Lemma 2 (Chernoff Bounds)

Let X_1, \ldots, X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \le (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L$$
,

22. Jun. 2018

394/448

Lemma 3

For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^{2}/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

17.1 Chernoff Bounds

2. Jun. 2018

395/448

Proof of Chernoff Bounds

Markovs Inequality:

Let *X* be random variable taking non-negative values.

Then

$$Pr[X \ge a] \le E[X]/a$$

Trivial!

Proof of Chernoff Bounds

Hence:

$$\Pr[X \ge (1+\delta)U] \le \frac{\mathrm{E}[X]}{(1+\delta)U} \approx \frac{1}{1+\delta}$$

That's awfully weak :(

Proof of Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Now, we apply Markov:

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}} \ .$$

This may be a lot better (!?)

17.1 Chernoff Bounds

398/448

22. Jun. 2018

400/448

Now, we apply Markov:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

$$\le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}} \le \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}} \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$

We choose $t = \ln(1 + \delta)$.

Proof of Chernoff Bounds

$$E\left[e^{tX}\right] = E\left[e^{t\sum_{i}X_{i}}\right] = E\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}E\left[e^{tX_{i}}\right]$$

$$\mathbb{E}\left[e^{tX_i}\right] = (1-p_i) + p_i e^t = 1 + p_i(e^t-1) \le e^{p_i(e^t-1)}$$

$$\prod_{i} \mathbf{E} \left[e^{tX_i} \right] \le \prod_{i} e^{p_i(e^t - 1)} = e^{\sum p_i(e^t - 1)} = e^{(e^t - 1)U}$$

17.1 Chernoff Bounds

399/448

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

$$\le \frac{\mathrm{E}[e^{tX}]}{\rho t(1+\delta)U} \le \frac{e^{(e^t-1)U}}{\rho t(1+\delta)U} \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U}$$

Lemma 4

For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Show:

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

Take logarithms:

$$U(\delta - (1 + \delta) \ln(1 + \delta)) \le -U\delta^2/3$$

True for $\delta = 0$. Divide by U and take derivatives:

$$-\ln(1+\delta) \le -2\delta/3$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

17.1 Chernoff Bounds

22. Jun. 2018 402/448

For $\delta \geq 1$ we show

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta/3}$$

Take logarithms:

$$U(\delta - (1 + \delta) \ln(1 + \delta)) \le -U\delta/3$$

True for $\delta = 0$. Divide by U and take derivatives:

$$-\ln(1+\delta) \le -1/3 \iff \ln(1+\delta) \ge 1/3$$
 (true)

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

17.1 Chernoff Bounds

22. Jun. 2018 404/448

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

A convex function ($f''(\delta) \ge 0$) on an interval takes maximum at the boundaries.

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

$$f(0) = 0$$
 and $f(1) = -\ln(2) + 2/3 < 0$

Harald Räcke

17.1 Chernoff Bounds

22. Jun. 2018

403/448

Show:

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Take logarithms:

$$L(-\delta - (1 - \delta)\ln(1 - \delta)) \le -L\delta^2/2$$

True for $\delta = 0$. Divide by L and take derivatives:

$$ln(1-\delta) \le -\delta$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$$ln(1-\delta) \leq -\delta$$

True for $\delta = 0$. Take derivatives:

$$-\frac{1}{1-\delta} \le -1$$

This holds for $0 \le \delta < 1$.

17.1 Chernoff Bounds

406/448

Integer Multicommodity Flows

Randomized Rounding:

Integer Multicommodity Flows

- ightharpoonup Given s_i - t_i pairs in a graph.
- Connect each pair by a path such that not too many path use any given edge.

17.2 Integer Multicommodity Flows

22. lun. 2018

407/448

For each i choose one path from the set P_i at random according to the probability distribution given by the Linear Programming solution.

Theorem 5

If $W^* \ge c \ln n$ for some constant c, then with probability at least $1 - n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n} = \mathcal{O}(W^*).$

Theorem 6

With probability at least $1 - n^{-c/3}$ the total number of paths using any edge is at most $\mathcal{O}(W^* + c \ln n)$.

Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i} \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

17.2 Integer Multicommodity Flows

410/448

Problem definition:

- n Boolean variables
- ightharpoonup m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_i for each clause C_i .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Integer Multicommodity Flows

Choose
$$\delta = \sqrt{(c \ln n)/W^*}$$
.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

Harald Räcke

17.2 Integer Multicommodity Flows

411/448

17.3 MAXSAT

Terminology:

17.3 MAXSAT

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \vee x_i \vee \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- \triangleright x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- \triangleright For a given clause C_i the number of its literals is called its length or size and denoted with ℓ_i .
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Harald Räcke

17.3 MAXSAT

22. Jun. 2018

414/448

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

$$= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$$

$$\geq \frac{1}{2} \sum_{j} w_{j}$$

$$\geq \frac{1}{2} \operatorname{OPT}$$

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

Harald Räcke

17.3 MAXSAT

22. Jun. 2018

415/448

MAXSAT: LP formulation

Let for a clause C_j , P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x}_i$$

$$\begin{bmatrix} \max & \sum_{j} w_{j} z_{j} \\ \text{s.t.} & \forall j & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) & \geq & z_{j} \\ & \forall i & y_{i} & \in & \{0, 1\} \\ & \forall j & z_{j} & \leq & 1 \end{bmatrix}$$

17.3 MAXSAT

MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

17.3 MAXSAT

22. Jun. 201

418/448

Definition 8

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 9

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

17.3 MAXSAT

420/448

Lemma 7 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

Harald Räcke

17.3 MAXSAT

22. Jun. 2018

419/448

22. lun. 2018

421/448

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \\ &\leq \left(1 - \frac{z_j}{\ell_j} \right)^{\ell_j} \end{split}.$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

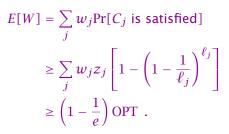
$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

$$f''(z)=-rac{\ell-1}{\ell}\Big[1-rac{z}{\ell}\Big]^{\ell-2}\leq 0$$
 for $z\in[0,1].$ Therefore, f is concave.

17.3 MAXSAT

22. Jun. 201

422/448



Harald Räcke

17.3 MAXSAT

423/448

MAXSAT: The better of two

Theorem 10

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

Let \mathcal{W}_1 be the value of randomized rounding and \mathcal{W}_2 the value obtained by coin flipping.

$$\begin{split} E[\max\{W_1,W_2\}] \\ &\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ &\geq \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right) \\ &\geq \sum_j w_j z_j \left[\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)\right] \\ &\geq \frac{3}{4} \text{for all integers} \\ &\geq \frac{3}{4} \text{OPT} \end{split}$$

17.3 MAXSAT

22. Jun. 2018

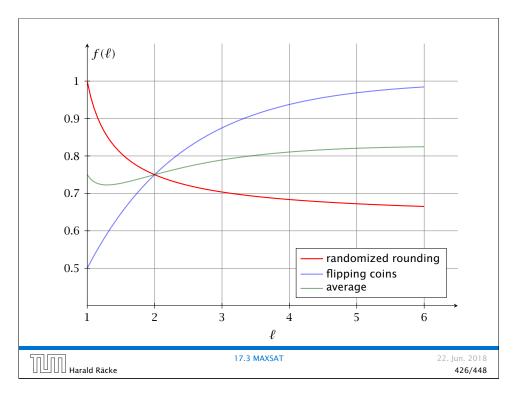
424/448

Harald Räck

17.3 MAXSAT

. Jun. 2018

425/448



MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(y_i)$.

17.3 MAXSAT 22. Jun. 2018
Harald Räcke 427/448

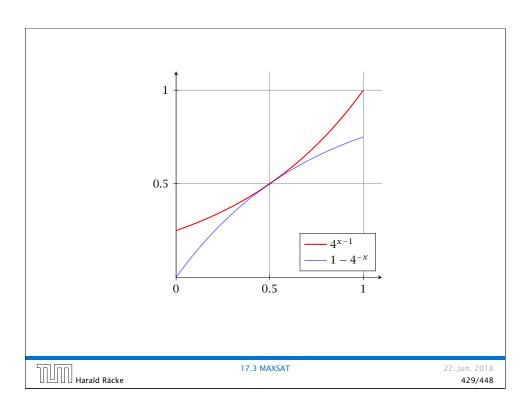
MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x - 1}$$

Theorem 11

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.



$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{aligned}$$

17.3 MAXSAT 22. Jun. 2

430/448

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 12 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

The function $g(z) = 1 - 4^{-z}$ is concave on [0, 1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

Harald Räcke

17.3 MAXSAT

22 Jun 2018

431/448

Lemma 13

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- ▶ hence, the LP has value 4.

17.3 MAXSAT

22. Jun. 2018 433/448

MaxCut

MaxCut

Given a weighted graph G=(V,E,w), $w(v)\geq 0$, partition the vertices into two parts. Maximize the weight of edges between the parts.

Trivial 2-approximation

17.4 MAXCUT

2. Jun. 2018 434/448

Vector Programming

$$\max / \min \qquad \sum_{i,j} c_{ij}(v_i^t v_j)$$
s.t.
$$\forall k \quad \sum_{i,j,k} a_{ijk}(v_i^t v_j) = b_k$$

$$v_i \in \mathbb{R}^n$$

- ▶ variables are vectors in *n*-dimensional space
- objective functions and contraints are linear in inner products of the vectors

This is equivalent!

Semidefinite Programming

- linear objective, linear contraints
- we can constrain a square matrix of variables to be symmetric positive definite

Note that wlog. we can assume that all variables appear in this matrix. Suppose we have a non-negative scalar \boldsymbol{z} and want to express something like

$$\sum_{ij} a_{ijk} x_{ij} + z = b_k$$

where x_{ij} are variables of the positive semidefinite matrix. We can add z as a diagonal entry $x_{\ell\ell}$, and additionally introduce constraints $x_{\ell r}=0$ and $x_{r\ell}=0$.

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial time...

17.4 MAXCUT

436/448

17.4 MAXCUT

22. Jun. 2018 437/448

Quadratic Programs

Quadratic Program for MaxCut:

$$\begin{array}{cccc}
\max & \frac{1}{2} \sum_{i,j} w_{ij} (1 - y_i y_j) \\
\forall i & y_i \in \{-1, 1\}
\end{array}$$

This is exactly MaxCut!

Harald Räcke

17.4 MAXCUT

22. Jun. 201

438/448

Rounding the SDP-Solution

- ▶ Choose a random vector r such that $r/\|r\|$ is uniformly distributed on the unit sphere.
- If $r^t v_i > 0$ set $y_i = 1$ else set $y_i = -1$

Semidefinite Relaxation

$$\begin{bmatrix} \max & \frac{1}{2} \sum_{i,j} w_{ij} (1 - v_i^t v_j) \\ \forall i & v_i^t v_i = 1 \\ \forall i & v_i \in \mathbb{R}^n \end{bmatrix}$$

- this is clearly a relaxation
- the solution will be vectors on the unit sphere

Harald Räcke

17.4 MAXCUT

22. Jun. 2018

439/448

Rounding the SDP-Solution

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0,1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, ..., x_n)]$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot ... \cdot e^{x_n^2/2} dx_1 \cdot ... \cdot dx_n$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + ... + x_n^2)} dx_1 \cdot ... \cdot dx_n$$

Hence the probability for a point only depends on its distance to the origin.

Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e_1 and e_2 are independent and are normally distributed with mean 0 and variance 1 iff e_1 and e_2 are orthogonal.

Note that this is clear if e_1 and e_2 are standard basis vectors.

Harald Räcke

17.4 MAXCUT

22. Jun. 201

442/448

Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection $(r'/\|r'\|)$ is uniformly distributed on the unit circle within the hyperplane.

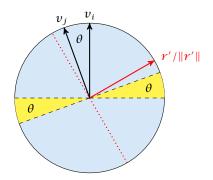
Harald Räcke

17.4 MAXCUT

22. Jun. 2018

443/448

Rounding the SDP-Solution



- if the normalized projection falls into the shaded region, v_i and v_j are rounded to different values
- \blacktriangleright this happens with probability θ/π

Rounding the SDP-Solution

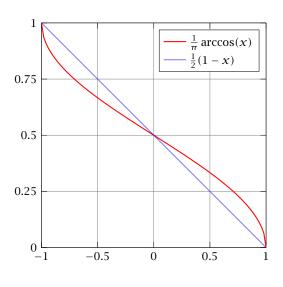
contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\big(1-v_i^tv_j\big)$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{ij} \arccos(v_i^t v_j)/\pi$
- ratio is at most

$$\min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.878$$

Rounding the SDP-Solution



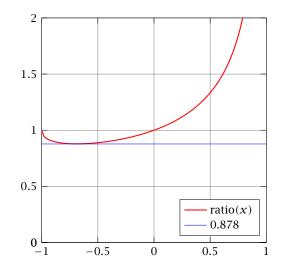
Harald Räcke

17.4 MAXCUT

22. Jun. 2018

446/448

Rounding the SDP-Solution



Harald Räcke

17.4 MAXCUT

22. Jun. 2018

447/448

Rounding the SDP-Solution

Theorem 14

Given the unique games conjecture, there is no α -approximation for the maximum cut problem with constant

$$\alpha > \min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)}$$

unless P = NP.