Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(€)$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Brewery Problem

	Corn $(\mathbf{k g})$	Hops $(\mathbf{k g})$	Malt $(\mathbf{k g})$	Profit $(\boldsymbol{(})$
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

- only brew ale: 34 barrels of ale
$\Rightarrow 442 €$
- only brew beer: 32 barrels of beer
$\Rightarrow 736 €$
- 7.5 barrels ale, 29.5 barrels beer
$\Rightarrow 776 €$
- 12 barrels ale, 28 barrels beer
$\Rightarrow 800 €$

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Standard Form LPs

LP in standard form:

- input: numbers $a_{i j}, c_{j}, b_{i}$
- output: numbers x_{j}
- $n=$ \#decision variables, $m=$ \#constraints
- maximize linear objective function subject to linear (inequalities

$$
\begin{array}{|lll}
\hline \max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} 1 \leq i \leq m \\
& x_{j} \geq 0 \quad 1 \leq j \leq n \\
& \geq 0
\end{array}
$$

$$
\begin{array}{rrl}
\max & c^{T} x & \\
\text { s.t. } & A x & =b \\
& x & \geq 0
\end{array}
$$

Standard Form LPs

Original LP

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Standard Form

Add a slack variable to every constraint.

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b+s_{c}=480 \\
& 4 a+4 b+s_{h}=160 \\
& 35 a+20 b+s_{m}=1190 \\
& a \quad, \quad b \quad, \quad s_{c}, \quad s_{h}, \quad s_{m} \geq 0
\end{aligned}
$$

Standard Form LPs

There are different standard forms:
standard form

\max	$c^{T} x$	
s.t.	$A x$	$=b$
	x	≥ 0

standard
maximization form

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x \\
& x \geq b \\
& \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \\
& x \geq b \\
& x=0
\end{aligned}
$$

standard minimization form

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \\
& x \geq b \\
& \geq 0
\end{aligned}
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- less or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \leq 12 \Rightarrow a-3 b+5 c+s & =12 \\
s & \geq 0
\end{aligned}
$$

- greater or equal to equality:

$$
\begin{aligned}
a-3 b+5 c \geq 12 \Rightarrow a-3 b+5 c-s & =12 \\
s & \geq 0
\end{aligned}
$$

- min to max:

$$
\min a-3 b+5 c \Rightarrow \max -a+3 b-5 c
$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

- equality to less or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \leq 12 \\
-a+3 b-5 c \leq-12
\end{gathered}
$$

- equality to greater or equal:

$$
a-3 b+5 c=12 \Rightarrow \begin{gathered}
a-3 b+5 c \geq 12 \\
-a+3 b-5 c \geq-12
\end{gathered}
$$

- unrestricted to nonnegative:

$$
x \text { unrestricted } \Rightarrow x=x^{+}-x^{-}, x^{+} \geq 0, x^{-} \geq 0
$$

Standard Form LPs

Observations:

- a linear program does not contain $x^{2}, \cos (x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

- n number of variables, m constraints, L number of bits to encode the input

Geometry of Linear Programming

Geometry of Linear Programming

Definitions

Let for a Linear Program in standard form
$P=\{x \mid A x=b, x \geq 0\}$.

- P is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
- $c^{T} x<\infty$ for all $x \in P$ (for maximization problems)
- $c^{T} x>-\infty$ for all $x \in P$ (for minimization problems)

Definition 2

Given vectors/points $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}, \sum \lambda_{i} x_{i}$ is called

- linear combination if $\lambda_{i} \in \mathbb{R}$.
- affine combination if $\lambda_{i} \in \mathbb{R}$ and $\sum_{i} \lambda_{i}=1$.
- convex combination if $\lambda_{i} \in \mathbb{R}$ and $\sum_{i} \lambda_{i}=1$ and $\lambda_{i} \geq 0$.
- conic combination if $\lambda_{i} \in \mathbb{R}$ and $\lambda_{i} \geq 0$.

Note that a combination involves only finitely many vectors.

Definition 3

A set $X \subseteq \mathbb{R}^{n}$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is not a vector space

Definition 4

Given a set $X \subseteq \mathbb{R}^{n}$.

- $\operatorname{span}(X)$ is the set of all linear combinations of X (linear hull, span)
- $\operatorname{aff}(X)$ is the set of all affine combinations of X (affine hull)
- $\operatorname{conv}(X)$ is the set of all convex combinations of X (convex hull)
- cone (X) is the set of all conic combinations of X (conic hull)

Definition 5
A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$ we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Lemma 6

If $P \subseteq \mathbb{R}^{n}$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex then also

$$
Q=\{x \in P \mid f(x) \leq t\}
$$

Dimensions

Definition 7

The dimension $\operatorname{dim}(A)$ of an affine subspace $A \subseteq \mathbb{R}^{n}$ is the dimension of the vector space $\{x-a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension $\operatorname{dim}(X)$ of a convex set $X \subseteq \mathbb{R}^{n}$ is the dimension of its affine hull $\operatorname{aff}(X)$.

Definition 9
A set $H \subseteq \mathbb{R}^{n}$ is a hyperplane if $H=\left\{x \mid a^{T} x=b\right\}$, for $a \neq 0$.

Definition 10
A set $H^{\prime} \subseteq \mathbb{R}^{n}$ is a (closed) halfspace if $H=\left\{x \mid a^{T} x \leq b\right\}$, for $a \neq 0$.

Definitions

Definition 11

A polytop is a set $P \subseteq \mathbb{R}^{n}$ that is the convex hull of a finite set of points, i.e., $P=\operatorname{conv}(X)$ where $|X|=c$.

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^{n}$ that can be represented as the intersection of finitely many half-spaces
$\left\{H\left(a_{1}, b_{1}\right), \ldots, H\left(a_{m}, b_{m}\right)\right\}$, where

$$
H\left(a_{i}, b_{i}\right)=\left\{x \in \mathbb{R}^{n} \mid a_{i} x \leq b_{i}\right\} .
$$

Definition 13

A polyhedron P is bounded if there exists B s.t. $\|x\|_{2} \leq B$ for all $x \in P$.

Definitions

Theorem 14
P is a bounded polyhedron iff P is a polytop.

Definition 15

Let $P \subseteq \mathbb{R}^{n}, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. The hyperplane

$$
H(a, b)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}
$$

is a supporting hyperplane of P if $\max \left\{a^{T} x \mid x \in P\right\}=b$.

Definition 16

Let $P \subseteq \mathbb{R}^{n} . F$ is a face of P if $F=P$ or $F=P \cap H$ for some supporting hyperplane H.

Definition 17

Let $P \subseteq \mathbb{R}^{n}$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face e is an edge of P if e is a face and $\operatorname{dim}(e)=1$.
- a face F is a facet of P if F is a face and $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.

Equivalent definition for vertex:

Definition 18
Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^{n}$ such that $c^{T} y<c^{T} x$, for all $y \in P, y \neq x$.

Definition 19
Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a+(1-\lambda) b=x$ for $\lambda \in[0,1]$.

Lemma 20
A vertex is also an extreme point.

Observation

The feasible region of an LP is a Polyhedron.

Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- Wlog. assume $c^{T} d \geq 0$ (by taking either d or $-d$)
- Consider $x+\lambda d, \lambda>0$

Convex Sets

Case 1. $\left[\exists j\right.$ s.t. $\left.d_{j}<0\right]$

- increase λ to λ^{\prime} until first component of $x+\lambda d$ hits 0
- $x+\lambda^{\prime} d$ is feasible. Since $A\left(x+\lambda^{\prime} d\right)=b$ and $x+\lambda^{\prime} d \geq 0$
- $x+\lambda^{\prime} d$ has one more zero-component ($d_{k}=0$ for $x_{k}=0$ as $x \pm d \in P)$
- $c^{T} x^{\prime}=c^{T}\left(x+\lambda^{\prime} d\right)=c^{T} x+\lambda^{\prime} c^{T} d \geq c^{T} x$

Case 2. [$d_{j} \geq 0$ for all j and $c^{T} d>0$]

- $x+\lambda d$ is feasible for all $\lambda \geq 0$ since $A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$
- as $\lambda \rightarrow \infty, c^{T}(x+\lambda d) \rightarrow \infty$ as $c^{T} d>0$

Algebraic View

Notation

Suppose $B \subseteq\{1 \ldots n\}$ is a set of column-indices. Define A_{B} as the subset of columns of A indexed by B.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. Then x is extreme point iff A_{B} has linearly independent columns.

Theorem 22
Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Leftarrow)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- $A d=0$ because $A(x \pm d)=b$
- define $B^{\prime}=\left\{j \mid d_{j} \neq 0\right\}$
- $A_{B^{\prime}}$ has linearly dependent columns as $A d=0$
- $d_{j}=0$ for all j with $x_{j}=0$ as $x \pm d \geq 0$
- Hence, $B^{\prime} \subseteq B, A_{B^{\prime}}$ is sub-matrix of A_{B}

Theorem 22

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$.
Then x is extreme point iff A_{B} has linearly independent columns.

Proof (\Rightarrow)

- assume A_{B} has linearly dependent columns
- there exists $d \neq 0$ such that $A_{B} d=0$
- extend d to \mathbb{R}^{n} by adding 0 -components
- now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 23

Let $P=\{x \mid A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j \mid x_{j}>0\right\}$. If A_{B} has linearly independent columns then x is a vertex of P.

- define $c_{j}= \begin{cases}0 & j \in B \\ -1 & j \notin B\end{cases}$
- then $c^{T} x=0$ and $c^{T} y \leq 0$ for $y \in P$
- assume $c^{T} y=0$; then $y_{j}=0$ for all $j \notin B$
- $b=A y=A_{B} y_{B}=A x=A_{B} x_{B}$ gives that $A_{B}\left(x_{B}-y_{B}\right)=0$;
- this means that $x_{B}=y_{B}$ since A_{B} has linearly independent columns
- we get $y=x$
- hence, x is a vertex of P

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A)=m$.

- assume that $\operatorname{rank}(A)<m$
- assume wlog. that the first row A_{1} lies in the span of the other rows A_{2}, \ldots, A_{m}; this means

$$
A_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i}, \text { for suitable } \lambda_{i}
$$

C1 if now $b_{1}=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then for all x with $A_{i} x=b_{i}$ we also have $A_{1} x=b_{1}$; hence the first constraint is superfluous
C2 if $b_{1} \neq \sum_{i=2}^{m} \lambda_{i} \cdot b_{i}$ then the LP is infeasible, since for all x that fulfill constraints A_{2}, \ldots, A_{m} we have

$$
A_{1} x=\sum_{i=2}^{m} \lambda_{i} \cdot A_{i} x=\sum_{i=2}^{m} \lambda_{i} \cdot b_{i} \neq b_{1}
$$

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Theorem 24

Given $P=\{x \mid A x=b, x \geq 0\} . x$ is extreme point iff there exists $B \subseteq\{1, \ldots, n\}$ with $|B|=m$ and

- A_{B} is non-singular
- $x_{B}=A_{B}^{-1} b \geq 0$
- $x_{N}=0$
where $N=\{1, \ldots, n\} \backslash B$.

Proof

Take $B=\left\{j \mid x_{j}>0\right\}$ and augment with linearly independent columns until $|B|=m$; always possible since $\operatorname{rank}(A)=m$.

Basic Feasible Solutions

$x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if $A x=b$ and $\operatorname{rank}\left(A_{J}\right)=|J|$ where $J=\left\{j \mid x_{j} \neq 0\right\}$;
x is a basic feasible solution (gültige Basislösung) if in addition $x \geq 0$.

A basis (Basis) is an index set $B \subseteq\{1, \ldots, n\}$ with $\operatorname{rank}\left(A_{B}\right)=m$ and $|B|=m$.
$x \in \mathbb{R}^{n}$ with $A_{B} x_{B}=b$ and $x_{j}=0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least $n-m$ of the x_{i} 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:
In a BFS at least n constraints are fulfilled with equality.

Basic Feasible Solutions

Definition 25
For a general $\mathrm{LP}\left(\max \left\{c^{T} x \mid A x \leq b\right\}\right)$ with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Algebraic View

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

- Given a basis B we can compute the associated basis solution by calculating $A_{B}^{-1} b$ in polynomial time; then we can also compute the profit.

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n, m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

