A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

החה	17. Apr. 2018
UUU Harald Räcke	235/248

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

11 Integer Programs

17. Apr. 2018

237/248

Note that solving Integer Programs in general is NP-complete!

Harald Räcke

Definition 2

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 3

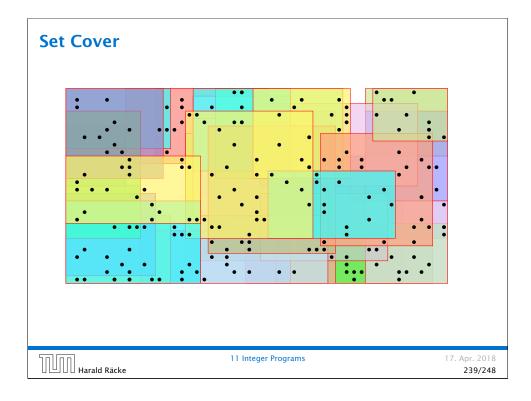
A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Harald Räcke

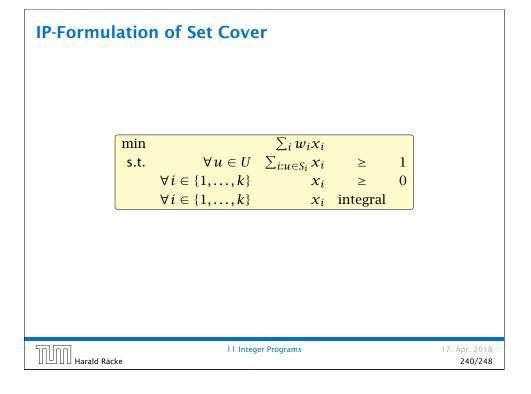
11 Integer Programs

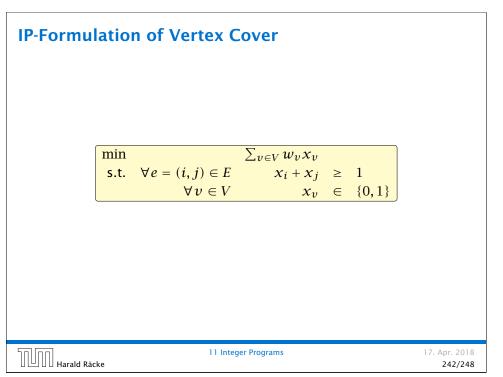
17. Apr. 2018 236/248

Set Cover Given a ground set U, a collection of subsets $S_1, \ldots, S_k \\ \in U$, where the *i*-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that $\forall u \in U \exists i \in I : u \in S_i$ (every element is covered) and $\sum_{i \in I} w_i$ is minimized. $i \in I$



Vertex Cover Given a graph G = (V, E) and a weight w_v for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.





Maximum Weighted Matching

Given a graph G = (V, E), and a weight w_e for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

	max s.t.	$\forall v \in V \\ \forall e \in E$	$\frac{\sum_{e \in E} w_e x_e}{\sum_{e: v \in e} x_e} x_e$	\leq	$1 \{0, 1\}$	
Harald Räcke		11	Integer Programs			17. Apr. 2018 243/248

Knapsack

]]]][]]]] Harald Räcke

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most K such that the profit is maximized.

max		$\sum_{i=1}^{n} p_i x_i$		
s.t.		$\sum_{i=1}^{n} w_i x_i$	\leq	Κ
l	$\forall i \in \{1, \ldots, n\}$	x_i	\in	$\{0, 1\}$

11 Integer Programs

Maximum Independent Set

Given a graph G = (V, E), and a weight w_v for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

max		$\sum_{v \in V} w_v x_v$		
s.t.	$\forall e = (i, j) \in E$	$x_i + x_j$	\leq	1
	$\forall v \in V$	x_v	\in	$\{0, 1\}$

Harald Räcke	11 Integer Programs	17. Apr. 2018 244/248

Relaxations

Definition 4

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

17. Apr. 2018

245/248

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

Harald Räcke	11 Integer Programs	17. Apr. 2018 247/248

