Lemma 2 (Chernoff Bounds)

Let $X_1, ..., X_n$ be *n* independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L ,$$

Lemma 3 For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Markovs Inequality:

Let X be random variable taking non-negative values. Then

$\Pr[X \ge a] \le \mathbb{E}[X]/a$

Trivial!

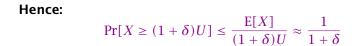
Markovs Inequality:

Let X be random variable taking non-negative values. Then

$\Pr[X \ge a] \le \mathbb{E}[X]/a$

Trivial!

Hence: $\Pr[X \ge (1 + \delta)U] \le \frac{\mathbb{E}[X]}{(1 + \delta)U}$



Hence: $\Pr[X \ge (1+\delta)U] \le \frac{\mathbb{E}[X]}{(1+\delta)U} \approx \frac{1}{1+\delta}$

That's awfully weak :(

17.1 Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all *i*.

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all *i*.

Cool Trick:

 $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Cool Trick:

 $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

Now, we apply Markov:

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathrm{E}[e^{tX}]}{\rho^{t(1+\delta)U}} .$$

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Cool Trick:

 $\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$

Now, we apply Markov:

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathrm{E}[e^{tX}]}{e^{t(1+\delta)U}} .$$

This may be a lot better (!?)

 $\mathbf{E}\left[e^{tX}\right]$

17.1 Chernoff Bounds

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right]$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right]$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

 $\mathbf{E}\left[e^{tX_i}\right]$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathbf{E}\left[e^{tX_i}\right] = (1 - p_i) + p_i e^t$$

17.1 Chernoff Bounds

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathbf{E}\left[e^{tX_{i}}\right] = (1 - p_{i}) + p_{i}e^{t} = 1 + p_{i}(e^{t} - 1)$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathbb{E}\left[e^{tX_i}\right] = (1 - p_i) + p_i e^t = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathbb{E}\left[e^{tX_i}\right] = (1 - p_i) + p_i e^t = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}$$

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right]$$

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathbb{E}\left[e^{tX_i}\right] = (1 - p_i) + p_i e^t = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}$$

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right] \leq \prod_{i} e^{p_{i}(e^{t}-1)}$$

17.1 Chernoff Bounds

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathbb{E}\left[e^{tX_i}\right] = (1 - p_i) + p_i e^t = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}$$

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right] \leq \prod_{i} e^{p_{i}(e^{t}-1)} = e^{\sum p_{i}(e^{t}-1)}$$

17.1 Chernoff Bounds

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathbb{E}\left[e^{tX_i}\right] = (1 - p_i) + p_i e^t = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}$$

$$\prod_{i} \mathbb{E}\left[e^{tX_{i}}\right] \leq \prod_{i} e^{p_{i}(e^{t}-1)} = e^{\sum p_{i}(e^{t}-1)} = e^{(e^{t}-1)U}$$

17.1 Chernoff Bounds

 $\Pr[X \ge (1 + \delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$ $\le \frac{\operatorname{E}[e^{tX}]}{e^{t(1+\delta)U}}$

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$
$$\le \frac{\operatorname{E}[e^{tX}]}{e^{t(1+\delta)U}} \le \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}}$$

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$
$$\le \frac{\operatorname{E}[e^{tX}]}{e^{t(1+\delta)U}} \le \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}}$$

We choose $t = \ln(1 + \delta)$.

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$
$$\le \frac{\operatorname{E}[e^{tX}]}{e^{t(1+\delta)U}} \le \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}} \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$

We choose $t = \ln(1 + \delta)$.

Lemma 4 For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

Take logarithms:

$$U(\delta - (1 + \delta)\ln(1 + \delta)) \le -U\delta^2/3$$

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

Take logarithms:

$$U(\delta - (1 + \delta)\ln(1 + \delta)) \le -U\delta^2/3$$

True for $\delta = 0$.

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

Take logarithms:

$$U(\delta - (1 + \delta)\ln(1 + \delta)) \le -U\delta^2/3$$

True for $\delta = 0$. Divide by U and take derivatives:

 $-\ln(1+\delta) \leq -2\delta/3$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$

 $f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$

A convex function ($f''(\delta) \ge 0$) on an interval takes maximum at the boundaries.

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

A convex function ($f''(\delta) \ge 0$) on an interval takes maximum at the boundaries.

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

A convex function ($f''(\delta) \ge 0$) on an interval takes maximum at the boundaries.

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

A convex function ($f''(\delta) \ge 0$) on an interval takes maximum at the boundaries.

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

f(0) = 0 and $f(1) = -\ln(2) + 2/3 < 0$

For $\delta \geq 1$ we show

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta/3}$$

For $\delta \ge 1$ we show

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta/3}$$

Take logarithms:

 $U(\delta - (1 + \delta)\ln(1 + \delta)) \le -U\delta/3$

For $\delta \ge 1$ we show

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta/3}$$

Take logarithms:

$$U(\delta - (1 + \delta)\ln(1 + \delta)) \le -U\delta/3$$

True for $\delta = 0$.

For $\delta \ge 1$ we show

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta/3}$$

Take logarithms:

$$U(\delta - (1 + \delta)\ln(1 + \delta)) \le -U\delta/3$$

True for $\delta = 0$. Divide by U and take derivatives:

 $-\ln(1+\delta) \le -1/3 \iff \ln(1+\delta) \ge 1/3$ (true)

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Take logarithms:

$$L(-\delta - (1 - \delta)\ln(1 - \delta)) \le -L\delta^2/2$$

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Take logarithms:

$$L(-\delta - (1 - \delta)\ln(1 - \delta)) \le -L\delta^2/2$$

True for $\delta = 0$.

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Take logarithms:

$$L(-\delta - (1 - \delta)\ln(1 - \delta)) \le -L\delta^2/2$$

True for $\delta = 0$. Divide by *L* and take derivatives:

 $\ln(1-\delta) \leq -\delta$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$$\ln(1-\delta) \le -\delta$$

$$\ln(1-\delta) \le -\delta$$

True for $\delta = 0$.

 $\ln(1-\delta) \leq -\delta$

True for $\delta = 0$. Take derivatives:

 $-\frac{1}{1-\delta} \leq -1$

 $\ln(1-\delta) \leq -\delta$

True for $\delta = 0$. Take derivatives:

$$-\frac{1}{1-\delta} \le -1$$

This holds for $0 \le \delta < 1$.

- Given s_i - t_i pairs in a graph.
- Connect each pair by a path such that not too many path use any given edge.

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_i at random according to the probability distribution given by the Linear Programming solution.

Theorem 5

If $W^* \ge c \ln n$ for some constant c, then with probability at least $1 - n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n} = \mathcal{O}(W^*)$.

Theorem 6

With probability at least $1 - n^{-c/3}$ the total number of paths using any edge is at most $\mathcal{O}(W^* + c \ln n)$.

Let X_e^i be a random variable that indicates whether the path for $s_i \cdot t_i$ uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

17.2 Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i \ p \in P_i e \in p} x_p^* = \sum_{p:e \in P} x_p^* \le W^*$$

17.2 Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i} \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

17.2 Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_i \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

17.2 Integer Multicommodity Flows

Choose $\delta = \sqrt{(c \ln n)/W^*}$.

Then

 $\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$

Choose $\delta = \sqrt{(c \ln n)/W^*}$.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

17.3 MAXSAT

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

17.3 MAXSAT

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

17.3 MAXSAT

Problem definition:

- n Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

• A variable x_i and its negation \bar{x}_i are called literals.

- Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_i$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_j is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x̄_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

- A variable x_i and its negation \bar{x}_i are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_j is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_i is not a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any *i*.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

17.3 MAXSAT

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_i is not a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any *i*.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

17.3 MAXSAT

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x_i is not a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any *i*.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

17.3 MAXSAT

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

 $W = \sum_{j} w_{j} X_{j}$

17.3 MAXSAT

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

E[W]

17.3 MAXSAT

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$
$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

= $\sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

= $\sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$
 $\geq \frac{1}{2} \sum_{j} w_{j}$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

= $\sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$
 $\geq \frac{1}{2} \sum_{j} w_{j}$
 $\geq \frac{1}{2} \operatorname{OPT}$

MAXSAT: LP formulation

Let for a clause C_j, P_j be the set of positive literals and N_j the set of negative literals.

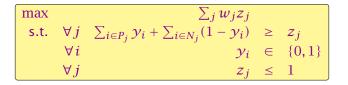
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$

17.3 MAXSAT

MAXSAT: LP formulation

Let for a clause C_j, P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$



MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

Lemma 7 (Geometric Mean \leq **Arithmetic Mean)** For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

$f(\lambda s + (1-\lambda)r) \geq \lambda f(s) + (1-\lambda)f(r)$

Lemma 9

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda)$$

for $\lambda \in [0,1]$.

17.3 MAXSAT

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

```
f(\lambda s + (1-\lambda)r) \geq \lambda f(s) + (1-\lambda)f(r)
```

Lemma 9

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

> $f(\lambda) = f((1 - \lambda)0 + \lambda 1)$ $\geq (1 - \lambda)f(0) + \lambda f(1)$ $= a + \lambda b$

for $\lambda \in [0,1]$.

17.3 MAXSAT

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

```
f(\lambda s + (1-\lambda)r) \geq \lambda f(s) + (1-\lambda)f(r)
```

Lemma 9

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

17.3 MAXSAT

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

```
f(\lambda s + (1-\lambda)r) \geq \lambda f(s) + (1-\lambda)f(r)
```

Lemma 9

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

17.3 MAXSAT

 $\Pr[C_j \text{ not satisfied}]$

17.3 MAXSAT

 $\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$

17.3 MAXSAT

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$
$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$
$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$
$$= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j}$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$
$$\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j}$$
$$= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j}$$
$$\leq \left(1 - \frac{z_j}{\ell_j} \right)^{\ell_j} .$$

The function $f(z)=1-(1-\frac{z}{\ell})^\ell$ is concave. Hence,

 $\Pr[C_j \text{ satisfied}]$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$
$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$
$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

$$f''(z) = -\frac{\ell-1}{\ell} \Big[1 - \frac{z}{\ell} \Big]^{\ell-2} \le 0$$
 for $z \in [0,1]$. Therefore, f is concave.

E[W]

17.3 MAXSAT

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$
$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$$

$$\geq \left(1 - \frac{1}{e}\right) \text{ OPT }.$$

MAXSAT: The better of two

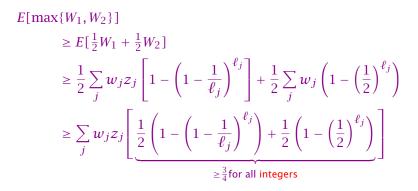
Theorem 10

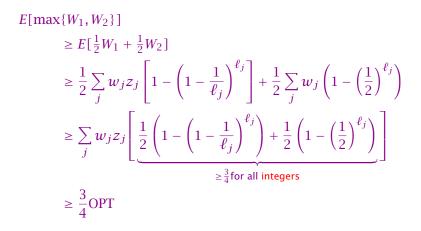
Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

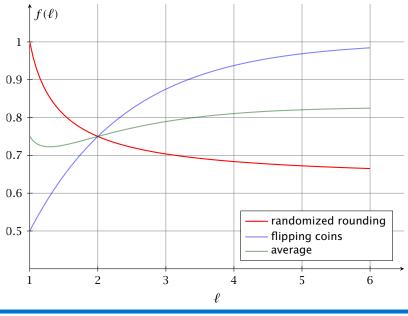
 $E[\max\{W_1, W_2\}]$


```
E[\max\{W_1, W_2\}] \\ \ge E[\frac{1}{2}W_1 + \frac{1}{2}W_2]
```


$$E[\max\{W_1, W_2\}] \\ \ge E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ \ge \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)$$







MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f : [0,1] \rightarrow [0,1]$ and set x_i to true with probability $f(y_i)$.

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f : [0,1] \rightarrow [0,1]$ and set x_i to true with probability $f(y_i)$.

MAXSAT: Nonlinear Randomized Rounding

Let $f : [0,1] \rightarrow [0,1]$ be a function with

 $1 - 4^{-x} \le f(x) \le 4^{x-1}$

Theorem 11

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

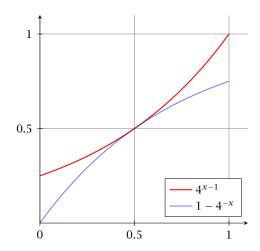
MAXSAT: Nonlinear Randomized Rounding

Let $f : [0,1] \rightarrow [0,1]$ be a function with

 $1 - 4^{-x} \le f(x) \le 4^{x-1}$

Theorem 11

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.



22. Jun. 2018 429/448

$\Pr[C_j \text{ not satisfied}]$

$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$

17.3 MAXSAT

22. Jun. 2018 430/448

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(\gamma_i)) \prod_{i \in N_j} f(\gamma_i)$$
$$\leq \prod_{i \in P_j} 4^{-\gamma_i} \prod_{i \in N_j} 4^{\gamma_i - 1}$$

22. Jun. 2018 430/448

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$
$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$
$$= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))}$$

22. Jun. 2018 430/448

$$Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$
$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$
$$= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))}$$
$$\leq 4^{-z_j}$$

 $\Pr[C_j \text{ satisfied}]$

 $\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j}$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

E[W]

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
.

Therefore,

 $E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}]$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j}$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4} z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \operatorname{OPT}$$

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 12 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 12 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 12 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 12 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 12 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Lemma 13

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

max		$\sum_j w_j z_j$		
s.t.	$\forall j$	$\sum_{i \in P_i} y_i + \sum_{i \in N_i} (1 - y_i)$	\geq	z_j
	$\forall i$	\mathcal{Y}_i	\in	$\{0, 1\}$
	$\forall j$	z_j	\leq	1

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- ▶ we can set y₁ = y₂ = 1/2 in the LP; this allows to set z₁ = z₂ = z₃ = z₄ = 1
- hence, the LP has value 4.

Lemma 13

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

max		$\sum_j w_j z_j$		
s.t.	$\forall j$	$\sum_{i \in P_i} y_i + \sum_{i \in N_i} (1 - y_i)$	\geq	z_j
	$\forall i$	\mathcal{Y}_i	\in	$\{0, 1\}$
	$\forall j$	Z_j	\leq	1

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- hence, the LP has value 4.

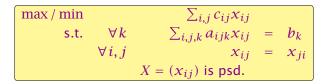
MaxCut

MaxCut

Given a weighted graph G = (V, E, w), $w(v) \ge 0$, partition the vertices into two parts. Maximize the weight of edges between the parts.

Trivial 2-approximation

Semidefinite Programming



- linear objective, linear contraints
- we can constrain a square matrix of variables to be symmetric positive definite

Vector Programming

$$\begin{array}{lll} \max / \min & \sum_{i,j} c_{ij}(v_i^t v_j) \\ \text{s.t.} & \forall k & \sum_{i,j,k} a_{ijk}(v_i^t v_j) &= b_k \\ & v_i \in \mathbb{R}^n \end{array}$$

- variables are vectors in n-dimensional space
- objective functions and contraints are linear in inner products of the vectors

This is equivalent!

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial time...

Quadratic Programs

Quadratic Program for MaxCut:

$$\begin{array}{c|c} \max & \frac{1}{2} \sum_{i,j} w_{ij} (1 - y_i y_j) \\ \forall i & y_i \in \{-1,1\} \end{array}$$

This is exactly MaxCut!

17.4 MAXCUT

22. Jun. 2018 438/448

Semidefinite Relaxation

max		$\frac{1}{2}\sum_{i,j}w_{ij}(1-v_i^t v_j)$		
	$\forall i$	$v_i^t v_i$	=	1
	$\forall i$	v_i	\in	\mathbb{R}^{n}

- this is clearly a relaxation
- the solution will be vectors on the unit sphere

- Choose a random vector r such that r/||r|| is uniformly distributed on the unit sphere.
- If $r^t v_i > 0$ set $y_i = 1$ else set $y_i = -1$

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0, 1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, \dots, x_n)]$$

= $\frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot \dots \cdot e^{x_n^2/2} dx_1 \cdot \dots \cdot dx_n$
= $\frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + \dots + x_n^2)} dx_1 \cdot \dots \cdot dx_n$

Hence the probability for a point only depends on its distance to the origin.

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0, 1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, \dots, x_n)]$$

= $\frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot \dots \cdot e^{x_n^2/2} dx_1 \cdot \dots \cdot dx_n$
= $\frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + \dots + x_n^2)} dx_1 \cdot \dots \cdot dx_n$

Hence the probability for a point only depends on its distance to the origin.

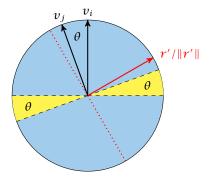
Fact

The projection of r onto two unit vectors e_1 and e_2 are independent and are normally distributed with mean 0 and variance 1 iff e_1 and e_2 are orthogonal.

Note that this is clear if e_1 and e_2 are standard basis vectors.

Corollary

If we project r onto a hyperplane its normalized projection (r'/||r'||) is uniformly distributed on the unit circle within the hyperplane.



- if the normalized projection falls into the shaded region, v_i and v_j are rounded to different values
- this happens with probability θ/π

• contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\left(1-v_i^t v_j\right)$$

• (expected) contribution of edge (i, j) to the rounded instance $w_{ij} \arccos(v_i^t v_j)/\pi$

ratio is at most

 $\min_{x \in [-1,1]} \frac{2 \arccos(x)}{\pi (1-x)} \ge 0.878$

17.4 MAXCUT

22. Jun. 2018 445/448

contribution of edge (*i*, *j*) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\left(1-v_i^t v_j\right)$$

 (expected) contribution of edge (*i*, *j*) to the rounded instance w_{ij} arccos(v^t_iv_j)/π

ratio is at most

 $\min_{x \in [-1,1]} \frac{2 \arccos(x)}{\pi (1-x)} \ge 0.878$

17.4 MAXCUT

22. Jun. 2018 445/448

contribution of edge (*i*, *j*) to the SDP-relaxation:

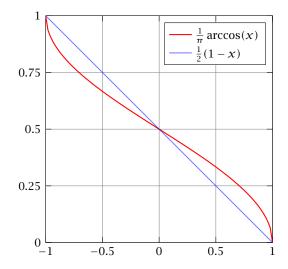
$$\frac{1}{2}w_{ij}\left(1-v_i^t v_j\right)$$

- (expected) contribution of edge (*i*, *j*) to the rounded instance w_{ij} arccos(v^t_iv_j)/π
- ratio is at most

$$\min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.878$$

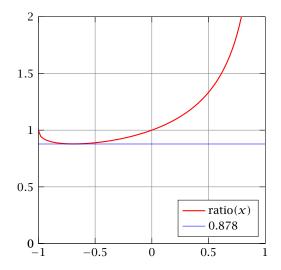
17.4 MAXCUT

22. Jun. 2018 445/448



17.4 MAXCUT

22. Jun. 2018 446/448



17.4 MAXCUT

22. Jun. 2018 447/448

Theorem 14

Given the unique games conjecture, there is no α -approximation for the maximum cut problem with constant

 $\alpha > \min_{x \in [-1,1]} \frac{2 \arccos(x)}{\pi(1-x)}$

unless P = NP.

17.4 MAXCUT

22. Jun. 2018 448/448