
Part III

Approximation Algorithms

6. Jul. 2018

Harald Räcke 259/554

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 260/554

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 260/554

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 260/554

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 260/554

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 260/554

Definition 2

An α-approximation for an optimization problem is a

polynomial-time algorithm that for all instances of the problem

produces a solution whose value is within a factor of α of the

value of an optimal solution.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 261/554

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying

heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum

solution on every instance.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 262/554

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying

heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum

solution on every instance.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 262/554

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying

heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum

solution on every instance.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 262/554

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying

heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum

solution on every instance.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 262/554

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying

heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum

solution on every instance.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 262/554

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying

heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum

solution on every instance.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 262/554

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying

heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum

solution on every instance.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 262/554

Definition 3

An optimization problem P = (I, sol,m,goal) is in NPO if

ñ x ∈ I can be decided in polynomial time

ñ y ∈ sol(I) can be verified in polynomial time

ñ m can be computed in polynomial time

ñ goal ∈ {min,max}

In other words: the decision problem is there a solution y with

m(x,y) at most/at least z is in NP.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 263/554

ñ x is problem instance

ñ y is candidate solution

ñ m∗(x) cost/profit of an optimal solution

Definition 4 (Performance Ratio)

R(x,y) :=max

{
m(x,y)
m∗(x)

,
m∗(x)
m(x,y)

}

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 264/554

Definition 5 (r -approximation)

An algorithm A is an r -approximation algorithm iff

∀x ∈ I : R(x,A(x)) ≤ r ,

and A runs in polynomial time.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 265/554

Definition 6 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as

input x ∈ I and ε > 0 and produces a solution y for x with

R(x,y) ≤ 1+ ε .

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 266/554

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule

the jobs on n machines such that the MAKESPAN is minimized.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 267/554

Definition 7 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes

as input x ∈ I and ε > 0 and produces a solution y for x with

R(x,y) ≤ 1+ ε .

The running time is polynomial in |x| and 1/ε.

approximation with arbitrary good factor... fast!

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 268/554

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a

subset of total weight at most W s.t. the profit is maximized.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 269/554

Definition 8 (APX – approximable)

A problem P from NPO is in APX if there exist a constant r ≥ 1

and an r -approximation algorithm for P .

constant factor approximation...

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 270/554

Problems that are in APX

MAXCUT. Given a graph G = (V , E); partition V into two disjoint
pieces A and B s. t. the number of edges between both pieces is
maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the

variables that satisfies the maximum number of clauses.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 271/554

Problems with polylogarithmic approximation guarantees

ñ Set Cover

ñ Minimum Multicut

ñ Sparsest Cut

ñ Minimum Bisection

There is an r -approximation with r ≤ O(logc(|x|)) for some

constant c.

Note that only for some of the above problem a matching lower

bound is known.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 272/554

There are really difficult problems!

Theorem 9

For any constant ε > 0 there does not exist an

Ω(n1−ε)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 273/554

There are really difficult problems!

Theorem 9

For any constant ε > 0 there does not exist an

Ω(n1−ε)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 273/554

There are really difficult problems!

Theorem 9

For any constant ε > 0 there does not exist an

Ω(n1−ε)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 273/554

There are weird problems!

Asymmetric k-Center admits an O(log∗n)-approximation.

There is no o(log∗n)-approximation to Asymmetric k-Center

unless NP ⊆ DTIME(nlog log logn).

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 274/554

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P
admits a 4-approximation.

One only says that a problem is APX-hard.

11 Introduction to Approximation 6. Jul. 2018

Harald Räcke 275/554

A crucial ingredient for the design and analysis of approximation

algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization

problems).

Therefore Linear Programs or Integer Linear Programs play a

vital role in the design of many approximation algorithms.

12 Integer Programs 6. Jul. 2018

Harald Räcke 276/554

A crucial ingredient for the design and analysis of approximation

algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization

problems).

Therefore Linear Programs or Integer Linear Programs play a

vital role in the design of many approximation algorithms.

12 Integer Programs 6. Jul. 2018

Harald Räcke 276/554

Definition 10

An Integer Linear Program or Integer Program is a Linear

Program in which all variables are required to be integral.

Definition 11

A Mixed Integer Program is a Linear Program in which a subset

of the variables are required to be integral.

12 Integer Programs 6. Jul. 2018

Harald Räcke 277/554

Definition 10

An Integer Linear Program or Integer Program is a Linear

Program in which all variables are required to be integral.

Definition 11

A Mixed Integer Program is a Linear Program in which a subset

of the variables are required to be integral.

12 Integer Programs 6. Jul. 2018

Harald Räcke 277/554

Many important combinatorial optimization problems can be

formulated in the form of an Integer Program.

Note that solving Integer Programs in general is

NP-complete!

12 Integer Programs 6. Jul. 2018

Harald Räcke 278/554

Many important combinatorial optimization problems can be

formulated in the form of an Integer Program.

Note that solving Integer Programs in general is

NP-complete!

12 Integer Programs 6. Jul. 2018

Harald Räcke 278/554

Set Cover

Given a ground set U , a collection of subsets S1, . . . , Sk ⊆ U ,

where the i-th subset Si has weight/cost wi. Find a collection

I ⊆ {1, . . . , k} such that

∀u ∈ U∃i ∈ I : u ∈ Si (every element is covered)

and ∑
i∈I
wi is minimized.

12 Integer Programs 6. Jul. 2018

Harald Räcke 279/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

Set Cover

12 Integer Programs 6. Jul. 2018

Harald Räcke 280/554

IP-Formulation of Set Cover

min
∑
iwixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

∀i ∈ {1, . . . , k} xi integral

12 Integer Programs 6. Jul. 2018

Harald Räcke 281/554

Vertex Cover

Given a graph G = (V , E) and a weight wv for every node. Find a

vertex subset S ⊆ V of minimum weight such that every edge is

incident to at least one vertex in S.

12 Integer Programs 6. Jul. 2018

Harald Räcke 282/554

IP-Formulation of Vertex Cover

min
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≥ 1

∀v ∈ V xv ∈ {0,1}

12 Integer Programs 6. Jul. 2018

Harald Räcke 283/554

Maximum Weighted Matching

Given a graph G = (V , E), and a weight we for every edge e ∈ E.

Find a subset of edges of maximum weight such that no vertex

is incident to more than one edge.

max
∑
e∈Ewexe

s.t. ∀v ∈ V ∑
e:v∈e xe ≤ 1

∀e ∈ E xe ∈ {0,1}

12 Integer Programs 6. Jul. 2018

Harald Räcke 284/554

Maximum Weighted Matching

Given a graph G = (V , E), and a weight we for every edge e ∈ E.

Find a subset of edges of maximum weight such that no vertex

is incident to more than one edge.

max
∑
e∈Ewexe

s.t. ∀v ∈ V ∑
e:v∈e xe ≤ 1

∀e ∈ E xe ∈ {0,1}

12 Integer Programs 6. Jul. 2018

Harald Räcke 284/554

Maximum Independent Set

Given a graph G = (V , E), and a weight wv for every node v ∈ V .

Find a subset S ⊆ V of nodes of maximum weight such that no

two vertices in S are adjacent.

max
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≤ 1

∀v ∈ V xv ∈ {0,1}

12 Integer Programs 6. Jul. 2018

Harald Räcke 285/554

Maximum Independent Set

Given a graph G = (V , E), and a weight wv for every node v ∈ V .

Find a subset S ⊆ V of nodes of maximum weight such that no

two vertices in S are adjacent.

max
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≤ 1

∀v ∈ V xv ∈ {0,1}

12 Integer Programs 6. Jul. 2018

Harald Räcke 285/554

Knapsack

Given a set of items {1, . . . , n}, where the i-th item has weight

wi and profit pi, and given a threshold K. Find a subset

I ⊆ {1, . . . , n} of items of total weight at most K such that the

profit is maximized.

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ K

∀i ∈ {1, . . . , n} xi ∈ {0,1}

12 Integer Programs 6. Jul. 2018

Harald Räcke 286/554

Knapsack

Given a set of items {1, . . . , n}, where the i-th item has weight

wi and profit pi, and given a threshold K. Find a subset

I ⊆ {1, . . . , n} of items of total weight at most K such that the

profit is maximized.

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ K

∀i ∈ {1, . . . , n} xi ∈ {0,1}

12 Integer Programs 6. Jul. 2018

Harald Räcke 286/554

Relaxations

Definition 12

A linear program LP is a relaxation of an integer program IP if

any feasible solution for IP is also feasible for LP and if the

objective values of these solutions are identical in both

programs.

We obtain a relaxation for all examples by writing xi ∈ [0,1]
instead of xi ∈ {0,1}.

12 Integer Programs 6. Jul. 2018

Harald Räcke 287/554

Relaxations

Definition 12

A linear program LP is a relaxation of an integer program IP if

any feasible solution for IP is also feasible for LP and if the

objective values of these solutions are identical in both

programs.

We obtain a relaxation for all examples by writing xi ∈ [0,1]
instead of xi ∈ {0,1}.

12 Integer Programs 6. Jul. 2018

Harald Räcke 287/554

By solving a relaxation we obtain an upper bound for a

maximization problem and a lower bound for a minimization

problem.

12 Integer Programs 6. Jul. 2018

Harald Räcke 288/554

Relations

Maximization Problems:

OPT(IP) OPT(LP)

OPT(DUAL)ALG(IP) FEASIBLE(DUAL)

0

Minimization Problems:

OPT(IP)OPT(LP)

OPT(DUAL) ALG(IP)FEASIBLE(DUAL)

0

12 Integer Programs 6. Jul. 2018

Harald Räcke 289/554

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 290/554

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 290/554

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 290/554

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all xi-values with xi ≥ 1
f to 1. Set all other xi-values to 0.

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 291/554

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 292/554

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 292/554

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 292/554

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 292/554

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 292/554

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 292/554

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 293/554

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi

≤
k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 293/554

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 293/554

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 293/554

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

13.1 Deterministic Rounding 6. Jul. 2018

Harald Räcke 293/554

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u ∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i ∑u:u∈Si yu ≤ wi
yu ≥ 0

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 294/554

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u ∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i ∑u:u∈Si yu ≤ wi
yu ≥ 0

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 294/554

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u ∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i ∑u:u∈Si yu ≤ wi
yu ≥ 0

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 294/554

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is

tight. This means for all i ∈ I∑
u:u∈Si

yu = wi

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 295/554

Technique 2: Rounding the Dual Solution.

Lemma 14

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 296/554

Technique 2: Rounding the Dual Solution.

Lemma 14

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 296/554

Technique 2: Rounding the Dual Solution.

Lemma 14

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 296/554

Technique 2: Rounding the Dual Solution.

Lemma 14

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 296/554

Technique 2: Rounding the Dual Solution.

Lemma 14

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 296/554

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi

=
∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 297/554

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 297/554

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 297/554

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 297/554

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 297/554

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 297/554

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 297/554

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .
This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 298/554

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .
This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 298/554

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .
This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 298/554

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .
This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 298/554

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .
This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

13.2 Rounding the Dual 6. Jul. 2018

Harald Räcke 298/554

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique 6. Jul. 2018

Harald Räcke 299/554

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique 6. Jul. 2018

Harald Räcke 299/554

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique 6. Jul. 2018

Harald Räcke 299/554

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique 6. Jul. 2018

Harald Räcke 299/554

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique 6. Jul. 2018

Harald Räcke 299/554

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual
1: y ← 0

2: I ← �
3: while exists u ∉

⋃
i∈I Si do

4: increase dual variable yu until constraint for some

new set S` becomes tight

5: I ← I ∪ {`}

13.3 Primal Dual Technique 6. Jul. 2018

Harald Räcke 300/554

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

1: I ← �
2: Ŝj ← Sj for all j
3: while I not a set cover do

4: ` ← arg minj:Ŝj≠0
wj
|Ŝj|

5: I ← I ∪ {`}
6: Ŝj ← Ŝj − S` for all j

In every round the Greedy algorithm takes the set that covers

remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still

uncovered elements in the set is minimized.

13.4 Greedy 6. Jul. 2018

Harald Räcke 301/554

Technique 4: The Greedy Algorithm

Lemma 15

Given positive numbers a1, . . . , ak and b1, . . . , bk, and

S ⊆ {1, . . . , k} then

min
i

ai
bi
≤
∑
i∈S ai∑
i∈S bi

≤max
i

ai
bi

13.4 Greedy 6. Jul. 2018

Harald Räcke 302/554

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 6. Jul. 2018

Harald Räcke 303/554

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 6. Jul. 2018

Harald Räcke 303/554

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 6. Jul. 2018

Harald Räcke 303/554

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 6. Jul. 2018

Harald Räcke 303/554

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 6. Jul. 2018

Harald Räcke 303/554

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 6. Jul. 2018

Harald Räcke 303/554

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 6. Jul. 2018

Harald Räcke 303/554

Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT

13.4 Greedy 6. Jul. 2018

Harald Räcke 304/554

Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT

13.4 Greedy 6. Jul. 2018

Harald Räcke 304/554

Technique 4: The Greedy Algorithm

∑
j∈I
wj

≤
s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
n∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

13.4 Greedy 6. Jul. 2018

Harald Räcke 305/554

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
n∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

13.4 Greedy 6. Jul. 2018

Harald Räcke 305/554

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
n∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

13.4 Greedy 6. Jul. 2018

Harald Räcke 305/554

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
n∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

13.4 Greedy 6. Jul. 2018

Harald Räcke 305/554

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
n∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

13.4 Greedy 6. Jul. 2018

Harald Räcke 305/554

Technique 4: The Greedy Algorithm

A tight example:

1 1
2

1
3

1
4

1 + ε

1
n−1

1
n−2

1
n−3

1
n

13.4 Greedy 6. Jul. 2018

Harald Räcke 306/554

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1−xj (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover

remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 307/554

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1−xj (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover

remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 307/554

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1−xj (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover

remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 307/554

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 308/554

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 308/554

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj)

≤
∏

j:u∈Sj
e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 308/554

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 308/554

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj

≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 308/554

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 308/554

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 308/554

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 16

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 309/554

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 16

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 309/554

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 16

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 309/554

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds]

≤ ne−` .

Lemma 16

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 309/554

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 16

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 309/554

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 16

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 309/554

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 16

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 309/554

Proof: We have

Pr[#rounds ≥ (α+ 1) lnn] ≤ ne−(α+1) lnn = n−α .

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 310/554

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost] ≤ (α+1) lnn·cost(LP)+(n·OPT)n−α = O(lnn)·OPT

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 311/554

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost]

≤ (α+1) lnn·cost(LP)+(n·OPT)n−α = O(lnn)·OPT

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 311/554

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost] ≤ (α+1) lnn·cost(LP)+(n·OPT)n−α

= O(lnn)·OPT

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 311/554

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost] ≤ (α+1) lnn·cost(LP)+(n·OPT)n−α = O(lnn)·OPT

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 311/554

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =

Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[succ.]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 312/554

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[succ.]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 312/554

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[succ.]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 312/554

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)

≤ 1
Pr[succ.]

E[cost] ≤ 1
1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 312/554

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[succ.]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 312/554

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[succ.]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 312/554

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[succ.]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 312/554

Randomized rounding gives an O(logn) approximation. The

running time is polynomial with high probability.

Theorem 17 (without proof)

There is no approximation algorithm for set cover with

approximation guarantee better than 1
2 logn unless NP has

quasi-polynomial time algorithms (algorithms with running time

2poly(logn)).

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 313/554

Randomized rounding gives an O(logn) approximation. The

running time is polynomial with high probability.

Theorem 17 (without proof)

There is no approximation algorithm for set cover with

approximation guarantee better than 1
2 logn unless NP has

quasi-polynomial time algorithms (algorithms with running time

2poly(logn)).

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 313/554

Integrality Gap

The integrality gap of the SetCover LP is Ω(logn).

ñ n = 2k − 1

ñ Elements are all vectors ~x over GF[2] of length k (excluding

zero vector).

ñ Every vector ~y defines a set as follows

S~y := {~x | ~xT ~y = 1}

ñ each set contains 2k−1 vectors; each vector is contained in

2k−1 sets

ñ xi = 1
2k−1 = 2

n+1 is fractional solution.

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 314/554

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Ω(logn).

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 315/554

Techniques:

ñ Deterministic Rounding

ñ Rounding of the Dual

ñ Primal Dual

ñ Greedy

ñ Randomized Rounding

ñ Local Search

ñ Rounding Data + Dynamic Programming

13.5 Randomized Rounding 6. Jul. 2018

Harald Räcke 316/554

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j ∈ {1, . . . , n} has processing time pj.
Schedule the jobs on m identical parallel machines such that the

Makespan (finishing time of the last job) is minimized.

min L
s.t. ∀machines i

∑
j pj · xj,i ≤ L

∀jobs j
∑
i xj,i ≥ 1

∀i, j xj,i ∈ {0,1}

Here the variable xj,i is the decision variable that describes

whether job j is assigned to machine i.

14.1 Local Search 6. Jul. 2018

Harald Räcke 317/554

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j ∈ {1, . . . , n} has processing time pj.
Schedule the jobs on m identical parallel machines such that the

Makespan (finishing time of the last job) is minimized.

min L
s.t. ∀machines i

∑
j pj · xj,i ≤ L

∀jobs j
∑
i xj,i ≥ 1

∀i, j xj,i ∈ {0,1}

Here the variable xj,i is the decision variable that describes

whether job j is assigned to machine i.

14.1 Local Search 6. Jul. 2018

Harald Räcke 317/554

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

14.1 Local Search 6. Jul. 2018

Harald Räcke 318/554

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

14.1 Local Search 6. Jul. 2018

Harald Räcke 318/554

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

14.1 Local Search 6. Jul. 2018

Harald Räcke 318/554

Lower Bounds on the Solution

The average work performed by a machine is 1
m
∑
j pj.

Therefore,

C∗max ≥
1
m

∑
j
pj

14.1 Local Search 6. Jul. 2018

Harald Räcke 319/554

Lower Bounds on the Solution

The average work performed by a machine is 1
m
∑
j pj.

Therefore,

C∗max ≥
1
m

∑
j
pj

14.1 Local Search 6. Jul. 2018

Harald Räcke 319/554

Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not

find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14.1 Local Search 6. Jul. 2018

Harald Räcke 320/554

Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not

find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14.1 Local Search 6. Jul. 2018

Harald Räcke 320/554

Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not

find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14.1 Local Search 6. Jul. 2018

Harald Räcke 320/554

Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not

find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14.1 Local Search 6. Jul. 2018

Harald Räcke 320/554

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move that reduces

the makespan, perform the switch.

REPEAT

14.1 Local Search 6. Jul. 2018

Harald Räcke 321/554

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move that reduces

the makespan, perform the switch.

REPEAT

14.1 Local Search 6. Jul. 2018

Harald Räcke 321/554

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move that reduces

the makespan, perform the switch.

REPEAT

14.1 Local Search 6. Jul. 2018

Harald Räcke 321/554

Local Search Analysis

Let ` be the job that finishes last in the produced schedule.

Let S` be its start time, and let C` be its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule

would not be locally optimal.

14.1 Local Search 6. Jul. 2018

Harald Räcke 322/554

Local Search Analysis

Let ` be the job that finishes last in the produced schedule.

Let S` be its start time, and let C` be its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule

would not be locally optimal.

14.1 Local Search 6. Jul. 2018

Harald Räcke 322/554

Local Search Analysis

Let ` be the job that finishes last in the produced schedule.

Let S` be its start time, and let C` be its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule

would not be locally optimal.

14.1 Local Search 6. Jul. 2018

Harald Räcke 322/554

Local Search Analysis

Let ` be the job that finishes last in the produced schedule.

Let S` be its start time, and let C` be its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule

would not be locally optimal.

14.1 Local Search 6. Jul. 2018

Harald Räcke 322/554

We can split the total processing time into two intervals one

from 0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1− 1
m
)p` +

1
m

∑
j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 6. Jul. 2018

Harald Räcke 323/554

We can split the total processing time into two intervals one

from 0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1− 1
m
)p` +

1
m

∑
j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 6. Jul. 2018

Harald Räcke 323/554

We can split the total processing time into two intervals one

from 0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1− 1
m
)p` +

1
m

∑
j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 6. Jul. 2018

Harald Räcke 323/554

We can split the total processing time into two intervals one

from 0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1− 1
m
)p` +

1
m

∑
j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 6. Jul. 2018

Harald Räcke 323/554

We can split the total processing time into two intervals one

from 0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1− 1
m
)p` +

1
m

∑
j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 6. Jul. 2018

Harald Räcke 323/554

We can split the total processing time into two intervals one

from 0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1− 1
m
)p` +

1
m

∑
j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 6. Jul. 2018

Harald Räcke 323/554

We can split the total processing time into two intervals one

from 0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1− 1
m
)p` +

1
m

∑
j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 6. Jul. 2018

Harald Räcke 323/554

A Tight Example

p` ≈ S` +
S`

m− 1

ALG
OPT

= S` + p`
p`

≈ 2+ 1
m−1

1+ 1
m−1

= 2− 1
m

p`

p`

S`

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill

the local optimally condition of our local search algorithm.

Hence, these also give 2-approximations.

14.2 Greedy 6. Jul. 2018

Harald Räcke 325/554

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill

the local optimally condition of our local search algorithm.

Hence, these also give 2-approximations.

14.2 Greedy 6. Jul. 2018

Harald Räcke 325/554

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill

the local optimally condition of our local search algorithm.

Hence, these also give 2-approximations.

14.2 Greedy 6. Jul. 2018

Harald Räcke 325/554

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill

the local optimally condition of our local search algorithm.

Hence, these also give 2-approximations.

14.2 Greedy 6. Jul. 2018

Harald Räcke 325/554

A Greedy Strategy

Lemma 18

If we order the list according to non-increasing processing times

the approximation guarantee of the list scheduling strategy

improves to 4/3.

14.2 Greedy 6. Jul. 2018

Harald Räcke 326/554

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle

at most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 6. Jul. 2018

Harald Räcke 327/554

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle

at most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 6. Jul. 2018

Harald Räcke 327/554

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle

at most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 6. Jul. 2018

Harald Räcke 327/554

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle

at most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 6. Jul. 2018

Harald Räcke 327/554

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle

at most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 6. Jul. 2018

Harald Räcke 327/554

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle

at most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 6. Jul. 2018

Harald Räcke 327/554

When in an optimal solution a machine can have at most 2 jobs

the optimal solution looks as follows.

p1 p2 p3 p4 p5 p6 p7

p8p9p10p11p12p13p14

14.2 Greedy 6. Jul. 2018

Harald Räcke 328/554

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

14.2 Greedy 6. Jul. 2018

Harald Räcke 329/554

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

14.2 Greedy 6. Jul. 2018

Harald Räcke 329/554

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

14.2 Greedy 6. Jul. 2018

Harald Räcke 329/554

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

14.2 Greedy 6. Jul. 2018

Harald Räcke 329/554

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

14.2 Greedy 6. Jul. 2018

Harald Räcke 329/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

14.2 Greedy 6. Jul. 2018

Harald Räcke 330/554

15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1, . . . , n}, where the i-th item has weight

wi ∈ N and profit pi ∈ N, and given a threshold W . Find a

subset I ⊆ {1, . . . , n} of items of total weight at most W such

that the profit is maximized (we can assume each wi ≤ W).

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ W

∀i ∈ {1, . . . , n} xi ∈ {0,1}

15.1 Knapsack 6. Jul. 2018

Harald Räcke 331/554

15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1, . . . , n}, where the i-th item has weight

wi ∈ N and profit pi ∈ N, and given a threshold W . Find a

subset I ⊆ {1, . . . , n} of items of total weight at most W such

that the profit is maximized (we can assume each wi ≤ W).

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ W

∀i ∈ {1, . . . , n} xi ∈ {0,1}

15.1 Knapsack 6. Jul. 2018

Harald Räcke 331/554

15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack

1: A(1)← [(0,0), (p1,w1)]
2: for j ← 2 to n do

3: A(j)← A(j − 1)
4: for each (p,w) ∈ A(j − 1) do

5: if w +wj ≤ W then

6: add (p + pj ,w +wj) to A(j)
7: remove dominated pairs from A(j)
8: return max(p,w)∈A(n) p

The running time is O(n ·min{W,P}), where P =∑i pi is the

total profit of all items. This is only pseudo-polynomial.

15.1 Knapsack 6. Jul. 2018

Harald Räcke 332/554

15 Rounding Data + Dynamic Programming

Definition 19

An algorithm is said to have pseudo-polynomial running time if

the running time is polynomial when the numerical part of the

input is encoded in unary.

15.1 Knapsack 6. Jul. 2018

Harald Räcke 333/554

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 6. Jul. 2018

Harald Räcke 334/554

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 6. Jul. 2018

Harald Räcke 334/554

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.

ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 6. Jul. 2018

Harald Räcke 334/554

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 6. Jul. 2018

Harald Räcke 334/554

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′)

= O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 6. Jul. 2018

Harald Räcke 334/554

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)

= O
(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 6. Jul. 2018

Harald Räcke 334/554

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)

≤ O
(n3

ε

)
.

15.1 Knapsack 6. Jul. 2018

Harald Räcke 334/554

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 6. Jul. 2018

Harald Räcke 334/554

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
pi

≥ µ
∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 6. Jul. 2018

Harald Räcke 335/554

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
pi ≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 6. Jul. 2018

Harald Räcke 335/554

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
pi ≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 6. Jul. 2018

Harald Räcke 335/554

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
pi ≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 6. Jul. 2018

Harald Räcke 335/554

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
pi ≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 6. Jul. 2018

Harald Räcke 335/554

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
pi ≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 6. Jul. 2018

Harald Räcke 335/554

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
pi ≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 6. Jul. 2018

Harald Räcke 335/554

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a

makespan of
1
m

∑
j≠`

pj + p`

where ` is the last job to complete.

Together with the obervation that if each pi ≥ 1
3C
∗
max then LPT is

optimal this gave a 4/3-approximation.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 336/554

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a

makespan of
1
m

∑
j≠`

pj + p`

where ` is the last job to complete.

Together with the obervation that if each pi ≥ 1
3C
∗
max then LPT is

optimal this gave a 4/3-approximation.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 336/554

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤ 1
km

∑
i pi

Idea:

1. Find the optimum Makespan for the long jobs by brute

force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 337/554

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤ 1
km

∑
i pi

Idea:

1. Find the optimum Makespan for the long jobs by brute

force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 337/554

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤ 1
km

∑
i pi

Idea:

1. Find the optimum Makespan for the long jobs by brute

force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 337/554

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤ 1
km

∑
i pi

Idea:

1. Find the optimum Makespan for the long jobs by brute

force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 337/554

We still have a cost of

1
m

∑
j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it

consists of an optimal schedule of long jobs plus a schedule for

short jobs.

If ` is a short job its length is at most

p` ≤
∑
j pj/(mk)

which is at most C∗max/k.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 338/554

We still have a cost of

1
m

∑
j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it

consists of an optimal schedule of long jobs plus a schedule for

short jobs.

If ` is a short job its length is at most

p` ≤
∑
j pj/(mk)

which is at most C∗max/k.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 338/554

We still have a cost of

1
m

∑
j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it

consists of an optimal schedule of long jobs plus a schedule for

short jobs.

If ` is a short job its length is at most

p` ≤
∑
j pj/(mk)

which is at most C∗max/k.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 338/554

Hence we get a schedule of length at most(
1+ 1

k

)
C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 20

The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 339/554

Hence we get a schedule of length at most(
1+ 1

k

)
C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 20

The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 339/554

Hence we get a schedule of length at most(
1+ 1

k

)
C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 20

The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 339/554

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 340/554

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 340/554

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 340/554

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 340/554

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 341/554

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 341/554

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 341/554

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 341/554

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at

most (
1+ 1

k

)
T .

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 342/554

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at

most (
1+ 1

k

)
T .

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 342/554

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at

most (
1+ 1

k

)
T .

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 342/554

During the second phase there always must exist a machine with

load at most T , since T is larger than the average load.

Assigning the current (short) job to such a machine gives that

the new load is at most

T + T
k
≤
(
1+ 1

k

)
T .

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 343/554

During the second phase there always must exist a machine with

load at most T , since T is larger than the average load.

Assigning the current (short) job to such a machine gives that

the new load is at most

T + T
k
≤
(
1+ 1

k

)
T .

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 343/554

Running Time for scheduling large jobs: There should not be

a job with rounded size more than T as otw. the problem

becomes trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry

describes the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There

are only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 344/554

Running Time for scheduling large jobs: There should not be

a job with rounded size more than T as otw. the problem

becomes trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry

describes the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There

are only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 344/554

Running Time for scheduling large jobs: There should not be

a job with rounded size more than T as otw. the problem

becomes trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry

describes the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There

are only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 344/554

Running Time for scheduling large jobs: There should not be

a job with rounded size more than T as otw. the problem

becomes trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry

describes the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There

are only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 344/554

Let OPT(n1, . . . , nk2) be the number of machines that are

required to schedule input vector (n1, . . . , nk2) with Makespan at

most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=

0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2)∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) Û 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 345/554

Let OPT(n1, . . . , nk2) be the number of machines that are

required to schedule input vector (n1, . . . , nk2) with Makespan at

most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=

0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2)∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) Û 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 345/554

Let OPT(n1, . . . , nk2) be the number of machines that are

required to schedule input vector (n1, . . . , nk2) with Makespan at

most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=

0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2)∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) Û 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 345/554

Let OPT(n1, . . . , nk2) be the number of machines that are

required to schedule input vector (n1, . . . , nk2) with Makespan at

most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=

0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2)∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) Û 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 345/554

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 21

There is no FPTAS for problems that are strongly NP-hard.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 346/554

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 21

There is no FPTAS for problems that are strongly NP-hard.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 346/554

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 21

There is no FPTAS for problems that are strongly NP-hard.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 346/554

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 21

There is no FPTAS for problems that are strongly NP-hard.

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 346/554

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 347/554

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 347/554

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 347/554

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 347/554

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 347/554

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 347/554

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 6. Jul. 2018

Harald Räcke 347/554

More General
Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=

0 (n1, . . . , nA) = 0
1+ min

(s1,...,sA)∈C
OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) Û 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)AnA) because the dynamic

programming table has just nA entries.

More General
Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=

0 (n1, . . . , nA) = 0
1+ min

(s1,...,sA)∈C
OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) Û 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)AnA) because the dynamic

programming table has just nA entries.

More General
Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=

0 (n1, . . . , nA) = 0
1+ min

(s1,...,sA)∈C
OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) Û 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)AnA) because the dynamic

programming table has just nA entries.

Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 22

There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 349/554

Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 22

There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 349/554

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =∑i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 350/554

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =∑i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 350/554

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =∑i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 350/554

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =∑i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 350/554

Bin Packing

Definition 23

An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {Aε} along with a constant c such that

Aε returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for Set Cover or for Knapsack it makes no sense

to differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 351/554

Bin Packing

Definition 23

An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {Aε} along with a constant c such that

Aε returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for Set Cover or for Knapsack it makes no sense

to differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 351/554

Bin Packing

Definition 23

An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {Aε} along with a constant c such that

Aε returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for Set Cover or for Knapsack it makes no sense

to differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 351/554

Bin Packing

Again we can differentiate between small and large items.

Lemma 24

Any packing of items into ` bins can be extended with items of

size at most γ s.t. we use only max{`, 1
1−γ SIZE(I)+ 1} bins,

where SIZE(I) =∑i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins, all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 352/554

Bin Packing

Again we can differentiate between small and large items.

Lemma 24

Any packing of items into ` bins can be extended with items of

size at most γ s.t. we use only max{`, 1
1−γ SIZE(I)+ 1} bins,

where SIZE(I) =∑i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins, all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 352/554

Bin Packing

Again we can differentiate between small and large items.

Lemma 24

Any packing of items into ` bins can be extended with items of

size at most γ s.t. we use only max{`, 1
1−γ SIZE(I)+ 1} bins,

where SIZE(I) =∑i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins, all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 352/554

Bin Packing

Again we can differentiate between small and large items.

Lemma 24

Any packing of items into ` bins can be extended with items of

size at most γ s.t. we use only max{`, 1
1−γ SIZE(I)+ 1} bins,

where SIZE(I) =∑i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins, all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 352/554

Choose γ = ε/2. Then we either use ` bins or at most

1
1− ε/2 ·OPT+ 1 ≤ (1+ ε) ·OPT+ 1

bins.

It remains to find an algorithm for the large items.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 353/554

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k
items belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 354/554

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k
items belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 354/554

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k
items belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 354/554

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k
items belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 354/554

Linear Grouping

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 355/554

Linear Grouping

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 355/554

Linear Grouping

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 355/554

Linear Grouping

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 355/554

Lemma 25

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 356/554

Lemma 25

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 356/554

Lemma 25

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 356/554

Lemma 25

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 356/554

Lemma 25

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 356/554

Lemma 26

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 357/554

Lemma 26

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 357/554

Lemma 26

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 357/554

Lemma 26

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 6. Jul. 2018

Harald Räcke 357/554

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the

previous Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the

previous Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the

previous Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the

previous Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the

previous Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the

previous Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ε)OPT(I)+ 1 .

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 359/554

Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ε)OPT(I)+ 1 .

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 359/554

Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ε)OPT(I)+ 1 .

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 359/554

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 360/554

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 360/554

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 360/554

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 360/554

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 360/554

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 361/554

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 361/554

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 361/554

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 362/554

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 362/554

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 362/554

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 362/554

How to solve this LP?

later...

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 363/554

We can assume that each item has size at least 1/SIZE(I).

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 364/554

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size

of items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 365/554

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size

of items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 365/554

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size

of items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 365/554

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size

of items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 365/554

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 366/554

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 366/554

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 366/554

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 366/554

Lemma 27

The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 367/554

Lemma 27

The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 367/554

Lemma 27

The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 367/554

Lemma 27

The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 367/554

Lemma 28

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

ñ Consider a group Gi that has strictly more items than Gi−1.

ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the average piece size is only 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of

each item is at least 1/SIZE(I)).

Lemma 28

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

ñ Consider a group Gi that has strictly more items than Gi−1.

ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the average piece size is only 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of

each item is at least 1/SIZE(I)).

Lemma 28

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

ñ Consider a group Gi that has strictly more items than Gi−1.

ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the average piece size is only 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of

each item is at least 1/SIZE(I)).

Lemma 28

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

ñ Consider a group Gi that has strictly more items than Gi−1.

ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the average piece size is only 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of

each item is at least 1/SIZE(I)).

Lemma 28

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

ñ Consider a group Gi that has strictly more items than Gi−1.

ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the average piece size is only 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of

each item is at least 1/SIZE(I)).

Algorithm 1 BinPack

1: if SIZE(I) < 10 then

2: pack remaining items greedily

3: Apply harmonic grouping to create instance I′; pack

discarded items in at most O(log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack bxjc bins in configuration Tj for all j; call the

packed instance I1.

6: Let I2 be remaining pieces from I′

7: Pack I2 via BinPack(I2)

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 369/554

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of

no lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 370/554

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of

no lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 370/554

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of

no lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 370/554

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of

no lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 370/554

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed

into at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 371/554

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed

into at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 371/554

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed

into at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 371/554

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed

into at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 371/554

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed

into at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 371/554

Analysis

We can show that SIZE(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

ñ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

ñ The total size of items in I2 can be at most
∑N
j=1 xj − bxjc

which is at most the number of non-zero entries in the

solution to the configuration LP.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 372/554

Analysis

We can show that SIZE(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

ñ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

ñ The total size of items in I2 can be at most
∑N
j=1 xj − bxjc

which is at most the number of non-zero entries in the

solution to the configuration LP.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 372/554

Analysis

We can show that SIZE(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

ñ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

ñ The total size of items in I2 can be at most
∑N
j=1 xj − bxjc

which is at most the number of non-zero entries in the

solution to the configuration LP.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 372/554

How to solve the LP?

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).
In total we have bi pieces of size si.

Primal

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

Dual
max

∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1

∀i ∈ {1, . . . ,m} yi ≥ 0

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 373/554

How to solve the LP?

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).
In total we have bi pieces of size si.

Primal

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

Dual
max

∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1

∀i ∈ {1, . . . ,m} yi ≥ 0

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 373/554

How to solve the LP?

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).
In total we have bi pieces of size si.

Primal

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

Dual
max

∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1

∀i ∈ {1, . . . ,m} yi ≥ 0

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 373/554

Separation Oracle
Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration Tj = (Tj1, . . . , Tjm) that

ñ is feasible, i.e.,
m∑
i=1

Tji · si ≤ 1 ,

ñ and has a large profit

m∑
i=1

Tjiyi > 1

But this is the Knapsack problem.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 374/554

Separation Oracle
Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration Tj = (Tj1, . . . , Tjm) that

ñ is feasible, i.e.,
m∑
i=1

Tji · si ≤ 1 ,

ñ and has a large profit

m∑
i=1

Tjiyi > 1

But this is the Knapsack problem.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 374/554

Separation Oracle
Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration Tj = (Tj1, . . . , Tjm) that

ñ is feasible, i.e.,
m∑
i=1

Tji · si ≤ 1 ,

ñ and has a large profit

m∑
i=1

Tjiyi > 1

But this is the Knapsack problem.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 374/554

Separation Oracle
Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration Tj = (Tj1, . . . , Tjm) that

ñ is feasible, i.e.,
m∑
i=1

Tji · si ≤ 1 ,

ñ and has a large profit

m∑
i=1

Tjiyi > 1

But this is the Knapsack problem.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 374/554

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is

violated with 1+ ε′ = 1+ ε
1−ε we find it, since we can obtain at

least (1− ε) of the optimal profit.

The solution we get is feasible for:

Dual′

max
∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1+ ε′

∀i ∈ {1, . . . ,m} yi ≥ 0

Primal′

min (1+ ε′)∑Nj=1 xj
s.t. ∀i ∈ {1 . . .m} ∑N

j=1 Tjixj ≥ bi
∀j ∈ {1, . . . ,N} xj ≥ 0

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is

violated with 1+ ε′ = 1+ ε
1−ε we find it, since we can obtain at

least (1− ε) of the optimal profit.

The solution we get is feasible for:

Dual′

max
∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1+ ε′

∀i ∈ {1, . . . ,m} yi ≥ 0

Primal′

min (1+ ε′)∑Nj=1 xj
s.t. ∀i ∈ {1 . . .m} ∑N

j=1 Tjixj ≥ bi
∀j ∈ {1, . . . ,N} xj ≥ 0

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is

violated with 1+ ε′ = 1+ ε
1−ε we find it, since we can obtain at

least (1− ε) of the optimal profit.

The solution we get is feasible for:

Dual′

max
∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1+ ε′

∀i ∈ {1, . . . ,m} yi ≥ 0

Primal′

min (1+ ε′)∑Nj=1 xj
s.t. ∀i ∈ {1 . . .m} ∑N

j=1 Tjixj ≥ bi
∀j ∈ {1, . . . ,N} xj ≥ 0

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is

violated with 1+ ε′ = 1+ ε
1−ε we find it, since we can obtain at

least (1− ε) of the optimal profit.

The solution we get is feasible for:

Dual′

max
∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1+ ε′

∀i ∈ {1, . . . ,m} yi ≥ 0

Primal′

min (1+ ε′)∑Nj=1 xj
s.t. ∀i ∈ {1 . . .m} ∑N

j=1 Tjixj ≥ bi
∀j ∈ {1, . . . ,N} xj ≥ 0

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

This gives that overall we need at most

(1+ ε′)OPTLP(I)+O(log2(SIZE(I)))

bins.

We can choose ε′ = 1
OPT as OPT ≤ #items and since we have a

fully polynomial time approximation scheme (FPTAS) for

knapsack.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 377/554

This gives that overall we need at most

(1+ ε′)OPTLP(I)+O(log2(SIZE(I)))

bins.

We can choose ε′ = 1
OPT as OPT ≤ #items and since we have a

fully polynomial time approximation scheme (FPTAS) for

knapsack.

15.4 Advanced Rounding for Bin Packing 6. Jul. 2018

Harald Räcke 377/554

Lemma 29 (Chernoff Bounds)

Let X1, . . . , Xn be n independent 0-1 random variables, not

necessarily identically distributed. Then for X =∑ni=1Xi and

µ = E[X], L ≤ µ ≤ U , and δ > 0

Pr[X ≥ (1+ δ)U] <
(

eδ

(1+ δ)1+δ
)U

,

and

Pr[X ≤ (1− δ)L] <
(

e−δ

(1− δ)1−δ
)L

,

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 378/554

Lemma 30

For 0 ≤ δ ≤ 1 we have that(
eδ

(1+ δ)1+δ
)U
≤ e−Uδ2/3

and (
e−δ

(1− δ)1−δ
)L
≤ e−Lδ2/2

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 379/554

Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.

Then

Pr[X ≥ a] ≤ E[X]/a

Trivial!

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 380/554

Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.

Then

Pr[X ≥ a] ≤ E[X]/a

Trivial!

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 380/554

Proof of Chernoff Bounds

Hence:

Pr[X ≥ (1+ δ)U] ≤ E[X]
(1+ δ)U

≈ 1
1+ δ

That’s awfully weak :(

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 381/554

Proof of Chernoff Bounds

Hence:

Pr[X ≥ (1+ δ)U] ≤ E[X]
(1+ δ)U ≈

1
1+ δ

That’s awfully weak :(

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 381/554

Proof of Chernoff Bounds

Hence:

Pr[X ≥ (1+ δ)U] ≤ E[X]
(1+ δ)U ≈

1
1+ δ

That’s awfully weak :(

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 381/554

Proof of Chernoff Bounds

Set pi = Pr[Xi = 1]. Assume pi > 0 for all i.

Cool Trick:

Pr[X ≥ (1+ δ)U] = Pr[etX ≥ et(1+δ)U]

Now, we apply Markov:

Pr[etX ≥ et(1+δ)U] ≤ E[etX]
et(1+δ)U

.

This may be a lot better (!?)

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 382/554

Proof of Chernoff Bounds

Set pi = Pr[Xi = 1]. Assume pi > 0 for all i.

Cool Trick:

Pr[X ≥ (1+ δ)U] = Pr[etX ≥ et(1+δ)U]

Now, we apply Markov:

Pr[etX ≥ et(1+δ)U] ≤ E[etX]
et(1+δ)U

.

This may be a lot better (!?)

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 382/554

Proof of Chernoff Bounds

Set pi = Pr[Xi = 1]. Assume pi > 0 for all i.

Cool Trick:

Pr[X ≥ (1+ δ)U] = Pr[etX ≥ et(1+δ)U]

Now, we apply Markov:

Pr[etX ≥ et(1+δ)U] ≤ E[etX]
et(1+δ)U

.

This may be a lot better (!?)

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 382/554

Proof of Chernoff Bounds

Set pi = Pr[Xi = 1]. Assume pi > 0 for all i.

Cool Trick:

Pr[X ≥ (1+ δ)U] = Pr[etX ≥ et(1+δ)U]

Now, we apply Markov:

Pr[etX ≥ et(1+δ)U] ≤ E[etX]
et(1+δ)U

.

This may be a lot better (!?)

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 382/554

Proof of Chernoff Bounds

E
[
etX

]

= E
[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]

= E
[∏

i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]

=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]

= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet

= 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1)

≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]

≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1)

= e
∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1)

= e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Proof of Chernoff Bounds

E
[
etX

]
= E

[
et
∑
i Xi
]
= E

[∏
i e
tXi
]
=
∏
i E
[
etXi

]

E
[
etXi

]
= (1− pi)+ piet = 1+ pi(et − 1) ≤ epi(et−1)

∏
i E
[
etXi

]
≤
∏
i e
pi(et−1) = e

∑
pi(et−1) = e(et−1)U

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 383/554

Now, we apply Markov:

Pr[X ≥ (1+ δ)U] = Pr[etX ≥ et(1+δ)U]

≤ E[etX]
et(1+δ)U

≤ e
(et−1)U

et(1+δ)U
≤
(

eδ

(1+ δ)1+δ
)U

We choose t = ln(1+ δ).

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 384/554

Now, we apply Markov:

Pr[X ≥ (1+ δ)U] = Pr[etX ≥ et(1+δ)U]

≤ E[etX]
et(1+δ)U

≤ e
(et−1)U

et(1+δ)U

≤
(

eδ

(1+ δ)1+δ
)U

We choose t = ln(1+ δ).

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 384/554

Now, we apply Markov:

Pr[X ≥ (1+ δ)U] = Pr[etX ≥ et(1+δ)U]

≤ E[etX]
et(1+δ)U

≤ e
(et−1)U

et(1+δ)U

≤
(

eδ

(1+ δ)1+δ
)U

We choose t = ln(1+ δ).

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 384/554

Now, we apply Markov:

Pr[X ≥ (1+ δ)U] = Pr[etX ≥ et(1+δ)U]

≤ E[etX]
et(1+δ)U

≤ e
(et−1)U

et(1+δ)U
≤
(

eδ

(1+ δ)1+δ
)U

We choose t = ln(1+ δ).

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 384/554

Lemma 31

For 0 ≤ δ ≤ 1 we have that(
eδ

(1+ δ)1+δ
)U
≤ e−Uδ2/3

and (
e−δ

(1− δ)1−δ
)L
≤ e−Lδ2/2

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 385/554

Show: (
eδ

(1+ δ)1+δ
)U
≤ e−Uδ2/3

Take logarithms:

U(δ− (1+ δ) ln(1+ δ)) ≤ −Uδ2/3

True for δ = 0. Divide by U and take derivatives:

− ln(1+ δ) ≤ −2δ/3

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 386/554

Show: (
eδ

(1+ δ)1+δ
)U
≤ e−Uδ2/3

Take logarithms:

U(δ− (1+ δ) ln(1+ δ)) ≤ −Uδ2/3

True for δ = 0. Divide by U and take derivatives:

− ln(1+ δ) ≤ −2δ/3

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 386/554

Show: (
eδ

(1+ δ)1+δ
)U
≤ e−Uδ2/3

Take logarithms:

U(δ− (1+ δ) ln(1+ δ)) ≤ −Uδ2/3

True for δ = 0.

Divide by U and take derivatives:

− ln(1+ δ) ≤ −2δ/3

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 386/554

Show: (
eδ

(1+ δ)1+δ
)U
≤ e−Uδ2/3

Take logarithms:

U(δ− (1+ δ) ln(1+ δ)) ≤ −Uδ2/3

True for δ = 0. Divide by U and take derivatives:

− ln(1+ δ) ≤ −2δ/3

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 386/554

f(δ) := − ln(1+ δ)+ 2δ/3 ≤ 0

A convex function (f ′′(δ) ≥ 0) on an interval takes maximum at

the boundaries.

f ′(δ) = − 1
1+ δ + 2/3 f ′′(δ) = 1

(1+ δ)2

f(0) = 0 and f(1) = − ln(2)+ 2/3 < 0

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 387/554

f(δ) := − ln(1+ δ)+ 2δ/3 ≤ 0

A convex function (f ′′(δ) ≥ 0) on an interval takes maximum at

the boundaries.

f ′(δ) = − 1
1+ δ + 2/3 f ′′(δ) = 1

(1+ δ)2

f(0) = 0 and f(1) = − ln(2)+ 2/3 < 0

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 387/554

f(δ) := − ln(1+ δ)+ 2δ/3 ≤ 0

A convex function (f ′′(δ) ≥ 0) on an interval takes maximum at

the boundaries.

f ′(δ) = − 1
1+ δ + 2/3

f ′′(δ) = 1
(1+ δ)2

f(0) = 0 and f(1) = − ln(2)+ 2/3 < 0

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 387/554

f(δ) := − ln(1+ δ)+ 2δ/3 ≤ 0

A convex function (f ′′(δ) ≥ 0) on an interval takes maximum at

the boundaries.

f ′(δ) = − 1
1+ δ + 2/3 f ′′(δ) = 1

(1+ δ)2

f(0) = 0 and f(1) = − ln(2)+ 2/3 < 0

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 387/554

f(δ) := − ln(1+ δ)+ 2δ/3 ≤ 0

A convex function (f ′′(δ) ≥ 0) on an interval takes maximum at

the boundaries.

f ′(δ) = − 1
1+ δ + 2/3 f ′′(δ) = 1

(1+ δ)2

f(0) = 0 and f(1) = − ln(2)+ 2/3 < 0

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 387/554

For δ ≥ 1 we show (
eδ

(1+ δ)1+δ
)U
≤ e−Uδ/3

Take logarithms:

U(δ− (1+ δ) ln(1+ δ)) ≤ −Uδ/3

True for δ = 0. Divide by U and take derivatives:

− ln(1+ δ) ≤ −1/3 ⇐⇒ ln(1+ δ) ≥ 1/3 (true)

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 388/554

For δ ≥ 1 we show (
eδ

(1+ δ)1+δ
)U
≤ e−Uδ/3

Take logarithms:

U(δ− (1+ δ) ln(1+ δ)) ≤ −Uδ/3

True for δ = 0. Divide by U and take derivatives:

− ln(1+ δ) ≤ −1/3 ⇐⇒ ln(1+ δ) ≥ 1/3 (true)

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 388/554

For δ ≥ 1 we show (
eδ

(1+ δ)1+δ
)U
≤ e−Uδ/3

Take logarithms:

U(δ− (1+ δ) ln(1+ δ)) ≤ −Uδ/3

True for δ = 0.

Divide by U and take derivatives:

− ln(1+ δ) ≤ −1/3 ⇐⇒ ln(1+ δ) ≥ 1/3 (true)

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 388/554

For δ ≥ 1 we show (
eδ

(1+ δ)1+δ
)U
≤ e−Uδ/3

Take logarithms:

U(δ− (1+ δ) ln(1+ δ)) ≤ −Uδ/3

True for δ = 0. Divide by U and take derivatives:

− ln(1+ δ) ≤ −1/3 ⇐⇒ ln(1+ δ) ≥ 1/3 (true)

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 388/554

Show: (
e−δ

(1− δ)1−δ
)L
≤ e−Lδ2/2

Take logarithms:

L(−δ− (1− δ) ln(1− δ)) ≤ −Lδ2/2

True for δ = 0. Divide by L and take derivatives:

ln(1− δ) ≤ −δ

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 389/554

Show: (
e−δ

(1− δ)1−δ
)L
≤ e−Lδ2/2

Take logarithms:

L(−δ− (1− δ) ln(1− δ)) ≤ −Lδ2/2

True for δ = 0. Divide by L and take derivatives:

ln(1− δ) ≤ −δ

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 389/554

Show: (
e−δ

(1− δ)1−δ
)L
≤ e−Lδ2/2

Take logarithms:

L(−δ− (1− δ) ln(1− δ)) ≤ −Lδ2/2

True for δ = 0.

Divide by L and take derivatives:

ln(1− δ) ≤ −δ

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 389/554

Show: (
e−δ

(1− δ)1−δ
)L
≤ e−Lδ2/2

Take logarithms:

L(−δ− (1− δ) ln(1− δ)) ≤ −Lδ2/2

True for δ = 0. Divide by L and take derivatives:

ln(1− δ) ≤ −δ

Reason:

As long as derivative of left side is smaller than derivative of

right side the inequality holds.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 389/554

ln(1− δ) ≤ −δ

True for δ = 0. Take derivatives:

− 1
1− δ ≤ −1

This holds for 0 ≤ δ < 1.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 390/554

ln(1− δ) ≤ −δ

True for δ = 0.

Take derivatives:

− 1
1− δ ≤ −1

This holds for 0 ≤ δ < 1.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 390/554

ln(1− δ) ≤ −δ

True for δ = 0. Take derivatives:

− 1
1− δ ≤ −1

This holds for 0 ≤ δ < 1.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 390/554

ln(1− δ) ≤ −δ

True for δ = 0. Take derivatives:

− 1
1− δ ≤ −1

This holds for 0 ≤ δ < 1.

16.1 Chernoff Bounds 6. Jul. 2018

Harald Räcke 390/554

Integer Multicommodity Flows

ñ Given si-ti pairs in a graph.

ñ Connect each pair by a path such that not too many path

use any given edge.

min W
s.t. ∀i ∑

p∈Pi xp = 1∑
p:e∈p xp ≤ W

xp ∈ {0,1}

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 391/554

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set Pi at random according

to the probability distribution given by the Linear Programming

solution.

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 392/554

Theorem 32

If W∗ ≥ c lnn for some constant c, then with probability at least

1−n−c/3 the total number of paths using any edge is at most

W∗ +√cW∗ lnn = O(W∗).

Theorem 33

With probability at least 1−n−c/3 the total number of paths

using any edge is at most O(W∗ + c lnn).

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 393/554

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 394/554

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 394/554

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 394/554

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 394/554

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 394/554

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 394/554

Integer Multicommodity Flows

Choose δ = √(c lnn)/W∗.

Then

Pr[Ye ≥ (1+ δ)W∗] < e−W∗δ2/3 = 1
nc/3

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 395/554

Integer Multicommodity Flows

Choose δ = √(c lnn)/W∗.

Then

Pr[Ye ≥ (1+ δ)W∗] < e−W∗δ2/3 = 1
nc/3

16.2 Integer Multicommodity Flows 6. Jul. 2018

Harald Räcke 395/554

16.3 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 396/554

16.3 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 396/554

16.3 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 396/554

16.3 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 396/554

16.3 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 397/554

16.3 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 397/554

16.3 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 397/554

16.3 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 397/554

16.3 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 397/554

16.3 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 397/554

MAXSAT: Flipping Coins

Set each xi independently to true with probability 1
2 (and, hence,

to false with probability 1
2 , as well).

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 398/554

Define random variable Xj with

Xj =
{

1 if Cj satisfied

0 otw.

Then the total weight W of satisfied clauses is given by

W =
∑
j
wjXj

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 399/554

Define random variable Xj with

Xj =
{

1 if Cj satisfied

0 otw.

Then the total weight W of satisfied clauses is given by

W =
∑
j
wjXj

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 399/554

E[W]

=
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj
(
1−

(1
2

)`j)
≥ 1

2

∑
j
wj

≥ 1
2

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 400/554

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj
(
1−

(1
2

)`j)
≥ 1

2

∑
j
wj

≥ 1
2

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 400/554

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj
(
1−

(1
2

)`j)
≥ 1

2

∑
j
wj

≥ 1
2

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 400/554

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj
(
1−

(1
2

)`j)

≥ 1
2

∑
j
wj

≥ 1
2

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 400/554

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj
(
1−

(1
2

)`j)
≥ 1

2

∑
j
wj

≥ 1
2

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 400/554

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj
(
1−

(1
2

)`j)
≥ 1

2

∑
j
wj

≥ 1
2

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 400/554

MAXSAT: LP formulation

ñ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨
i∈Pj

xi ∨
∨
i∈Nj

x̄i

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 401/554

MAXSAT: LP formulation

ñ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨
i∈Pj

xi ∨
∨
i∈Nj

x̄i

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 401/554

MAXSAT: Randomized Rounding

Set each xi independently to true with probability yi (and,

hence, to false with probability (1−yi)).

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 402/554

Lemma 34 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a1, . . . , ak k∏
i=1

ai

1/k

≤ 1
k

k∑
i=1

ai

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 403/554

Definition 35

A function f on an interval I is concave if for any two points s
and r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 36

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 404/554

Definition 35

A function f on an interval I is concave if for any two points s
and r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 36

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 404/554

Definition 35

A function f on an interval I is concave if for any two points s
and r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 36

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 404/554

Definition 35

A function f on an interval I is concave if for any two points s
and r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 36

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 404/554

Pr[Cj not satisfied]

=
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤
 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi

`j

=
1− 1

`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)

`j

≤
(

1− zj
`j

)`j
.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 405/554

Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤
 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi

`j

=
1− 1

`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)

`j

≤
(

1− zj
`j

)`j
.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 405/554

Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤
 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi

`j

=
1− 1

`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)

`j

≤
(

1− zj
`j

)`j
.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 405/554

Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤
 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi

`j

=
1− 1

`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)

`j

≤
(

1− zj
`j

)`j
.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 405/554

Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤
 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi

`j

=
1− 1

`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)

`j

≤
(

1− zj
`j

)`j
.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 405/554

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied]

≥ 1−
(

1− zj
`j

)`j

≥
1−

(
1− 1

`j

)`j · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 406/554

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1− zj
`j

)`j

≥
1−

(
1− 1

`j

)`j · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 406/554

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1− zj
`j

)`j

≥
1−

(
1− 1

`j

)`j · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 406/554

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1− zj
`j

)`j

≥
1−

(
1− 1

`j

)`j · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 406/554

E[W]

=
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j
≥
(

1− 1
e

)
OPT .

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 407/554

E[W] =
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j
≥
(

1− 1
e

)
OPT .

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 407/554

E[W] =
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j

≥
(

1− 1
e

)
OPT .

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 407/554

E[W] =
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j
≥
(

1− 1
e

)
OPT .

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 407/554

MAXSAT: The better of two

Theorem 37

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a 3
4 -approximation.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 408/554

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]

≥ E[1
2W1 + 1

2W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj

(
1−

(
1
2

)`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1−

(
1
2

)`j)
︸ ︷︷ ︸

≥ 3
4 for all integers

≥ 3
4

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 409/554

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj

(
1−

(
1
2

)`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1−

(
1
2

)`j)
︸ ︷︷ ︸

≥ 3
4 for all integers

≥ 3
4

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 409/554

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj

(
1−

(
1
2

)`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1−

(
1
2

)`j)
︸ ︷︷ ︸

≥ 3
4 for all integers

≥ 3
4

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 409/554

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj

(
1−

(
1
2

)`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1−

(
1
2

)`j)
︸ ︷︷ ︸

≥ 3
4 for all integers

≥ 3
4

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 409/554

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj

(
1−

(
1
2

)`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1−

(
1
2

)`j)
︸ ︷︷ ︸

≥ 3
4 for all integers

≥ 3
4

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 409/554

1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1

`

f(`)

randomized rounding

flipping coins
average

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 410/554

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability

that a variable is set to 1/true was exactly the value of the

corresponding variable in the linear program.

We could define a function f : [0,1]→ [0,1] and set xi to true

with probability f(yi).

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 411/554

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability

that a variable is set to 1/true was exactly the value of the

corresponding variable in the linear program.

We could define a function f : [0,1]→ [0,1] and set xi to true

with probability f(yi).

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 411/554

MAXSAT: Nonlinear Randomized Rounding

Let f : [0,1]→ [0,1] be a function with

1− 4−x ≤ f(x) ≤ 4x−1

Theorem 38

Rounding the LP-solution with a function f of the above form

gives a 3
4 -approximation.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 412/554

MAXSAT: Nonlinear Randomized Rounding

Let f : [0,1]→ [0,1] be a function with

1− 4−x ≤ f(x) ≤ 4x−1

Theorem 38

Rounding the LP-solution with a function f of the above form

gives a 3
4 -approximation.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 412/554

0 0.5 1

0.5

1

4x−1

1− 4−x

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 413/554

Pr[Cj not satisfied]

=
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

f(yi)

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(∑i∈Pj yi+∑i∈Nj (1−yi))

≤ 4−zj

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 414/554

Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

f(yi)

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(∑i∈Pj yi+∑i∈Nj (1−yi))

≤ 4−zj

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 414/554

Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

f(yi)

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(∑i∈Pj yi+∑i∈Nj (1−yi))

≤ 4−zj

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 414/554

Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

f(yi)

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(∑i∈Pj yi+∑i∈Nj (1−yi))

≤ 4−zj

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 414/554

Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

f(yi)

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(∑i∈Pj yi+∑i∈Nj (1−yi))

≤ 4−zj

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 414/554

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥ 3

4
OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 415/554

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied]

≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥ 3

4
OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 415/554

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj

≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥ 3

4
OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 415/554

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥ 3

4
OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 415/554

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥ 3

4
OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 415/554

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W]

=
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥ 3

4
OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 415/554

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied]

≥ 3
4

∑
j
wjzj ≥ 3

4
OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 415/554

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj

≥ 3
4

OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 415/554

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥ 3

4
OPT

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 415/554

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 39 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 39 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 39 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 39 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 39 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Lemma 40

Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3
4 .

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

Consider: (x1 ∨ x2)∧ (x̄1 ∨ x2)∧ (x1 ∨ x̄2)∧ (x̄1 ∨ x̄2)

ñ any solution can satisfy at most 3 clauses

ñ we can set y1 = y2 = 1/2 in the LP; this allows to set

z1 = z2 = z3 = z4 = 1

ñ hence, the LP has value 4.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 417/554

Lemma 40

Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3
4 .

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

Consider: (x1 ∨ x2)∧ (x̄1 ∨ x2)∧ (x1 ∨ x̄2)∧ (x̄1 ∨ x̄2)

ñ any solution can satisfy at most 3 clauses

ñ we can set y1 = y2 = 1/2 in the LP; this allows to set

z1 = z2 = z3 = z4 = 1

ñ hence, the LP has value 4.

16.3 MAXSAT 6. Jul. 2018

Harald Räcke 417/554

MaxCut

MaxCut

Given a weighted graph G = (V , E,w), w(v) ≥ 0, partition the

vertices into two parts. Maximize the weight of edges between

the parts.

Trivial 2-approximation

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 418/554

Semidefinite Programming

max /min
∑
i,j cijxij

s.t. ∀k ∑
i,j,k aijkxij = bk

∀i, j xij = xji
X = (xij) is psd.

ñ linear objective, linear contraints

ñ we can constrain a square matrix of variables to be

symmetric positive definite

Vector Programming

max /min
∑
i,j cij(vtivj)

s.t. ∀k ∑
i,j,k aijk(vtivj) = bk

vi ∈ Rn

ñ variables are vectors in n-dimensional space

ñ objective functions and contraints are linear in inner

products of the vectors

This is equivalent!

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 420/554

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial

time...

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 421/554

Quadratic Programs

Quadratic Program for MaxCut:

max 1
2

∑
i,jwij(1−yiyj)

∀i yi ∈ {−1,1}

This is exactly MaxCut!

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 422/554

Semidefinite Relaxation

max 1
2

∑
i,jwij(1− vtivj)

∀i vtivi = 1

∀i vi ∈ Rn

ñ this is clearly a relaxation

ñ the solution will be vectors on the unit sphere

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 423/554

Rounding the SDP-Solution

ñ Choose a random vector r such that r/‖r‖ is uniformly

distributed on the unit sphere.

ñ If r tvi > 0 set yi = 1 else set yi = −1

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 424/554

Rounding the SDP-Solution

Choose the i-th coordinate ri as a Gaussian with mean 0 and

variance 1, i.e., ri ∼N (0,1).

Density function:

ϕ(x) = 1√
2π
ex

2/2

Then

Pr[r = (x1, . . . , xn)]

= 1(√
2π

)n ex2
1/2 · ex2

2/2 · . . . · ex2
n/2 dx1 · . . . · dxn

= 1(√
2π

)n e 1
2 (x

2
1+...+x2

n) dx1 · . . . · dxn

Hence the probability for a point only depends on its distance to

the origin.

Rounding the SDP-Solution

Choose the i-th coordinate ri as a Gaussian with mean 0 and

variance 1, i.e., ri ∼N (0,1).

Density function:

ϕ(x) = 1√
2π
ex

2/2

Then

Pr[r = (x1, . . . , xn)]

= 1(√
2π

)n ex2
1/2 · ex2

2/2 · . . . · ex2
n/2 dx1 · . . . · dxn

= 1(√
2π

)n e 1
2 (x

2
1+...+x2

n) dx1 · . . . · dxn

Hence the probability for a point only depends on its distance to

the origin.

Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e1 and e2 are

independent and are normally distributed with mean 0 and

variance 1 iff e1 and e2 are orthogonal.

Note that this is clear if e1 and e2 are standard basis vectors.

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 426/554

Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection

(r ′/‖r ′‖) is uniformly distributed on the unit circle within the

hyperplane.

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 427/554

Rounding the SDP-Solution

vivj

r ′/‖r ′‖
θ

θ

θ

ñ if the normalized projection falls into the shaded region, vi
and vj are rounded to different values

ñ this happens with probability θ/π

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 428/554

Rounding the SDP-Solution

ñ contribution of edge (i, j) to the SDP-relaxation:

1
2
wij

(
1− vtivj

)

ñ (expected) contribution of edge (i, j) to the rounded

instance wij arccos(vtivj)/π
ñ ratio is at most

min
x∈[−1,1]

2 arccos(x)
π(1− x) ≥ 0.878

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 429/554

Rounding the SDP-Solution

ñ contribution of edge (i, j) to the SDP-relaxation:

1
2
wij

(
1− vtivj

)

ñ (expected) contribution of edge (i, j) to the rounded

instance wij arccos(vtivj)/π
ñ ratio is at most

min
x∈[−1,1]

2 arccos(x)
π(1− x) ≥ 0.878

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 429/554

Rounding the SDP-Solution

ñ contribution of edge (i, j) to the SDP-relaxation:

1
2
wij

(
1− vtivj

)

ñ (expected) contribution of edge (i, j) to the rounded

instance wij arccos(vtivj)/π
ñ ratio is at most

min
x∈[−1,1]

2 arccos(x)
π(1− x) ≥ 0.878

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 429/554

Rounding the SDP-Solution

−1 −0.5 0 0.5 1
0

0.25

0.5

0.75

1
1
π arccos(x)
1
2 (1− x)

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 430/554

Rounding the SDP-Solution

−1 −0.5 0 0.5 1
00

0.5

1

1.5

2

ratio(x)
0.878

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 431/554

Rounding the SDP-Solution

Theorem 41

Given the unique games conjecture, there is no α-approximation

for the maximum cut problem with constant

α > min
x∈[−1,1]

2 arccos(x)
π(1− x)

unless P = NP.

16.4 MAXCUT 6. Jul. 2018

Harald Räcke 432/554

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

Dual Formulation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k} ∑
u:u∈Si yu ≤ wi

yu ≥ 0

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 433/554

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

Dual Formulation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k} ∑
u:u∈Si yu ≤ wi

yu ≥ 0

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 433/554

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 434/554

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 434/554

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 434/554

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 434/554

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 434/554

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is

∑
j
wjxj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 435/554

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is

∑
j
wjxj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 435/554

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is

∑
j
wjxj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 435/554

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is∑
j
wjxj

=
∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 435/554

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is∑
j
wjxj =

∑
j

∑
e∈Sj

ye

=
∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 435/554

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is∑
j
wjxj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 435/554

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is∑
j
wjxj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 435/554

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑
e∈Sj

ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑
j:e∈Sj

xj = 1

then the solution would be optimal!!!

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 436/554

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑
e∈Sj

ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑
j:e∈Sj

xj = 1

then the solution would be optimal!!!

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 436/554

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑
e∈Sj

ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑
j:e∈Sj

xj = 1

then the solution would be optimal!!!

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 436/554

We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑
j:e∈Sj

xj ≤ f

This is sufficient to show that the solution is an

f -approximation.

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 437/554

We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑
j:e∈Sj

xj ≤ f

This is sufficient to show that the solution is an

f -approximation.

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 437/554

We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑
j:e∈Sj

xj ≤ f

This is sufficient to show that the solution is an

f -approximation.

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 437/554

Suppose we have a primal/dual pair

min
∑
j cjxj

s.t. ∀i ∑
j: aijxj ≥ bi

∀j xj ≥ 0

max
∑
i biyi

s.t. ∀j ∑
i aijyi ≤ cj

∀i yi ≥ 0

and solutions that fulfill approximate slackness conditions:

xj > 0⇒
∑
i
aijyi ≥ 1

α
cj

yi > 0⇒
∑
j
aijxj ≤ βbi

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 438/554

Suppose we have a primal/dual pair

min
∑
j cjxj

s.t. ∀i ∑
j: aijxj ≥ bi

∀j xj ≥ 0

max
∑
i biyi

s.t. ∀j ∑
i aijyi ≤ cj

∀i yi ≥ 0

and solutions that fulfill approximate slackness conditions:

xj > 0⇒
∑
i
aijyi ≥ 1

α
cj

yi > 0⇒
∑
j
aijxj ≤ βbi

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 438/554

Then

∑
j
cjxj

≤ α
∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxjcj

∑
i
biyi

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 439/554

Then

∑
j
cjxj

≤ α
∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxj

cj

primal cost

∑
i
biyi

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 439/554

Then

∑
j
cjxj

≤ α
∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxjcj

primal cost

right hand side of j-th
dual constraint

∑
i
biyi

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 439/554

Then

∑
j
cjxj ≤ α

∑
j

∑
i
aijyi

xj

= α
∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxj

cj

primal cost

∑
i
biyi

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 439/554

Then

∑
j
cjxj ≤ α

∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi

≤ αβ ·
∑
i
biyi

∑
j
cjxj

cj

primal cost

∑
i
biyi

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 439/554

Then

∑
j
cjxj ≤ α

∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxj

cj

primal cost

∑
i
biyi

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 439/554

Then

∑
j
cjxj ≤ α

∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxj

cj

primal cost

∑
i
biyi

dual objective

17.1 Primal Dual Revisited 6. Jul. 2018

Harald Räcke 439/554

Feedback Vertex Set for Undirected Graphs

ñ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

ñ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 440/554

Feedback Vertex Set for Undirected Graphs

ñ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

ñ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 440/554

We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some

cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 441/554

We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some

cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 441/554

We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some

cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 441/554

Let C denote the set of all cycles (where a cycle is identified by

its set of vertices)

Primal Relaxation:

min
∑
v wvxv

s.t. ∀C ∈ C
∑
v∈C xv ≥ 1

∀v xv ≥ 0

Dual Formulation:

max
∑
C∈CyC

s.t. ∀v ∈ V ∑
C :v∈C yC ≤ wv

∀C yC ≥ 0

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 442/554

Let C denote the set of all cycles (where a cycle is identified by

its set of vertices)

Primal Relaxation:

min
∑
v wvxv

s.t. ∀C ∈ C
∑
v∈C xv ≥ 1

∀v xv ≥ 0

Dual Formulation:

max
∑
C∈CyC

s.t. ∀v ∈ V ∑
C :v∈C yC ≤ wv

∀C yC ≥ 0

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 442/554

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).

ñ Increase yC until dual constraint for some vertex v
becomes tight.

ñ set xv = 1.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 443/554

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).

ñ Increase yC until dual constraint for some vertex v
becomes tight.

ñ set xv = 1.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 443/554

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).
ñ Increase yC until dual constraint for some vertex v

becomes tight.

ñ set xv = 1.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 443/554

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).
ñ Increase yC until dual constraint for some vertex v

becomes tight.
ñ set xv = 1.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 443/554

Then ∑
v
wvxv

=
∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but

this is unrealistic.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 444/554

Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but

this is unrealistic.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 444/554

Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but

this is unrealistic.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 444/554

Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but

this is unrealistic.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 444/554

Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but

this is unrealistic.

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 444/554

Algorithm 1 FeedbackVertexSet
1: y ← 0

2: x ← 0

3: while exists cycle C in G do

4: increase yC until there is v ∈ C s.t.
∑
C :v∈C yC = wv

5: xv = 1

6: remove v from G
7: repeatedly remove vertices of degree 1 from G

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 445/554

Idea:

Always choose a short cycle that is not covered. If we always find

a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm

chooses at most one vertex from P .

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 446/554

Idea:

Always choose a short cycle that is not covered. If we always find

a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm

chooses at most one vertex from P .

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 446/554

Observation:

If we always choose a cycle for which the number of vertices of

degree at least 3 is at most α we get a 2α-approximation.

Theorem 42

In any graph with no vertices of degree 1, there always exists a

cycle that has at most O(logn) vertices of degree 3 or more. We

can find such a cycle in linear time.

This means we have

yC > 0⇒ |S ∩ C| ≤ O(logn) .

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 447/554

Observation:

If we always choose a cycle for which the number of vertices of

degree at least 3 is at most α we get a 2α-approximation.

Theorem 42

In any graph with no vertices of degree 1, there always exists a

cycle that has at most O(logn) vertices of degree 3 or more. We

can find such a cycle in linear time.

This means we have

yC > 0⇒ |S ∩ C| ≤ O(logn) .

17.2 Feedback Vertex Set for Undirected Graphs 6. Jul. 2018

Harald Räcke 447/554

Primal Dual for Shortest Path

Given a graph G = (V , E) with two nodes s, t ∈ V and

edge-weights c : E → R+ find a shortest path between s and t
w.r.t. edge-weights c.

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e:δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}
Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 448/554

Primal Dual for Shortest Path

Given a graph G = (V , E) with two nodes s, t ∈ V and

edge-weights c : E → R+ find a shortest path between s and t
w.r.t. edge-weights c.

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e:δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}
Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 448/554

Primal Dual for Shortest Path

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 449/554

Primal Dual for Shortest Path

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 449/554

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 450/554

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 450/554

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 450/554

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 450/554

Algorithm 1 PrimalDualShortestPath
1: y ← 0

2: F ← �
3: while there is no s-t path in (V , F) do

4: Let C be the connected component of (V , F) con-

taining s
5: Increase yC until there is an edge e′ ∈ δ(C) such

that
∑
S:e′∈δ(S)yS = c(e′).

6: F ← F ∪ {e′}
7: Let P be an s-t path in (V , F)
8: return P

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 451/554

Lemma 43

At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 452/554

Lemma 43

At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 452/554

Lemma 43

At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 452/554

∑
e∈P
c(e)

=
∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 453/554

∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 453/554

∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 453/554

∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 453/554

∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 453/554

If S contains two edges from P then there must exist a subpath

P ′ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 454/554

If S contains two edges from P then there must exist a subpath

P ′ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 454/554

If S contains two edges from P then there must exist a subpath

P ′ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 454/554

If S contains two edges from P then there must exist a subpath

P ′ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 454/554

If S contains two edges from P then there must exist a subpath

P ′ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

17.3 Primal Dual for Shortest Path 6. Jul. 2018

Harald Räcke 454/554

Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a cost function c : E → R+ on the edges. Find a

subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k} there

is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 455/554

Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a cost function c : E → R+ on the edges. Find a

subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k} there

is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 455/554

Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a cost function c : E → R+ on the edges. Find a

subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k} there

is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 455/554

max
∑
S : ∃i s.t. S ∈ Si yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

yS ≥ 0

The difference to the dual of the shortest path problem is that

we have many more variables (sets for which we can generate a

moat of non-zero width).

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 456/554

Algorithm 1 FirstTry
1: y ← 0

2: F ← �
3: while not all si-ti pairs connected in F do

4: Let C be some connected component of (V , F)
such that |C ∩ {si, ti}| = 1 for some i.

5: Increase yC until there is an edge e′ ∈ δ(C) s.t.∑
S∈Si:e′∈δ(S)yS = ce′

6: F ← F ∪ {e′}
7: return

⋃
i Pi

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 457/554

∑
e∈F
c(e)

=
∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 458/554

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS

=
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 458/554

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 458/554

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 458/554

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.

ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 458/554

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.

ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 458/554

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.

ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 458/554

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 458/554

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 458/554

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in

good shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 458/554

Algorithm 1 SecondTry

1: y ← 0; F ← �; ` ← 0

2: while not all si-ti pairs connected in F do

3: ` ← ` + 1

4: Let C be set of all connected components C of (V , F)
such that |C ∩ {si, ti}| = 1 for some i.

5: Increase yC for all C ∈ C uniformly until for some edge

e` ∈ δ(C′), C′ ∈ C s.t.
∑
S:e`∈δ(S)yS = ce`

6: F ← F ∪ {e`}
7: F ′ ← F
8: for k← ` downto 1 do // reverse deletion

9: if F ′ − ek is feasible solution then

10: remove ek from F ′

11: return F ′

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 459/554

The reverse deletion step is not strictly necessary this way. It

would also be sufficient to simply delete all unnecessary edges

in any order.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 460/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 461/554

Lemma 44

For any C in any iteration of the algorithm∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

This means that the number of times a moat from C is crossed in

the final solution is at most twice the number of moats.

Proof: later...

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 462/554

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 463/554

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 463/554

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 463/554

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 463/554

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 463/554

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 463/554

Lemma 45

For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 464/554

Lemma 45

For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 464/554

Lemma 45

For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 464/554

Lemma 45

For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 464/554

Lemma 45

For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 464/554

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 465/554

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 465/554

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 465/554

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 465/554

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 465/554

ñ Suppose that no node in B has degree one.

ñ Then

∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 466/554

ñ Suppose that no node in B has degree one.

ñ Then

∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 466/554

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v)

=
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 466/554

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 466/554

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B|

= 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 466/554

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 466/554

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 466/554

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.
ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 466/554

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.
ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 466/554

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.
ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 6. Jul. 2018

Harald Räcke 466/554

18 Cuts & Metrics
Shortest Path

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

S is the set of subsets that separate s from t.

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

The Separation Problem for the Shortest Path LP is the Minimum

Cut Problem.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 467/554

18 Cuts & Metrics
Shortest Path

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ≥ 0

S is the set of subsets that separate s from t.

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

The Separation Problem for the Shortest Path LP is the Minimum

Cut Problem.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 467/554

18 Cuts & Metrics
Shortest Path

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ≥ 0

S is the set of subsets that separate s from t.

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

The Separation Problem for the Shortest Path LP is the Minimum

Cut Problem.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 467/554

18 Cuts & Metrics
Minimum Cut

min
∑
e c(e)xe

s.t. ∀P ∈ P ∑
e∈P xe ≥ 1

∀e ∈ E xe ∈ {0,1}

P is the set of path that connect s and t.

The Dual:

max
∑
P yP

s.t. ∀e ∈ E ∑
P :e∈P yP ≤ c(e)

∀P ∈ P yP ≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 468/554

18 Cuts & Metrics
Minimum Cut

min
∑
e c(e)xe

s.t. ∀P ∈ P ∑
e∈P xe ≥ 1

∀e ∈ E xe ≥ 0

P is the set of path that connect s and t.

The Dual:

max
∑
P yP

s.t. ∀e ∈ E ∑
P :e∈P yP ≤ c(e)

∀P ∈ P yP ≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 468/554

18 Cuts & Metrics
Minimum Cut

min
∑
e c(e)xe

s.t. ∀P ∈ P ∑
e∈P xe ≥ 1

∀e ∈ E xe ≥ 0

P is the set of path that connect s and t.

The Dual:

max
∑
P yP

s.t. ∀e ∈ E ∑
P :e∈P yP ≤ c(e)

∀P ∈ P yP ≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 468/554

18 Cuts & Metrics
Minimum Cut

min
∑
e c(e)`e

s.t. ∀P ∈ P ∑
e∈P `e ≥ 1

∀e ∈ E `e ≥ 0

P is the set of path that connect s and t.

The Dual:

max
∑
P fP

s.t. ∀e ∈ E ∑
P :e∈P fP ≤ c(e)

∀P ∈ P fP ≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 468/554

18 Cuts & Metrics

Observations:

Suppose that `e-values are solution to Minimum Cut LP.

ñ We can view `e as defining the length of an edge.

ñ Define d(u,v) =minpath P btw. u and v
∑
e∈P `e as the

Shortest Path Metric induced by `e.
ñ We have d(u,v) = `e for every edge e = (u,v), as otw. we

could reduce `e without affecting the distance between s
and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 469/554

18 Cuts & Metrics

Observations:

Suppose that `e-values are solution to Minimum Cut LP.

ñ We can view `e as defining the length of an edge.

ñ Define d(u,v) =minpath P btw. u and v
∑
e∈P `e as the

Shortest Path Metric induced by `e.
ñ We have d(u,v) = `e for every edge e = (u,v), as otw. we

could reduce `e without affecting the distance between s
and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 469/554

18 Cuts & Metrics

Observations:

Suppose that `e-values are solution to Minimum Cut LP.

ñ We can view `e as defining the length of an edge.

ñ Define d(u,v) =minpath P btw. u and v
∑
e∈P `e as the

Shortest Path Metric induced by `e.
ñ We have d(u,v) = `e for every edge e = (u,v), as otw. we

could reduce `e without affecting the distance between s
and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 469/554

18 Cuts & Metrics

Observations:

Suppose that `e-values are solution to Minimum Cut LP.

ñ We can view `e as defining the length of an edge.

ñ Define d(u,v) =minpath P btw. u and v
∑
e∈P `e as the

Shortest Path Metric induced by `e.
ñ We have d(u,v) = `e for every edge e = (u,v), as otw. we

could reduce `e without affecting the distance between s
and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 469/554

How do we round the LP?

ñ Let B(s, r) be the ball of radius r around s (w.r.t. metric d).

Formally:

B = {v ∈ V | d(s, v) ≤ r}

ñ For 0 ≤ r < 1, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 470/554

How do we round the LP?

ñ Let B(s, r) be the ball of radius r around s (w.r.t. metric d).

Formally:

B = {v ∈ V | d(s, v) ≤ r}

ñ For 0 ≤ r < 1, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 470/554

How do we round the LP?

ñ Let B(s, r) be the ball of radius r around s (w.r.t. metric d).

Formally:

B = {v ∈ V | d(s, v) ≤ r}

ñ For 0 ≤ r < 1, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 470/554

How do we round the LP?

ñ Let B(s, r) be the ball of radius r around s (w.r.t. metric d).

Formally:

B = {v ∈ V | d(s, v) ≤ r}

ñ For 0 ≤ r < 1, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 470/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut]

= Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))]

≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 471/554

What is the expected size of a cut?

E[size of cut] = E
[∑

e c(e)Pr[e is cut]
]

≤
∑
e c(e)`e

On the other hand:∑
e c(e)`e ≤ size of mincut

as the `e are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 472/554

What is the expected size of a cut?

E[size of cut] = E
[∑

e c(e)Pr[e is cut]
]

≤
∑
e c(e)`e

On the other hand:∑
e c(e)`e ≤ size of mincut

as the `e are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 472/554

What is the expected size of a cut?

E[size of cut] = E
[∑

e c(e)Pr[e is cut]
]

≤
∑
e c(e)`e

On the other hand:∑
e c(e)`e ≤ size of mincut

as the `e are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 472/554

Minimum Multicut:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a capacity function c : E → R+ on the edges.

Find a subset F ⊆ E of the edges such that all si-ti pairs lie in

different components in G = (V , E \ F).

min
∑
e c(e)`e

s.t. ∀P ∈ Pi for some i
∑
e∈P `e ≥ 1

∀e ∈ E `e ∈ {0,1}

Here Pi contains all path P between si and ti.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 473/554

Minimum Multicut:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a capacity function c : E → R+ on the edges.

Find a subset F ⊆ E of the edges such that all si-ti pairs lie in

different components in G = (V , E \ F).

min
∑
e c(e)`e

s.t. ∀P ∈ Pi for some i
∑
e∈P `e ≥ 1

∀e ∈ E `e ∈ {0,1}

Here Pi contains all path P between si and ti.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 473/554

Minimum Multicut:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a capacity function c : E → R+ on the edges.

Find a subset F ⊆ E of the edges such that all si-ti pairs lie in

different components in G = (V , E \ F).

min
∑
e c(e)`e

s.t. ∀P ∈ Pi for some i
∑
e∈P `e ≥ 1

∀e ∈ E `e ∈ {0,1}

Here Pi contains all path P between si and ti.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 473/554

Re-using the analysis for the single-commodity case is

difficult.

Pr[e is cut] ≤ ?

ñ If for some R the balls B(si, R) are disjoint between different

sources, we get a 1/R approximation.

ñ However, this cannot be guaranteed.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 474/554

Re-using the analysis for the single-commodity case is

difficult.

Pr[e is cut] ≤ ?

ñ If for some R the balls B(si, R) are disjoint between different

sources, we get a 1/R approximation.

ñ However, this cannot be guaranteed.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 474/554

Re-using the analysis for the single-commodity case is

difficult.

Pr[e is cut] ≤ ?

ñ If for some R the balls B(si, R) are disjoint between different

sources, we get a 1/R approximation.

ñ However, this cannot be guaranteed.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 474/554

ñ Assume for simplicity that all edge-length `e are multiples

of δ� 1.

ñ Replace the graph G by a graph G′, where an edge of length

`e is replaced by `e/δ edges of length δ.

ñ Let B(si, z) be the ball in G′ that contains nodes v with

distance d(si, v) ≤ zδ.

Algorithm 1 RegionGrowing(si, p)
1: z ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z ← z + 1

5: until heads

6: return B(si, z)

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 475/554

ñ Assume for simplicity that all edge-length `e are multiples

of δ� 1.

ñ Replace the graph G by a graph G′, where an edge of length

`e is replaced by `e/δ edges of length δ.

ñ Let B(si, z) be the ball in G′ that contains nodes v with

distance d(si, v) ≤ zδ.

Algorithm 1 RegionGrowing(si, p)
1: z ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z ← z + 1

5: until heads

6: return B(si, z)

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 475/554

ñ Assume for simplicity that all edge-length `e are multiples

of δ� 1.

ñ Replace the graph G by a graph G′, where an edge of length

`e is replaced by `e/δ edges of length δ.

ñ Let B(si, z) be the ball in G′ that contains nodes v with

distance d(si, v) ≤ zδ.

Algorithm 1 RegionGrowing(si, p)
1: z ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z ← z + 1

5: until heads

6: return B(si, z)

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 475/554

ñ Assume for simplicity that all edge-length `e are multiples

of δ� 1.

ñ Replace the graph G by a graph G′, where an edge of length

`e is replaced by `e/δ edges of length δ.

ñ Let B(si, z) be the ball in G′ that contains nodes v with

distance d(si, v) ≤ zδ.

Algorithm 1 RegionGrowing(si, p)
1: z ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z ← z + 1

5: until heads

6: return B(si, z)

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 475/554

Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 476/554

Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 476/554

Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 476/554

Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 476/554

Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 476/554

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an si-ti pair.

If we ensure that we cut before reaching radius 1/2 we are in

good shape.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 477/554

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an si-ti pair.

If we ensure that we cut before reaching radius 1/2 we are in

good shape.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 477/554

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an si-ti pair.

If we ensure that we cut before reaching radius 1/2 we are in

good shape.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 477/554

ñ choose p = 6 lnk · δ
ñ we make 1

2δ trials before reaching radius 1/2.

ñ we say a Region Growing is not successful if it does not

terminate before reaching radius 1/2.

Pr[not successful] ≤ (1−p) 1
2δ =

(
(1−p)1/p

) p
2δ ≤ e− p

2δ ≤ 1
k3

ñ Hence,

Pr[∃i that is not successful] ≤ 1
k2

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 478/554

ñ choose p = 6 lnk · δ
ñ we make 1

2δ trials before reaching radius 1/2.

ñ we say a Region Growing is not successful if it does not

terminate before reaching radius 1/2.

Pr[not successful] ≤ (1−p) 1
2δ =

(
(1−p)1/p

) p
2δ ≤ e− p

2δ ≤ 1
k3

ñ Hence,

Pr[∃i that is not successful] ≤ 1
k2

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 478/554

ñ choose p = 6 lnk · δ
ñ we make 1

2δ trials before reaching radius 1/2.

ñ we say a Region Growing is not successful if it does not

terminate before reaching radius 1/2.

Pr[not successful] ≤ (1−p) 1
2δ =

(
(1−p)1/p

) p
2δ ≤ e− p

2δ ≤ 1
k3

ñ Hence,

Pr[∃i that is not successful] ≤ 1
k2

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 478/554

ñ choose p = 6 lnk · δ
ñ we make 1

2δ trials before reaching radius 1/2.

ñ we say a Region Growing is not successful if it does not

terminate before reaching radius 1/2.

Pr[not successful] ≤ (1−p) 1
2δ =

(
(1−p)1/p

) p
2δ ≤ e− p

2δ ≤ 1
k3

ñ Hence,

Pr[∃i that is not successful] ≤ 1
k2

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 478/554

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 479/554

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 479/554

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 479/554

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 479/554

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 479/554

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 479/554

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 479/554

If we are not successful we simply perform a trivial

k-approximation.

This only increases the expected cost by at most
1
k2 · kOPT ≤ OPT/k.

Hence, our final cost is O(lnk) ·OPT in expectation.

18 Cuts & Metrics 6. Jul. 2018

Harald Räcke 480/554

Gap Introducing Reduction

yes

no

value ≤ n

value > 2n

gap

HAM TSP

Reduction from Hamiltonian cycle to TSP

ñ instance that has Hamiltonian cycle is mapped to TSP

instance with small cost

ñ otherwise it is mapped to instance with large cost

ñ =⇒ there is no 2n/n-approximation for TSP

PCP theorem: Approximation View

Theorem 46 (PCP Theorem A)

There exists ε > 0 for which there is gap introducing reduction

between 3SAT and MAX3SAT.

yes

no

1

≤ 1− ε

gap

3SAT MAX3SAT

PCP theorem: Proof System View

Definition 47 (NP)

A language L ∈ NP if there exists a polynomial time,

deterministic verifier V (a Turing machine), s.t.

[x ∈ L] completeness

There exists a proof string y, |y| = poly(|x|),
s.t. V(x,y) = “accept”.

[x ∉ L] soundness

For any proof string y, V(x,y) = “reject”.

Note that requiring |y| = poly(|x|) for x ∉ L does not make a

difference (why?).

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 483/554

PCP theorem: Proof System View

Definition 47 (NP)

A language L ∈ NP if there exists a polynomial time,

deterministic verifier V (a Turing machine), s.t.

[x ∈ L] completeness

There exists a proof string y, |y| = poly(|x|),
s.t. V(x,y) = “accept”.

[x ∉ L] soundness

For any proof string y, V(x,y) = “reject”.

Note that requiring |y| = poly(|x|) for x ∉ L does not make a

difference (why?).

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 483/554

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access

to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle πTSP would allow M
to write a TSP-instance x on a special oracle tape and obtain the

answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query

complexity, i.e., how often the machine queries the oracle.

For a proof string y, πy is an oracle that upon given an index i
returns the i-th character yi of y.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 484/554

Probabilistic Checkable Proofs

Definition 48 (PCP)

A language L ∈ PCPc(n),s(n)(r(n), q(n)) if there exists a

polynomial time, non-adaptive, randomized verifier V , s.t.

[x ∈ L] There exists a proof string y, s.t. Vπy (x) = “ac-

cept” with probability ≥ c(n).

[x ∉ L] For any proof string y, Vπy (x) = “accept” with

probability ≤ s(n).

The verifier uses at most O(r(n)) random bits and makes at

most O(q(n)) oracle queries.

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1.

Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.

s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many

random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 486/554

Probabilistic Checkable Proofs

ñ P = PCP(0,0)
verifier without randomness and proof access is

deterministic algorithm

ñ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

ñ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

ñ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 487/554

Probabilistic Checkable Proofs

ñ P = PCP(0,0)
verifier without randomness and proof access is

deterministic algorithm

ñ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

ñ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

ñ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 487/554

Probabilistic Checkable Proofs

ñ P = PCP(0,0)
verifier without randomness and proof access is

deterministic algorithm

ñ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

ñ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

ñ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 487/554

Probabilistic Checkable Proofs

ñ P = PCP(0,0)
verifier without randomness and proof access is

deterministic algorithm

ñ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

ñ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

ñ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 487/554

Probabilistic Checkable Proofs

ñ P = PCP(0,0)
verifier without randomness and proof access is

deterministic algorithm

ñ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

ñ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

ñ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 487/554

Probabilistic Checkable Proofs

ñ P = PCP(0,0)
verifier without randomness and proof access is

deterministic algorithm

ñ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

ñ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

ñ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 487/554

Probabilistic Checkable Proofs

ñ P = PCP(0,0)
verifier without randomness and proof access is

deterministic algorithm

ñ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

ñ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

ñ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 487/554

Probabilistic Checkable Proofs

ñ P = PCP(0,0)
verifier without randomness and proof access is

deterministic algorithm

ñ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

ñ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

ñ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 487/554

Probabilistic Checkable Proofs

ñ P = PCP(0,0)
verifier without randomness and proof access is

deterministic algorithm

ñ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

ñ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

ñ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 487/554

Probabilistic Checkable Proofs

ñ PCP(0,poly(n)) = NP

by definition; NP-verifier does not use randomness and asks

polynomially many queries

ñ PCP(logn,poly(n)) ⊆ NP

NP-verifier can simulate O(logn) random bits

ñ PCP(poly(n),0) = coRP
?!⊆ NP

ñ NP ⊆ PCP(logn,1)
hard part of the PCP-theorem

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 488/554

Probabilistic Checkable Proofs

ñ PCP(0,poly(n)) = NP

by definition; NP-verifier does not use randomness and asks

polynomially many queries

ñ PCP(logn,poly(n)) ⊆ NP

NP-verifier can simulate O(logn) random bits

ñ PCP(poly(n),0) = coRP
?!⊆ NP

ñ NP ⊆ PCP(logn,1)
hard part of the PCP-theorem

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 488/554

Probabilistic Checkable Proofs

ñ PCP(0,poly(n)) = NP

by definition; NP-verifier does not use randomness and asks

polynomially many queries

ñ PCP(logn,poly(n)) ⊆ NP

NP-verifier can simulate O(logn) random bits

ñ PCP(poly(n),0) = coRP
?!⊆ NP

ñ NP ⊆ PCP(logn,1)
hard part of the PCP-theorem

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 488/554

Probabilistic Checkable Proofs

ñ PCP(0,poly(n)) = NP

by definition; NP-verifier does not use randomness and asks

polynomially many queries

ñ PCP(logn,poly(n)) ⊆ NP

NP-verifier can simulate O(logn) random bits

ñ PCP(poly(n),0) = coRP
?!⊆ NP

ñ NP ⊆ PCP(logn,1)
hard part of the PCP-theorem

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 488/554

PCP theorem: Proof System View

Theorem 49 (PCP Theorem B)

NP = PCP(logn,1)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 489/554

Probabilistic Proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G0, G1) (two graphs with n-nodes)

It expects a proof of the following form:

ñ For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills

G0 ≡ H =⇒ P[H] = 0

G1 ≡ H =⇒ P[H] = 1

G0, G1 � H =⇒ P[H] = arbitrary

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 490/554

Probabilistic Proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G0, G1) (two graphs with n-nodes)

It expects a proof of the following form:

ñ For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills

G0 ≡ H =⇒ P[H] = 0

G1 ≡ H =⇒ P[H] = 1

G0, G1 � H =⇒ P[H] = arbitrary

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 490/554

Probabilistic Proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G0, G1) (two graphs with n-nodes)

It expects a proof of the following form:

ñ For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills

G0 ≡ H =⇒ P[H] = 0

G1 ≡ H =⇒ P[H] = 1

G0, G1 � H =⇒ P[H] = arbitrary

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 490/554

Probabilistic Proof for Graph NonIsomorphism

Verifier:

ñ choose b ∈ {0,1} at random

ñ take graph Gb and apply a random permutation to obtain a

labeled graph H
ñ check whether P[H] = b

If G0 � G1 then by using the obvious proof the verifier will

always accept.

If G0 ≡ G1 a proof only accepts with probability 1/2.

ñ suppose π(G0) = G1

ñ if we accept for b = 1 and permutation πrand we reject for

b = 0 and permutation πrand ◦π

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 491/554

Probabilistic Proof for Graph NonIsomorphism

Verifier:

ñ choose b ∈ {0,1} at random

ñ take graph Gb and apply a random permutation to obtain a

labeled graph H
ñ check whether P[H] = b

If G0 � G1 then by using the obvious proof the verifier will

always accept.

If G0 ≡ G1 a proof only accepts with probability 1/2.

ñ suppose π(G0) = G1

ñ if we accept for b = 1 and permutation πrand we reject for

b = 0 and permutation πrand ◦π

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 491/554

Probabilistic Proof for Graph NonIsomorphism

Verifier:

ñ choose b ∈ {0,1} at random

ñ take graph Gb and apply a random permutation to obtain a

labeled graph H
ñ check whether P[H] = b

If G0 � G1 then by using the obvious proof the verifier will

always accept.

If G0 ≡ G1 a proof only accepts with probability 1/2.

ñ suppose π(G0) = G1

ñ if we accept for b = 1 and permutation πrand we reject for

b = 0 and permutation πrand ◦π

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 491/554

Version B =⇒ Version A

ñ For 3SAT there exists a verifier that uses c logn random

bits, reads q = O(1) bits from the proof, has completeness

1 and soundness 1/2.

ñ fix x and r :

input

x, r
proof bits

πj1 , . . . , πjq

computation

fx,r (πj1 , . . . , πjq)

reject accept

0 1

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 492/554

Version B =⇒ Version A

ñ For 3SAT there exists a verifier that uses c logn random

bits, reads q = O(1) bits from the proof, has completeness

1 and soundness 1/2.

ñ fix x and r :

input

x, r
proof bits

πj1 , . . . , πjq

computation

fx,r (πj1 , . . . , πjq)

reject accept

0 1

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 492/554

Version B =⇒ Version A

ñ For 3SAT there exists a verifier that uses c logn random

bits, reads q = O(1) bits from the proof, has completeness

1 and soundness 1/2.

ñ fix x and r :

input

x, r
proof bits

πj1 , . . . , πjq

computation

fx,r (πj1 , . . . , πjq)

reject accept

0 1

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 492/554

Version B =⇒ Version A

ñ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

ñ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

ñ this means we have gap introducing reduction

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 493/554

Version B =⇒ Version A

ñ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

ñ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

ñ this means we have gap introducing reduction

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 493/554

Version B =⇒ Version A

ñ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

ñ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

ñ this means we have gap introducing reduction

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 493/554

Version B =⇒ Version A

ñ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

ñ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

ñ this means we have gap introducing reduction

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 493/554

Version B =⇒ Version A

ñ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

ñ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

ñ this means we have gap introducing reduction

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 493/554

Version A =⇒ Version B

We show: Version A =⇒ NP ⊆ PCP1,1−ε(logn,1).

given L ∈ NP we build a PCP-verifier for L

Verifier:

ñ 3SAT is NP-complete; map instance x for L into 3SAT

instance Ix, s.t. Ix satisfiable iff x ∈ L
ñ map Ix to MAX3SAT instance Cx (PCP Thm. Version A)

ñ interpret proof as assignment to variables in Cx
ñ choose random clause X from Cx
ñ query variable assignment σ for X;

ñ accept if X(σ) = true otw. reject

Version A =⇒ Version B

We show: Version A =⇒ NP ⊆ PCP1,1−ε(logn,1).

given L ∈ NP we build a PCP-verifier for L

Verifier:

ñ 3SAT is NP-complete; map instance x for L into 3SAT

instance Ix, s.t. Ix satisfiable iff x ∈ L
ñ map Ix to MAX3SAT instance Cx (PCP Thm. Version A)

ñ interpret proof as assignment to variables in Cx
ñ choose random clause X from Cx
ñ query variable assignment σ for X;

ñ accept if X(σ) = true otw. reject

Version A =⇒ Version B

We show: Version A =⇒ NP ⊆ PCP1,1−ε(logn,1).

given L ∈ NP we build a PCP-verifier for L

Verifier:

ñ 3SAT is NP-complete; map instance x for L into 3SAT

instance Ix, s.t. Ix satisfiable iff x ∈ L
ñ map Ix to MAX3SAT instance Cx (PCP Thm. Version A)

ñ interpret proof as assignment to variables in Cx
ñ choose random clause X from Cx
ñ query variable assignment σ for X;

ñ accept if X(σ) = true otw. reject

Version A =⇒ Version B

We show: Version A =⇒ NP ⊆ PCP1,1−ε(logn,1).

given L ∈ NP we build a PCP-verifier for L

Verifier:

ñ 3SAT is NP-complete; map instance x for L into 3SAT

instance Ix, s.t. Ix satisfiable iff x ∈ L
ñ map Ix to MAX3SAT instance Cx (PCP Thm. Version A)

ñ interpret proof as assignment to variables in Cx
ñ choose random clause X from Cx
ñ query variable assignment σ for X;

ñ accept if X(σ) = true otw. reject

Version A =⇒ Version B

We show: Version A =⇒ NP ⊆ PCP1,1−ε(logn,1).

given L ∈ NP we build a PCP-verifier for L

Verifier:

ñ 3SAT is NP-complete; map instance x for L into 3SAT

instance Ix, s.t. Ix satisfiable iff x ∈ L
ñ map Ix to MAX3SAT instance Cx (PCP Thm. Version A)

ñ interpret proof as assignment to variables in Cx
ñ choose random clause X from Cx
ñ query variable assignment σ for X;

ñ accept if X(σ) = true otw. reject

Version A =⇒ Version B

We show: Version A =⇒ NP ⊆ PCP1,1−ε(logn,1).

given L ∈ NP we build a PCP-verifier for L

Verifier:

ñ 3SAT is NP-complete; map instance x for L into 3SAT

instance Ix, s.t. Ix satisfiable iff x ∈ L
ñ map Ix to MAX3SAT instance Cx (PCP Thm. Version A)

ñ interpret proof as assignment to variables in Cx
ñ choose random clause X from Cx
ñ query variable assignment σ for X;

ñ accept if X(σ) = true otw. reject

Version A =⇒ Version B

We show: Version A =⇒ NP ⊆ PCP1,1−ε(logn,1).

given L ∈ NP we build a PCP-verifier for L

Verifier:

ñ 3SAT is NP-complete; map instance x for L into 3SAT

instance Ix, s.t. Ix satisfiable iff x ∈ L
ñ map Ix to MAX3SAT instance Cx (PCP Thm. Version A)

ñ interpret proof as assignment to variables in Cx
ñ choose random clause X from Cx
ñ query variable assignment σ for X;

ñ accept if X(σ) = true otw. reject

Version A =⇒ Version B

We show: Version A =⇒ NP ⊆ PCP1,1−ε(logn,1).

given L ∈ NP we build a PCP-verifier for L

Verifier:

ñ 3SAT is NP-complete; map instance x for L into 3SAT

instance Ix, s.t. Ix satisfiable iff x ∈ L
ñ map Ix to MAX3SAT instance Cx (PCP Thm. Version A)

ñ interpret proof as assignment to variables in Cx
ñ choose random clause X from Cx
ñ query variable assignment σ for X;

ñ accept if X(σ) = true otw. reject

Version A =⇒ Version B

[x ∈ L] There exists proof string y, s.t. all clauses in Cx
evaluate to 1. In this case the verifier returns 1.

[x ∉ L] For any proof string y, at most a (1−ε)-fraction

of clauses in Cx evaluate to 1. The verifier will

reject with probability at least ε.

To show Theorem B we only need to run this verifier a constant

number of times to push rejection probability above 1/2.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 495/554

NP ⊆ PCP(poly(n), 1)

PCP(poly(n),1) means we have a potentially exponentially long

proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment

(say n bits)) by a code whose code-words have 2n bits.

A wrong proof is either

ñ a code-word whose pre-image does not correspond to a

satisfying assignment

ñ or, a sequence of bits that does not correspond to a

code-word

We can detect both cases by querying a few positions.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 496/554

NP ⊆ PCP(poly(n), 1)

PCP(poly(n),1) means we have a potentially exponentially long

proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment

(say n bits)) by a code whose code-words have 2n bits.

A wrong proof is either

ñ a code-word whose pre-image does not correspond to a

satisfying assignment

ñ or, a sequence of bits that does not correspond to a

code-word

We can detect both cases by querying a few positions.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 496/554

NP ⊆ PCP(poly(n), 1)

PCP(poly(n),1) means we have a potentially exponentially long

proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment

(say n bits)) by a code whose code-words have 2n bits.

A wrong proof is either

ñ a code-word whose pre-image does not correspond to a

satisfying assignment

ñ or, a sequence of bits that does not correspond to a

code-word

We can detect both cases by querying a few positions.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 496/554

The Code

u ∈ {0,1}n (satisfying assignment)

Walsh-Hadamard Code:

WHu : {0,1}n → {0,1}, x , xTu (over GF(2))

The code-word for u is WHu. We identify this function by a

bit-vector of length 2n.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 497/554

The Code

Lemma 50

If u ≠ u′ then WHu and WHu′ differ in at least 2n−1 bits.

Proof:

Suppose that u−u′ ≠ 0. Then

WHu(x) ≠ WHu′(x)⇐⇒ (u−u′)Tx ≠ 0

This holds for 2n−1 different vectors x.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 498/554

The Code

Lemma 50

If u ≠ u′ then WHu and WHu′ differ in at least 2n−1 bits.

Proof:

Suppose that u−u′ ≠ 0. Then

WHu(x) ≠ WHu′(x)⇐⇒ (u−u′)Tx ≠ 0

This holds for 2n−1 different vectors x.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 498/554

The Code

Suppose we are given access to a function f : {0,1}n → {0,1}
and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions

{0,1}n to {0,1} we can check

f(x +y) = f(x)+ f(y)

for all 22n pairs x,y. But that’s not very efficient.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 499/554

The Code

Suppose we are given access to a function f : {0,1}n → {0,1}
and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions

{0,1}n to {0,1} we can check

f(x +y) = f(x)+ f(y)

for all 22n pairs x,y. But that’s not very efficient.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 499/554

NP ⊆ PCP(poly(n), 1)

Can we just check a constant number of positions?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 500/554

NP ⊆ PCP(poly(n), 1)

Definition 51

Let ρ ∈ [0,1]. We say that f , g : {0,1}n → {0,1} are ρ-close if

Pr
x∈{0,1}n

[f (x) = g(x)] ≥ ρ .

Theorem 52 (proof deferred)

Let f : {0,1}n → {0,1} with

Pr
x,y∈{0,1}n

[
f(x)+ f(y) = f(x +y)

]
≥ ρ > 1

2
.

Then there is a linear function f̃ such that f and f̃ are ρ-close.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 501/554

NP ⊆ PCP(poly(n), 1)

Definition 51

Let ρ ∈ [0,1]. We say that f , g : {0,1}n → {0,1} are ρ-close if

Pr
x∈{0,1}n

[f (x) = g(x)] ≥ ρ .

Theorem 52 (proof deferred)

Let f : {0,1}n → {0,1} with

Pr
x,y∈{0,1}n

[
f(x)+ f(y) = f(x +y)

]
≥ ρ > 1

2
.

Then there is a linear function f̃ such that f and f̃ are ρ-close.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 501/554

NP ⊆ PCP(poly(n), 1)

We need O(1/δ) trials to be sure that f is (1− δ)-close to a

linear function with (arbitrary) constant probability.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 502/554

NP ⊆ PCP(poly(n), 1)

Suppose for δ < 1/4 f is (1− δ)-close to some linear function f̃ .

f̃ is uniquely defined by f , since linear functions differ on at

least half their inputs.

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 503/554

NP ⊆ PCP(poly(n), 1)

Suppose for δ < 1/4 f is (1− δ)-close to some linear function f̃ .

f̃ is uniquely defined by f , since linear functions differ on at

least half their inputs.

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 503/554

NP ⊆ PCP(poly(n), 1)

Suppose for δ < 1/4 f is (1− δ)-close to some linear function f̃ .

f̃ is uniquely defined by f , since linear functions differ on at

least half their inputs.

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 503/554

NP ⊆ PCP(poly(n), 1)

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

1. Choose x′ ∈ {0,1}n u.a.r.

2. Set x′′ := x + x′.
3. Let y′ = f(x′) and y′′ = f(x′′).
4. Output y′ +y′′.

x′ and x′′ are uniformly distributed (albeit dependent). With

probability at least 1− 2δ we have f(x′) = f̃ (x′) and

f(x′′) = f̃ (x′′).

Then the above routine returns f̃ (x).

This technique is known as local decoding of the

Walsh-Hadamard code.

NP ⊆ PCP(poly(n), 1)

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

1. Choose x′ ∈ {0,1}n u.a.r.

2. Set x′′ := x + x′.
3. Let y′ = f(x′) and y′′ = f(x′′).
4. Output y′ +y′′.

x′ and x′′ are uniformly distributed (albeit dependent). With

probability at least 1− 2δ we have f(x′) = f̃ (x′) and

f(x′′) = f̃ (x′′).

Then the above routine returns f̃ (x).

This technique is known as local decoding of the

Walsh-Hadamard code.

NP ⊆ PCP(poly(n), 1)

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

1. Choose x′ ∈ {0,1}n u.a.r.

2. Set x′′ := x + x′.
3. Let y′ = f(x′) and y′′ = f(x′′).
4. Output y′ +y′′.

x′ and x′′ are uniformly distributed (albeit dependent). With

probability at least 1− 2δ we have f(x′) = f̃ (x′) and

f(x′′) = f̃ (x′′).

Then the above routine returns f̃ (x).

This technique is known as local decoding of the

Walsh-Hadamard code.

NP ⊆ PCP(poly(n), 1)

We show that QUADEQ ∈ PCP(poly(n),1). The theorem follows

since any PCP-class is closed under polynomial time reductions.

QUADEQ

Given a system of quadratic equations over GF(2). Is there a

solution?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 505/554

QUADEQ is NP-complete

ñ given 3SAT instance C represent it as Boolean circuit

e.g. C = (x1 ∨ x2 ∨ x3)∧ (x3 ∨ x4 ∨ x̄5)∧ (x6 ∨ x7 ∨ x8)
ñ add variable for every wire

ñ add constraint for every gate

OR: i1 + i2 + i1 · i2 = o
AND: i1 · i2 = o
NEG: i = 1− o

ñ add constraint out = 1

ñ system is feasible iff

C is satisfiable

x1 x2 x3 x4 x5 x6 x7 x8

a hb

out

c

d
e

f

go

i2i1

d · e = g

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 506/554

QUADEQ is NP-complete

ñ given 3SAT instance C represent it as Boolean circuit

e.g. C = (x1 ∨ x2 ∨ x3)∧ (x3 ∨ x4 ∨ x̄5)∧ (x6 ∨ x7 ∨ x8)
ñ add variable for every wire

ñ add constraint for every gate

OR: i1 + i2 + i1 · i2 = o
AND: i1 · i2 = o
NEG: i = 1− o

ñ add constraint out = 1

ñ system is feasible iff

C is satisfiable

x1 x2 x3 x4 x5 x6 x7 x8

a hb

out

c

d
e

f

go

i2i1

d · e = g

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 506/554

QUADEQ is NP-complete

ñ given 3SAT instance C represent it as Boolean circuit

e.g. C = (x1 ∨ x2 ∨ x3)∧ (x3 ∨ x4 ∨ x̄5)∧ (x6 ∨ x7 ∨ x8)
ñ add variable for every wire

ñ add constraint for every gate

OR: i1 + i2 + i1 · i2 = o
AND: i1 · i2 = o
NEG: i = 1− o

ñ add constraint out = 1

ñ system is feasible iff

C is satisfiable

x1 x2 x3 x4 x5 x6 x7 x8

a hb

out

c

d
e

f

go

i2i1

d · e = g

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 506/554

QUADEQ is NP-complete

ñ given 3SAT instance C represent it as Boolean circuit

e.g. C = (x1 ∨ x2 ∨ x3)∧ (x3 ∨ x4 ∨ x̄5)∧ (x6 ∨ x7 ∨ x8)
ñ add variable for every wire

ñ add constraint for every gate

OR: i1 + i2 + i1 · i2 = o
AND: i1 · i2 = o
NEG: i = 1− o

ñ add constraint out = 1

ñ system is feasible iff

C is satisfiable

x1 x2 x3 x4 x5 x6 x7 x8

a hb

out

c

d
e

f

go

i2i1

d · e = g

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 506/554

QUADEQ is NP-complete

ñ given 3SAT instance C represent it as Boolean circuit

e.g. C = (x1 ∨ x2 ∨ x3)∧ (x3 ∨ x4 ∨ x̄5)∧ (x6 ∨ x7 ∨ x8)
ñ add variable for every wire

ñ add constraint for every gate

OR: i1 + i2 + i1 · i2 = o
AND: i1 · i2 = o
NEG: i = 1− o

ñ add constraint out = 1

ñ system is feasible iff

C is satisfiable

x1 x2 x3 x4 x5 x6 x7 x8

a hb

out

c

d
e

f

go

i2i1

d · e = g

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 506/554

NP ⊆ PCP(poly(n), 1)

We encode an instance of QUADEQ by a matrix A that has n2

columns; one for every pair i, j; and a right hand side vector b.

For an n-dimensional vector x we use x ⊗ x to denote the

n2-dimensional vector whose i, j-th entry is xixj.

Then we are asked whether

A(x ⊗ x) = b

has a solution.

NP ⊆ PCP(poly(n), 1)

Let A, b be an instance of QUADEQ. Let u be a satisfying

assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of

u and u⊗u. The verifier will accept such a proof with

probability 1.

We have to make sure that we reject proofs that do not

correspond to codewords for vectors of the form u, and u⊗u.

We also have to reject proofs that correspond to codewords for

vectors of the form z, and z ⊗ z, where z is not a satisfying

assignment.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 508/554

NP ⊆ PCP(poly(n), 1)

Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.999-linearity test for both functions (requires a

constant number of queries).

We also assume that for the remaining constant number of

accesses WH-decoding succeeds and we recover f̃ (x).

Hence, our proof will only ever see f̃ . To simplify notation we

use f for f̃ , in the following (similar for g, g̃).

NP ⊆ PCP(poly(n), 1)

Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.999-linearity test for both functions (requires a

constant number of queries).

We also assume that for the remaining constant number of

accesses WH-decoding succeeds and we recover f̃ (x).

Hence, our proof will only ever see f̃ . To simplify notation we

use f for f̃ , in the following (similar for g, g̃).

NP ⊆ PCP(poly(n), 1)

Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.999-linearity test for both functions (requires a

constant number of queries).

We also assume that for the remaining constant number of

accesses WH-decoding succeeds and we recover f̃ (x).

Hence, our proof will only ever see f̃ . To simplify notation we

use f for f̃ , in the following (similar for g, g̃).

NP ⊆ PCP(poly(n), 1)

Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.999-linearity test for both functions (requires a

constant number of queries).

We also assume that for the remaining constant number of

accesses WH-decoding succeeds and we recover f̃ (x).

Hence, our proof will only ever see f̃ . To simplify notation we

use f for f̃ , in the following (similar for g, g̃).

NP ⊆ PCP(poly(n), 1)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 510/554

NP ⊆ PCP(poly(n), 1)

Step 2. Verify that g encodes u ⊗ u where u is string

encoded by f .

f(r) = uTr and g(z) = wTz since f , g are linear.

ñ choose r , r ′ independently, u.a.r. from {0,1}n
ñ if f(r)f (r ′) ≠ g(r ⊗ r ′) reject

ñ repeat 3 times

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 511/554

NP ⊆ PCP(poly(n), 1)

A correct proof survives the test

f(r) · f(r ′)

= uTr ·uTr ′

=
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j

= (u⊗u)T (r ⊗ r ′)
= g(r ⊗ r ′)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 512/554

NP ⊆ PCP(poly(n), 1)

A correct proof survives the test

f(r) · f(r ′) = uTr ·uTr ′

=
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j

= (u⊗u)T (r ⊗ r ′)
= g(r ⊗ r ′)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 512/554

NP ⊆ PCP(poly(n), 1)

A correct proof survives the test

f(r) · f(r ′) = uTr ·uTr ′

=
(∑
i
uiri

)
·
(∑
j
ujr ′j

)

=
∑
ij
uiujrir ′j

= (u⊗u)T (r ⊗ r ′)
= g(r ⊗ r ′)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 512/554

NP ⊆ PCP(poly(n), 1)

A correct proof survives the test

f(r) · f(r ′) = uTr ·uTr ′

=
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j

= (u⊗u)T (r ⊗ r ′)
= g(r ⊗ r ′)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 512/554

NP ⊆ PCP(poly(n), 1)

A correct proof survives the test

f(r) · f(r ′) = uTr ·uTr ′

=
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j

= (u⊗u)T (r ⊗ r ′)

= g(r ⊗ r ′)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 512/554

NP ⊆ PCP(poly(n), 1)

A correct proof survives the test

f(r) · f(r ′) = uTr ·uTr ′

=
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j

= (u⊗u)T (r ⊗ r ′)
= g(r ⊗ r ′)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 512/554

NP ⊆ PCP(poly(n), 1)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

NP ⊆ PCP(poly(n), 1)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

NP ⊆ PCP(poly(n), 1)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′)

= wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

NP ⊆ PCP(poly(n), 1)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′)

=
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

NP ⊆ PCP(poly(n), 1)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j

= rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

NP ⊆ PCP(poly(n), 1)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

NP ⊆ PCP(poly(n), 1)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′)

= uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

NP ⊆ PCP(poly(n), 1)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′

= rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

NP ⊆ PCP(poly(n), 1)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2.

Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

NP ⊆ PCP(poly(n), 1)

Suppose that the proof is not correct and w ≠ u⊗u.

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2. Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

NP ⊆ PCP(poly(n), 1)

Step 3. Verify that f encodes satisfying assignment.

We need to check

Ak(u⊗u) = bk
where Ak is the k-th row of the constraint matrix. But the left

hand side is just g(ATk).

We can handle this by a single query but checking all constraints

would take O(m) steps.

We compute rTA, where r ∈R {0,1}m. If u is not a satisfying

assignment then with probability 1/2 the vector r will hit an odd

number of violated constraints.

In this case rTA(u⊗u) ≠ rTbk. The left hand side is equal to

g(ATr).

NP ⊆ PCP(poly(n), 1)

Step 3. Verify that f encodes satisfying assignment.

We need to check

Ak(u⊗u) = bk
where Ak is the k-th row of the constraint matrix. But the left

hand side is just g(ATk).

We can handle this by a single query but checking all constraints

would take O(m) steps.

We compute rTA, where r ∈R {0,1}m. If u is not a satisfying

assignment then with probability 1/2 the vector r will hit an odd

number of violated constraints.

In this case rTA(u⊗u) ≠ rTbk. The left hand side is equal to

g(ATr).

NP ⊆ PCP(poly(n), 1)

Step 3. Verify that f encodes satisfying assignment.

We need to check

Ak(u⊗u) = bk
where Ak is the k-th row of the constraint matrix. But the left

hand side is just g(ATk).

We can handle this by a single query but checking all constraints

would take O(m) steps.

We compute rTA, where r ∈R {0,1}m. If u is not a satisfying

assignment then with probability 1/2 the vector r will hit an odd

number of violated constraints.

In this case rTA(u⊗u) ≠ rTbk. The left hand side is equal to

g(ATr).

NP ⊆ PCP(poly(n), 1)

Step 3. Verify that f encodes satisfying assignment.

We need to check

Ak(u⊗u) = bk
where Ak is the k-th row of the constraint matrix. But the left

hand side is just g(ATk).

We can handle this by a single query but checking all constraints

would take O(m) steps.

We compute rTA, where r ∈R {0,1}m. If u is not a satisfying

assignment then with probability 1/2 the vector r will hit an odd

number of violated constraints.

In this case rTA(u⊗u) ≠ rTbk. The left hand side is equal to

g(ATr).

NP ⊆ PCP(poly(n), 1)

We used the following theorem for the linearity test:

Theorem 52

Let f : {0,1}n → {0,1} with

Pr
x,y∈{0,1}n

[
f(x)+ f(y) = f(x +y)

]
≥ ρ > 1

2
.

Then there is a linear function f̃ such that f and f̃ are ρ-close.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 515/554

NP ⊆ PCP(poly(n), 1)

Fourier Transform over GF(2)

In the following we use {−1,1} instead of {0,1}. We map

b ∈ {0,1} to (−1)b.

This turns summation into multiplication.

The set of function f : {−1,1}n → R form a 2n-dimensional

Hilbert space.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 516/554

NP ⊆ PCP(poly(n), 1)

Hilbert space

ñ addition (f + g)(x) = f(x)+ g(x)
ñ scalar multiplication (αf)(x) = αf(x)
ñ inner product 〈f , g〉 = Ex∈{−1,1}n[f (x)g(x)]

(bilinear, 〈f , f 〉 ≥ 0, and 〈f , f 〉 = 0⇒ f = 0)

ñ completeness: any sequence xk of vectors for which

∞∑
k=1

‖xk‖ <∞ fulfills

∥∥∥∥∥∥L−
N∑
k=1

xk

∥∥∥∥∥∥→ 0

for some vector L.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 517/554

NP ⊆ PCP(poly(n), 1)

standard basis

ex(y) =
{

1 x = y
0 otw.

Then, f(x) =∑iαiei(x) where αx = f(x), this means the

functions ei form a basis. This basis is orthonormal.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 518/554

NP ⊆ PCP(poly(n), 1)

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 519/554

NP ⊆ PCP(poly(n), 1)

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉

= Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 519/554

NP ⊆ PCP(poly(n), 1)

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]

= Ex
[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 519/554

NP ⊆ PCP(poly(n), 1)

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]

=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 519/554

NP ⊆ PCP(poly(n), 1)

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 519/554

NP ⊆ PCP(poly(n), 1)

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 519/554

NP ⊆ PCP(poly(n), 1)

A function χα multiplies a set of xi’s. Back in the GF(2)-world

this means summing a set of zi’s where xi = (−1)zi .

This means the function χα correspond to linear functions in the

GF(2) world.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 520/554

NP ⊆ PCP(poly(n), 1)

We can write any function f : {−1,1}n → R as

f =
∑
α
f̂αχα

We call f̂α the αth Fourier coefficient.

Lemma 53

1. 〈f , g〉 =∑α fαgα
2. 〈f , f 〉 =∑α f 2

α

Note that for Boolean functions f : {−1,1}n → {−1,1},
〈f , f 〉 = 1.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 521/554

Linearity Test

in GF(2):
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

in Hilbert space: (we will prove)

Suppose f : {±1}n → {−1,1} fulfills

Pr
x,y
[f (x)f(y) = f(x ◦y)] ≥ 1

2
+ ε .

Then there is some α ⊆ [n], s.t. f̂α ≥ 2ε.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 522/554

Linearity Test

in GF(2):
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

in Hilbert space: (we will prove)

Suppose f : {±1}n → {−1,1} fulfills

Pr
x,y
[f (x)f(y) = f(x ◦y)] ≥ 1

2
+ ε .

Then there is some α ⊆ [n], s.t. f̂α ≥ 2ε.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 522/554

Linearity Test

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 523/554

Linearity Test

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α

= 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 523/554

Linearity Test

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉

= agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 523/554

Linearity Test

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree

= 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 523/554

Linearity Test

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 523/554

Linearity Test

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 +ε.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 523/554

Linearity Test

Pr
x,y
[f (x ◦y) = f(x)f(y)] ≥ 1

2
+ ε

means that the fraction of inputs x,y on which f(x ◦y) and

f(x)f(y) agree is at least 1/2+ ε.

This gives

Ex,y[f (x ◦y)f(x)f(y)] = agreement− disagreement

= 2agreement− 1

≥ 2ε

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 524/554

2ε ≤ Ex,y
[
f(x ◦y)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(x ◦y)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 525/554

2ε ≤ Ex,y
[
f(x ◦y)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(x ◦y)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 525/554

2ε ≤ Ex,y
[
f(x ◦y)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(x ◦y)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 525/554

2ε ≤ Ex,y
[
f(x ◦y)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(x ◦y)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]

=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 525/554

2ε ≤ Ex,y
[
f(x ◦y)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(x ◦y)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 525/554

2ε ≤ Ex,y
[
f(x ◦y)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(x ◦y)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 525/554

Approximation Preserving Reductions

AP-reduction

ñ x ∈ I1 ⇒ f(x, r) ∈ I2
ñ SOL1(x) ≠ �⇒ SOL2(f (x, r)) ≠ �
ñ y ∈ SOL2(f (x, r)) ⇒ g(x,y, r) ∈ SOL2(x)
ñ f ,g are polynomial time computable

ñ R2(f (x, r),y) ≤ r ⇒ R1(x, g(x,y, r)) ≤ 1+α(r − 1)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 526/554

Label Cover

Input:

ñ bipartite graph G = (V1, V2, E)
ñ label sets L1, L2

ñ for every edge (u,v) ∈ E a relation Ru,v ⊆ L1 × L2 that

describe assignments that make the edge happy.

ñ maximize number of happy edges

1 2 3 4

1 2 3 4 5

L1 = { , , , }

L2 = { , , , , }

Re = {(,), (,), (,)}

Label Cover

ñ an instance of label cover is (d1, d2)-regular if every vertex

in L1 has degree d1 and every vertex in L2 has degree d2.

ñ if every vertex has the same degree d the instance is called

d-regular

Minimization version:

ñ assign a set Lx ⊆ L1 of labels to every node x ∈ L1 and a

set Ly ⊆ L2 to every node y ∈ L2

ñ make sure that for every edge (x,y) there is `x ∈ Lx and

`y ∈ Ly s.t. (`x, `y) ∈ Rx,y
ñ minimize

∑
x∈L1 |Lx| +

∑
y∈L2 |Ly | (total labels used)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 528/554

MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

MAX E3SAT via Label Cover

Lemma 54

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

ñ for V2 use the setting of the assignment that satisfies k
clauses

ñ for satisfied clauses in V1 use the corresponding

assignment to the clause-variables (gives 3k happy edges)

ñ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 530/554

MAX E3SAT via Label Cover

Lemma 54

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

ñ for V2 use the setting of the assignment that satisfies k
clauses

ñ for satisfied clauses in V1 use the corresponding

assignment to the clause-variables (gives 3k happy edges)

ñ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 530/554

MAX E3SAT via Label Cover

Lemma 54

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

ñ for V2 use the setting of the assignment that satisfies k
clauses

ñ for satisfied clauses in V1 use the corresponding

assignment to the clause-variables (gives 3k happy edges)

ñ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 530/554

MAX E3SAT via Label Cover

Lemma 54

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

ñ for V2 use the setting of the assignment that satisfies k
clauses

ñ for satisfied clauses in V1 use the corresponding

assignment to the clause-variables (gives 3k happy edges)

ñ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 530/554

MAX E3SAT via Label Cover

Lemma 55

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

ñ the labeling of nodes in V2 gives an assignment

ñ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

ñ hence at most 3m− (m− k) = 2m+ k edges are happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 531/554

MAX E3SAT via Label Cover

Lemma 55

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

ñ the labeling of nodes in V2 gives an assignment

ñ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

ñ hence at most 3m− (m− k) = 2m+ k edges are happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 531/554

MAX E3SAT via Label Cover

Lemma 55

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

ñ the labeling of nodes in V2 gives an assignment

ñ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

ñ hence at most 3m− (m− k) = 2m+ k edges are happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 531/554

MAX E3SAT via Label Cover

Lemma 55

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

ñ the labeling of nodes in V2 gives an assignment

ñ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

ñ hence at most 3m− (m− k) = 2m+ k edges are happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 531/554

Hardness for Label Cover

We cannot distinguish between the following two cases

ñ all 3m edges can be made happy

ñ at most 2m+ (1− ε)m = (3− ε)m out of the 3m edges can

be made happy

Hence, we cannot obtain an approximation constant α > 3−ε
3 .

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 532/554

Hardness for Label Cover

We cannot distinguish between the following two cases

ñ all 3m edges can be made happy

ñ at most 2m+ (1− ε)m = (3− ε)m out of the 3m edges can

be made happy

Hence, we cannot obtain an approximation constant α > 3−ε
3 .

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 532/554

(3, 5)-regular instances

Theorem 56

There is a constant ρ s.t. MAXE3SAT is hard to approximate with

a factor of ρ even if restricted to instances where a variable

appears in exactly 5 clauses.

Then our reduction has the following properties:

ñ the resulting Label Cover instance is (3,5)-regular

ñ it is hard to approximate for a constant α < 1

ñ given a label `1 for x there is at most one label `2 for y
that makes edge (x,y) happy (uniqueness property)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 533/554

(3, 5)-regular instances

Theorem 56

There is a constant ρ s.t. MAXE3SAT is hard to approximate with

a factor of ρ even if restricted to instances where a variable

appears in exactly 5 clauses.

Then our reduction has the following properties:

ñ the resulting Label Cover instance is (3,5)-regular

ñ it is hard to approximate for a constant α < 1

ñ given a label `1 for x there is at most one label `2 for y
that makes edge (x,y) happy (uniqueness property)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 533/554

(3, 5)-regular instances

The previous theorem can be obtained with a series of

gap-preserving reductions:

ñ MAX3SAT ≤ MAX3SAT(≤ 29)
ñ MAX3SAT(≤ 29) ≤ MAX3SAT(≤ 5)
ñ MAX3SAT(≤ 5) ≤ MAX3SAT(= 5)
ñ MAX3SAT(= 5) ≤ MAXE3SAT(= 5)

Here MAX3SAT(≤ 29) is the variant of MAX3SAT in which a

variable appears in at most 29 clauses. Similar for the other

problems.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 534/554

Regular instances

Theorem 57

There is a constant α < 1 such if there is an α-approximation

algorithm for Label Cover on 15-regular instances than P=NP.

Given a label `1 for x ∈ V1 there is at most one label `2 for y
that makes (x,y) happy. (uniqueness property)

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 535/554

Parallel Repetition

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance

probability of a wrong proof (or as here: a pair of wrong proofs)

one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a

single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several

rounds in parallel and hope that the acceptance probability of

wrong proofs goes down.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 536/554

Parallel Repetition

Given Label Cover instance I with G = (V1, V2, E), label sets L1

and L2 we construct a new instance I′:

ñ V ′1 = Vk1 = V1 × · · · × V1

ñ V ′2 = Vk2 = V2 × · · · × V2

ñ L′1 = Lk1 = L1 × · · · × L1

ñ L′2 = Lk2 = L2 × · · · × L2

ñ E′ = Ek = E × · · · × E
An edge ((x1, . . . , xk), (y1, . . . , yk)) whose end-points are

labelled by (`x1 , . . . , `
x
k) and (`y1 , . . . , `

y
k) is happy if

(`xi , `
y
i) ∈ Rxi,yi for all i.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 537/554

Parallel Repetition

If I is regular than also I′.

If I has the uniqueness property than also I′.

Did the gap increase?

ñ Suppose we have labelling `1, `2 that satisfies just an

α-fraction of edges in I.
ñ We transfer this labelling to instance I′:

vertex (x1, . . . , xk) gets label (`1(x1), . . . , `1(xk)),
vertex (y1, . . . , yk) gets label (`2(y1), . . . , `2(yk)).

ñ How many edges are happy?

only (α|E|)k out of |E|k!!! (just an αk fraction)

Does this always work?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 538/554

Parallel Repetition

If I is regular than also I′.

If I has the uniqueness property than also I′.

Did the gap increase?

ñ Suppose we have labelling `1, `2 that satisfies just an

α-fraction of edges in I.
ñ We transfer this labelling to instance I′:

vertex (x1, . . . , xk) gets label (`1(x1), . . . , `1(xk)),
vertex (y1, . . . , yk) gets label (`2(y1), . . . , `2(yk)).

ñ How many edges are happy?

only (α|E|)k out of |E|k!!! (just an αk fraction)

Does this always work?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 538/554

Parallel Repetition

If I is regular than also I′.

If I has the uniqueness property than also I′.

Did the gap increase?

ñ Suppose we have labelling `1, `2 that satisfies just an

α-fraction of edges in I.
ñ We transfer this labelling to instance I′:

vertex (x1, . . . , xk) gets label (`1(x1), . . . , `1(xk)),
vertex (y1, . . . , yk) gets label (`2(y1), . . . , `2(yk)).

ñ How many edges are happy?

only (α|E|)k out of |E|k!!! (just an αk fraction)

Does this always work?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 538/554

Parallel Repetition

If I is regular than also I′.

If I has the uniqueness property than also I′.

Did the gap increase?

ñ Suppose we have labelling `1, `2 that satisfies just an

α-fraction of edges in I.
ñ We transfer this labelling to instance I′:

vertex (x1, . . . , xk) gets label (`1(x1), . . . , `1(xk)),
vertex (y1, . . . , yk) gets label (`2(y1), . . . , `2(yk)).

ñ How many edges are happy?

only (α|E|)k out of |E|k!!! (just an αk fraction)

Does this always work?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 538/554

Parallel Repetition

If I is regular than also I′.

If I has the uniqueness property than also I′.

Did the gap increase?

ñ Suppose we have labelling `1, `2 that satisfies just an

α-fraction of edges in I.
ñ We transfer this labelling to instance I′:

vertex (x1, . . . , xk) gets label (`1(x1), . . . , `1(xk)),
vertex (y1, . . . , yk) gets label (`2(y1), . . . , `2(yk)).

ñ How many edges are happy?

only (α|E|)k out of |E|k!!! (just an αk fraction)

Does this always work?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 538/554

Parallel Repetition

If I is regular than also I′.

If I has the uniqueness property than also I′.

Did the gap increase?

ñ Suppose we have labelling `1, `2 that satisfies just an

α-fraction of edges in I.
ñ We transfer this labelling to instance I′:

vertex (x1, . . . , xk) gets label (`1(x1), . . . , `1(xk)),
vertex (y1, . . . , yk) gets label (`2(y1), . . . , `2(yk)).

ñ How many edges are happy?

only (α|E|)k out of |E|k!!! (just an αk fraction)

Does this always work?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 538/554

Parallel Repetition

If I is regular than also I′.

If I has the uniqueness property than also I′.

Did the gap increase?

ñ Suppose we have labelling `1, `2 that satisfies just an

α-fraction of edges in I.
ñ We transfer this labelling to instance I′:

vertex (x1, . . . , xk) gets label (`1(x1), . . . , `1(xk)),
vertex (y1, . . . , yk) gets label (`2(y1), . . . , `2(yk)).

ñ How many edges are happy?

only (α|E|)k out of |E|k!!! (just an αk fraction)

Does this always work?

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 538/554

Counter Example

Non interactive agreement:

ñ Two provers A and B
ñ The verifier generates two random bits bA, and bB, and

sends one to A and one to B.

ñ Each prover has to answer one of A0, A1, B0, B1 with the

meaning A0 := prover A has been given a bit with value 0.

ñ The provers win if they give the same answer and if the

answer is correct.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 539/554

Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

Regardless what we do 50% of edges are unhappy!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 540/554

Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

A0

Regardless what we do 50% of edges are unhappy!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 540/554

Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

A0 A0

Regardless what we do 50% of edges are unhappy!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 540/554

Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

A0 B0

Regardless what we do 50% of edges are unhappy!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 540/554

Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

A0 A1

Regardless what we do 50% of edges are unhappy!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 540/554

Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

A0

A0

Regardless what we do 50% of edges are unhappy!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 540/554

Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

A0

B1

Regardless what we do 50% of edges are unhappy!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 540/554

Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

A0

A1

Regardless what we do 50% of edges are unhappy!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 540/554

Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

A0

Regardless what we do 50% of edges are unhappy!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 540/554

Counter Example

In the repeated game the provers can

also win with probability 1/2:

0,0

0,1

1,0

1,1

0,0

1,0

0,1

1,1

0,0

0,1

1,0

1,1

0,0

1,0

0,1

1,1

A B

A0, B0

A0, B0

A0, B0

A0, B0

A1, B1

A1, B1

A1, B1

A1, B1

Boosting

Theorem 58

There is a constant c > 0 such if OPT(I) = |E|(1− δ) then

OPT(I′) ≤ |E′|(1− δ)
ck

logL , where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 542/554

Boosting

Theorem 58

There is a constant c > 0 such if OPT(I) = |E|(1− δ) then

OPT(I′) ≤ |E′|(1− δ)
ck

logL , where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 542/554

Hardness of Label Cover

Theorem 59

There are constants c > 0, δ < 1 s.t. for any k we cannot

distinguish regular instances for Label Cover in which either

ñ OPT(I) = |E|, or

ñ OPT(I) = |E|(1− δ)ck
unless each problem in NP has an algorithm running in time

O(nO(k)).

Corollary 60

There is no α-approximation for Label Cover for any constant α.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 543/554

Hardness of Set Cover

Theorem 61

There exist regular Label Cover instances s.t. we cannot

distinguish whether

ñ all edges are satisfiable, or

ñ at most a 1/ log2(|L1||E|)-fraction is satisfiable

unless NP-problems have algorithms with running time

O(nO(log logn)).

choose k ≥ 2
c log1/(1−δ)(log(|L1||E|)) = O(log logn).

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 544/554

Hardness of Set Cover

Partition System (s, t, h)
ñ universe U of size s
ñ t pairs of sets (A1, Ā1), . . . , (At , Āt);
Ai ⊆ U, Āi = U \Ai

ñ choosing from any h pairs only one of Ai, Āi we do not

cover the whole set U

we will show later:

for any h, t with h ≤ t there exist systems with s = |U| ≤ 4t22h

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 545/554

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L1|, h = log(|E||L1|))

for all u ∈ V1, `1 ∈ L1

Su,`1
= {((u,v),a) | (u,v) ∈ E,a ∈ A`1

}

for all v ∈ V2, `2 ∈ L2

Sv,`2
= {((u,v),a) | (u,v) ∈ E,a ∈ Ā`1

, where (`1, `2) ∈ R(u,v)}

note that Sv,`2
is well defined because of uniqueness property

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 546/554

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L1|, h = log(|E||L1|))

for all u ∈ V1, `1 ∈ L1

Su,`1
= {((u,v),a) | (u,v) ∈ E,a ∈ A`1

}

for all v ∈ V2, `2 ∈ L2

Sv,`2
= {((u,v),a) | (u,v) ∈ E,a ∈ Ā`1

, where (`1, `2) ∈ R(u,v)}

note that Sv,`2
is well defined because of uniqueness property

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 546/554

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L1|, h = log(|E||L1|))

for all u ∈ V1, `1 ∈ L1

Su,`1
= {((u,v),a) | (u,v) ∈ E,a ∈ A`1

}

for all v ∈ V2, `2 ∈ L2

Sv,`2
= {((u,v),a) | (u,v) ∈ E,a ∈ Ā`1

, where (`1, `2) ∈ R(u,v)}

note that Sv,`2
is well defined because of uniqueness property

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 546/554

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L1|, h = log(|E||L1|))

for all u ∈ V1, `1 ∈ L1

Su,`1
= {((u,v),a) | (u,v) ∈ E,a ∈ A`1

}

for all v ∈ V2, `2 ∈ L2

Sv,`2
= {((u,v),a) | (u,v) ∈ E,a ∈ Ā`1

, where (`1, `2) ∈ R(u,v)}

note that Sv,`2
is well defined because of uniqueness property

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 546/554

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L1|, h = log(|E||L1|))

for all u ∈ V1, `1 ∈ L1

Su,`1
= {((u,v),a) | (u,v) ∈ E,a ∈ A`1

}

for all v ∈ V2, `2 ∈ L2

Sv,`2
= {((u,v),a) | (u,v) ∈ E,a ∈ Ā`1

, where (`1, `2) ∈ R(u,v)}

note that Sv,`2
is well defined because of uniqueness property

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 546/554

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is E ×U , where U is the universe of some partition

system; (t = |L1|, h = log(|E||L1|))

for all u ∈ V1, `1 ∈ L1

Su,`1
= {((u,v),a) | (u,v) ∈ E,a ∈ A`1

}

for all v ∈ V2, `2 ∈ L2

Sv,`2
= {((u,v),a) | (u,v) ∈ E,a ∈ Ā`1

, where (`1, `2) ∈ R(u,v)}

note that Sv,`2
is well defined because of uniqueness property

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 546/554

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets Su,`1
’s and Sv,`2

’s, where `1 is the label we

assigned to u, and `2 the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,`2
contains {(u,v)} ×A`2

. For a happy

edge Su,`1
contains {(u,v)} × Ā`2

.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover

with |V1| + |V2| sets.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 547/554

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets Su,`1
’s and Sv,`2

’s, where `1 is the label we

assigned to u, and `2 the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,`2
contains {(u,v)} ×A`2

. For a happy

edge Su,`1
contains {(u,v)} × Ā`2

.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover

with |V1| + |V2| sets.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 547/554

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets Su,`1
’s and Sv,`2

’s, where `1 is the label we

assigned to u, and `2 the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,`2
contains {(u,v)} ×A`2

. For a happy

edge Su,`1
contains {(u,v)} × Ā`2

.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover

with |V1| + |V2| sets.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 547/554

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets Su,`1
’s and Sv,`2

’s, where `1 is the label we

assigned to u, and `2 the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,`2
contains {(u,v)} ×A`2

. For a happy

edge Su,`1
contains {(u,v)} × Ā`2

.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover

with |V1| + |V2| sets.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 547/554

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets Su,`1
’s and Sv,`2

’s, where `1 is the label we

assigned to u, and `2 the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,`2
contains {(u,v)} ×A`2

. For a happy

edge Su,`1
contains {(u,v)} × Ā`2

.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover

with |V1| + |V2| sets.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 547/554

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets Su,`1
’s and Sv,`2

’s, where `1 is the label we

assigned to u, and `2 the label for v. (|V1|+|V2| sets)

For an edge (u,v), Sv,`2
contains {(u,v)} ×A`2

. For a happy

edge Su,`1
contains {(u,v)} × Ā`2

.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover

with |V1| + |V2| sets.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 547/554

Hardness of Set Cover

Lemma 62

Given a solution to the set cover instance using at most
h
8 (|V1| + |V2|) sets we can find a solution to the Label Cover

instance satisfying at least 2
h2 |E| edges.

If the Label Cover instance cannot satisfy a 2/h2-fraction we

cannot cover with h
8 (|V1| + |V2|) sets.

Since differentiating between both cases for the Label Cover

instance is hard, we have an O(h)-hardness for Set Cover.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 548/554

Hardness of Set Cover

Lemma 62

Given a solution to the set cover instance using at most
h
8 (|V1| + |V2|) sets we can find a solution to the Label Cover

instance satisfying at least 2
h2 |E| edges.

If the Label Cover instance cannot satisfy a 2/h2-fraction we

cannot cover with h
8 (|V1| + |V2|) sets.

Since differentiating between both cases for the Label Cover

instance is hard, we have an O(h)-hardness for Set Cover.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 548/554

Hardness of Set Cover

Lemma 62

Given a solution to the set cover instance using at most
h
8 (|V1| + |V2|) sets we can find a solution to the Label Cover

instance satisfying at least 2
h2 |E| edges.

If the Label Cover instance cannot satisfy a 2/h2-fraction we

cannot cover with h
8 (|V1| + |V2|) sets.

Since differentiating between both cases for the Label Cover

instance is hard, we have an O(h)-hardness for Set Cover.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 548/554

Hardness of Set Cover

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make a 2/h2-fraction of edges happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 549/554

Hardness of Set Cover

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make a 2/h2-fraction of edges happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 549/554

Hardness of Set Cover

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make a 2/h2-fraction of edges happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 549/554

Hardness of Set Cover

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make a 2/h2-fraction of edges happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 549/554

Hardness of Set Cover

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make a 2/h2-fraction of edges happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 549/554

Hardness of Set Cover

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make a 2/h2-fraction of edges happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 549/554

Hardness of Set Cover

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make a 2/h2-fraction of edges happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 549/554

Hardness of Set Cover

ñ nu: number of Su,i’s in cover

ñ nv : number of Sv,j’s in cover

ñ at most 1/4 of the vertices can have nu, nv ≥ h/2; mark

these vertices

ñ at least half of the edges have both end-points unmarked,

as the graph is regular

ñ for such an edge (u,v) we must have chosen Su,i and a

corresponding Sv,j, s.t. (i, j) ∈ Ru,v (making (u,v) happy)

ñ we choose a random label for u from the (at most h/2)

chosen Su,i-sets and a random label for v from the (at most

h/2) Sv,j-sets

ñ (u,v) gets happy with probability at least 4/h2

ñ hence we make a 2/h2-fraction of edges happy

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 549/554

Set Cover

Theorem 63

There is no 1
32 logn-approximation for the unweighted Set Cover

problem unless problems in NP can be solved in time

O(nO(log logn)).

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 550/554

Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L1|) and t = |L1|; Size of partition system is

s = |U| = 4t22h = 4|L1|2(|E||L1|)2 = 4|E|2|L1|4

The size of the ground set is then

n = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logn.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L1|) of the

edges. this is not possible...

Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L1|) and t = |L1|; Size of partition system is

s = |U| = 4t22h = 4|L1|2(|E||L1|)2 = 4|E|2|L1|4

The size of the ground set is then

n = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logn.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L1|) of the

edges. this is not possible...

Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L1|) and t = |L1|; Size of partition system is

s = |U| = 4t22h = 4|L1|2(|E||L1|)2 = 4|E|2|L1|4

The size of the ground set is then

n = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logn.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L1|) of the

edges. this is not possible...

Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L1|) and t = |L1|; Size of partition system is

s = |U| = 4t22h = 4|L1|2(|E||L1|)2 = 4|E|2|L1|4

The size of the ground set is then

n = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logn.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L1|) of the

edges. this is not possible...

Given label cover instance (V1, V2, E), label sets L1 and L2;

Set h = log(|E||L1|) and t = |L1|; Size of partition system is

s = |U| = 4t22h = 4|L1|2(|E||L1|)2 = 4|E|2|L1|4

The size of the ground set is then

n = |E||U| = 4|E|3|L2|4 ≤ (|E||L2|)4

for sufficiently large |E|. Then h ≥ 1
4 logn.

If we get an instance where all edges are satisfiable there exists

a cover of size only |V1| + |V2|.

If we find a cover of size at most h8 (|V1| + |V2|) we can use this

to satisfy at least a fraction of 2/h2 ≥ 1/ log2(|E||L1|) of the

edges. this is not possible...

Partition Systems

Lemma 64

Given h and t with h ≤ t, there is a partition system of size

s = ln(4t)h2h ≤ 4t22h.

We pick t sets at random from the possible 2|U| subsets of U .

Fix a choice of h of these sets, and a choice of h bits (whether

we choose Ai or Āi). There are 2h ·
(
t
h

)
such choices.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 552/554

Partition Systems

Lemma 64

Given h and t with h ≤ t, there is a partition system of size

s = ln(4t)h2h ≤ 4t22h.

We pick t sets at random from the possible 2|U| subsets of U .

Fix a choice of h of these sets, and a choice of h bits (whether

we choose Ai or Āi). There are 2h ·
(
t
h

)
such choices.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 552/554

Partition Systems

Lemma 64

Given h and t with h ≤ t, there is a partition system of size

s = ln(4t)h2h ≤ 4t22h.

We pick t sets at random from the possible 2|U| subsets of U .

Fix a choice of h of these sets, and a choice of h bits (whether

we choose Ai or Āi). There are 2h ·
(
t
h

)
such choices.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 552/554

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) <

1
2
.

The random process outputs a partition system with constant

probability!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 553/554

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) <

1
2
.

The random process outputs a partition system with constant

probability!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 553/554

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) <

1
2
.

The random process outputs a partition system with constant

probability!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 553/554

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) <

1
2
.

The random process outputs a partition system with constant

probability!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 553/554

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) <

1
2
.

The random process outputs a partition system with constant

probability!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 553/554

What is the probability that a given choice covers U?

The probability that an element u ∈ Ai is 1/2 (same for Āi).

The probability that u is covered is 1− 1
2h

.

The probability that all u are covered is (1− 1
2h
)s

The probability that there exists a choice such that all u are

covered is at most(
t
h

)
2h
(

1− 1
2h

)s
≤ (2t)he−s/2h = (2t)h · e−h ln(4t) <

1
2
.

The random process outputs a partition system with constant

probability!

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 553/554

Advanced PCP Theorem

Theorem 65

For any positive constant ε > 0, it is the case that

NP ⊆ PCP1−ε,1/2+ε(logn,3). Moreover, the verifier just reads

three bits from the proof, and bases its decision only on the

parity of these bits.

It is NP-hard to approximate a MAXE3LIN problem by a factor

better than 1/2+ δ, for any constant δ.

It is NP-hard to approximate MAX3SAT better than 7/8+ δ, for

any constant δ.

19 Hardness of Approximation 6. Jul. 2018

Harald Räcke 554/554

	Approximation Algorithms
	Introduction to Approximation
	Integer Programs
	Basic Techniques
	Deterministic Rounding
	Rounding the Dual
	Primal Dual Technique
	Greedy
	Randomized Rounding

	Scheduling on Identical Machines
	Local Search
	Greedy

	Rounding Data + Dynamic Programming
	Knapsack
	Scheduling Revisited
	Bin Packing
	Advanced Rounding for Bin Packing

	Randomized Rounding
	Chernoff Bounds
	Integer Multicommodity Flows
	MAXSAT
	MAXCUT

	Primal Dual Techniques
	Primal Dual Revisited
	Feedback Vertex Set for Undirected Graphs
	Primal Dual for Shortest Path
	Steiner Forest

	Cuts & Metrics
	Hardness of Approximation

