Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- ▶ Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

17. Apr. 2018

12/52

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale ⇒ 442€

only brew beer: 32 barrels of beer ⇒ 736€

▶ 7.5 barrels ale, 29.5 barrels beer ⇒ 776€

▶ 12 barrels ale, 28 barrels beer ⇒ 800€

3 Introduction to Linear Programming

17. Apr. 2018 13/52

Standard Form LPs

LP in standard form:

 \blacktriangleright input: numbers $a_{i,i}$, c_i , b_i

 \triangleright output: numbers x_i

ightharpoonup n = #decision variables, m = #constraints

maximize linear objective function subject to linear (in)equalities

$$\max \sum_{\substack{j=1\\n}}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ 1 \le i \le m$$

$$x_j \ge 0 \ 1 \le j \le n$$

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

Standard Form LPs

Original LP

Standard Form

Add a slack variable to every constraint.

3 Introduction to Linear Programming

17. Apr. 2018 16/52

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$
$$s \ge 0$$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\max c^T x$$
s.t. $Ax \le b$

$$x \ge 0$$

$$\begin{cases}
\min & c^T x \\
\text{s.t.} & Ax = b
\end{cases}$$

$$\text{t.} \quad Ax = b \\ x \ge 0$$

standard minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

3 Introduction to Linear Programming

17. Apr. 2018 17/52

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

unrestricted to nonnegative:

x unrestricted
$$\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

Standard Form LPs

Observations:

- ▶ a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

3 Introduction to Linear Programming

17. Apr. 2018 20/52

Geometry of Linear Programming $35a + 20b \le 1190$ $4a + 4b \le 160$ $5a + 15b \le 480$ 13a + 23b = 1400 $b \ge 0$

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ► Is LP in P?

Input size:

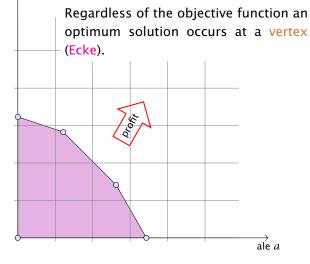
lacktriangleright n number of variables, m constraints, L number of bits to encode the input

3 Introduction to Linear Programming

17. Apr. 2018

21/52

Regardless of the objective function occurs at (Ecke).



Definitions

Let for a Linear Program in standard form

 $P = \{x \mid Ax = b, x \ge 0\}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfullbar). Otherwise. it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $ightharpoonup c^T x > -\infty$ for all $x \in P$ (for minimization problems)

3 Introduction to Linear Programming

17. Apr. 2018 24/52

Definition 3

A set $X \subseteq \mathbb{R}^n$ is called

- **a** linear subspace if it is closed under linear combinations.
- ▶ an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

Definition 2

Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- ▶ linear combination if $\lambda_i \in \mathbb{R}$.
- ▶ affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \geq 0$.
- ▶ conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \geq 0$.

Note that a combination involves only finitely many vectors.

Harald Räcke

17. Apr. 2018

3 Introduction to Linear Programming

25/52

Definition 4

Given a set $X \subseteq \mathbb{R}^n$.

- ightharpoonup span(X) is the set of all linear combinations of X (linear hull, span)
- ightharpoonup aff(X) is the set of all affine combinations of X (affine hull)
- ightharpoonup conv(X) is the set of all convex combinations of X (convex hull)
- cone(X) is the set of all conic combinations of X (conic hull)

Definition 5

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0,1]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Lemma 6

If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

$$Q = \{x \in P \mid f(x) \le t\}$$

3 Introduction to Linear Programming

17. Apr. 2018 28/52

Definition 9

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10

A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^Tx \leq b\}$, for $a \neq 0$.

Dimensions

Definition 7

The dimension $\dim(A)$ of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\dim(X)$ of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull aff(X).

3 Introduction to Linear Programming

17. Apr. 2018 29/52

Definitions

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., P = conv(X) where |X| = c.

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces

$$\{H(a_1,b_1),...,H(a_m,b_m)\}$$
, where

$$H(a_i,b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$$

Definition 13

A polyhedron P is bounded if there exists B s.t. $||x||_2 \le B$ for all $x \in P$.

3 Introduction to Linear Programming

17. Apr. 2018 32/52

17. Apr. 2018

Definition 15

$$H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$$

is a supporting hyperplane of P if $\max\{a^Tx \mid x \in P\} = b$.

Definition 16

supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- ightharpoonup a face v is a vertex of P if $\{v\}$ is a face of P.
- ▶ a face e is an edge of P if e is a face and dim(e) = 1.
- ▶ a face F is a facet of P if F is a face and

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

3 Introduction to Linear Programming

17. Apr. 2018 33/52

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some

- $\dim(F) = \dim(P) 1$.

Equivalent definition for vertex:

Definition 18

Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T \gamma < c^T x$, for all $\gamma \in P$, $\gamma \neq x$.

Definition 19

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Observation

The feasible region of an LP is a Polyhedron.

∏∏∏ Harald Räcke

3 Introduction to Linear Programming

17. Apr. 2018 36/52

Convex Sets

Case 1. $[\exists j \text{ s.t. } d_j < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- \blacktriangleright $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- \triangleright $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- \blacktriangleright $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- \blacktriangleright as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

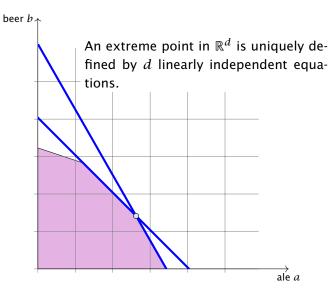
- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- ightharpoonup Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Harald Räcke

3 Introduction to Linear Programming

17. Apr. 2018 37/52

Algebraic View



Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_R has linearly independent columns.

3 Introduction to Linear Programming

17. Apr. 2018 40/52

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- \triangleright assume A_B has linearly dependent columns
- there exists $d \neq 0$ such that $A_R d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_i > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

- assume x is not extreme point
- ▶ there exists direction d s.t. $x \pm d \in P$
- ightharpoonup Ad = 0 because $A(x \pm d) = b$
- $b define <math>B' = \{i \mid d_i \neq 0\}$
- $ightharpoonup A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

3 Introduction to Linear Programming

17. Apr. 2018

41/52

Theorem 23

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_R has linearly independent columns then x is a vertex of P.

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_i = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence. x is a vertex of P

Observation

For an LP we can assume wlog, that the matrix A has full row-rank. This means rank(A) = m.

- ightharpoonup assume that rank(A) < m
- \triangleright assume wlog, that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all xthat fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, \ldots, n\}$ with |B| = m and

- \triangleright A_R is non-singular
- $x_B = A_R^{-1}b \ge 0$
- $\rightarrow x_N = 0$

where $N = \{1, \dots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_i > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Harald Räcke

3 Introduction to Linear Programming

17. Apr. 2018 45/52

Basic Feasible Solutions

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $rank(A_I) = |J|$ where $J = \{j \mid x_i \neq 0\};$

x is a basic feasible solution (gültige Basislösung) if in addition $x \geq 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with rank $(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x_B = b$ and $x_i = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least n-m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least n constraints are fulfilled with equality.

3 Introduction to Linear Programming

17. Apr. 2018 48/52

Algebraic View max 13a + 23b $\{b, s_c, s_m\}$ s.t. $5a + 15b + s_c$ = 480(0|40|-120|0|390) 4a + 4b= 16035a + 20b $+ s_m = 1190$ a, b, s_c , s_h , $s_m \ge 0$ $\{b, s_h, s_m\}$ (0|32|0|32|550) $\{a, b, s_h\}$ $\{a, b, s_m\}$ (19.41|25.53|0|-19.76|0) (12|28|0|0|210) $\{a, b, s_c\}$ (26|14|140|0|0) $\{s_c, s_h, s_m\}$ 0|0|480|160|1190) $\{a, s_c, s_h\}$ $\{a, s_c, s_m\}$ ale (34|0|30|24|0) (40|0|280|0|-210)

Basic Feasible Solutions

Definition 25

For a general LP $(\max\{c^Tx \mid Ax \leq b\})$ with n variables a point xis a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

3 Introduction to Linear Programming

17. Apr. 2018 49/52

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP? yes!
- ► Is I P in co-NP?
- ► Is LP in P?

Proof:

▶ Given a basis *B* we can compute the associated basis solution by calculating $A_R^{-1}b$ in polynomial time; then we can also compute the profit.

Observation We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m}\cdot\operatorname{poly}(n,m)\right)$. • there are only $\binom{n}{m}$ different bases. • compute the profit of each of them and take the maximum		
What happens if LP is unbounded?		
3 Introduction to Linear Programming 17. Apr. 2018 Harald Räcke 52/52		
	1	