |V_2|)$ we can use this to satisfy at least a fraction of $2/h^2 \ge 1/\log^2(|E||L_1|)$ of the edges. this is not possible...

Set Cover

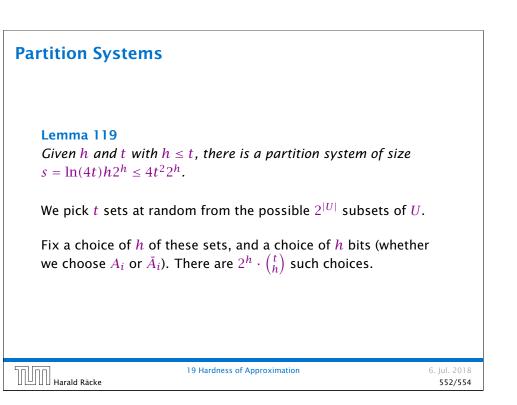
Theorem 118

There is no $\frac{1}{32}\log n$ -approximation for the unweighted Set Cover problem unless problems in NP can be solved in time $\mathcal{O}(n^{\mathcal{O}(\log \log n)})$.

Harald Räcke

19 Hardness of Approximation

6. Jul. 2018 550/554



What is the probability that a given choice covers *U*?

The probability that an element $u \in A_i$ is 1/2 (same for \overline{A}_i).

The probability that u is covered is $1 - \frac{1}{2h}$.

The probability that all u are covered is $(1 - \frac{1}{2^h})^s$

The probability that there exists a choice such that all u are covered is at most

$$\binom{t}{h} 2^h \left(1 - \frac{1}{2^h} \right)^s \le (2t)^h e^{-s/2^h} = (2t)^h \cdot e^{-h \ln(4t)} < \frac{1}{2}$$

The random process outputs a partition system with constant probability!

החוחר	19 Hardness of Approximation	6. Jul. 2018
UUI Harald Räcke		553/554

Advanced PCP Theorem

Here the verifier reads exactly three bits from the proof. Not O(3) bits.

Theorem 120

For any positive constant $\epsilon > 0$, it is the case that $NP \subseteq PCP_{1-\epsilon,1/2+\epsilon}(\log n, 3)$. Moreover, the verifier just reads three bits from the proof, and bases its decision only on the parity of these bits.

It is NP-hard to approximate a MAXE3LIN problem by a factor better than $1/2 + \delta$, for any constant δ .

It is NP-hard to approximate MAX3SAT better than $7/8 + \delta$, for any constant δ .

□ 🕒 □ □ Harald Räcke 554/554	Harald Räcke	19 Hardness of Approximation	6. Jul. 2018 554/554
------------------------------	--------------	------------------------------	-------------------------

