
Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j ∈ {1, . . . , n} has processing time pj.
Schedule the jobs on m identical parallel machines such that the

Makespan (finishing time of the last job) is minimized.

min L
s.t. ∀machines i

∑
j pj · xj,i ≤ L

∀jobs j
∑
i xj,i ≥ 1

∀i, j xj,i ∈ {0,1}

Here the variable xj,i is the decision variable that describes

whether job j is assigned to machine i.

17. Apr. 2018

Harald Räcke 276/289

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

13.1 Local Search 17. Apr. 2018

Harald Räcke 277/289

Lower Bounds on the Solution

The average work performed by a machine is 1
m
∑
j pj.

Therefore,

C∗max ≥
1
m

∑
j
pj

13.1 Local Search 17. Apr. 2018

Harald Räcke 278/289

Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not

find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

13.1 Local Search 17. Apr. 2018

Harald Räcke 279/289



Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move that reduces

the makespan, perform the switch.

REPEAT

13.1 Local Search 17. Apr. 2018

Harald Räcke 280/289

Local Search Analysis

Let ` be the job that finishes last in the produced schedule.

Let S` be its start time, and let C` be its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule

would not be locally optimal.

13.1 Local Search 17. Apr. 2018

Harald Räcke 281/289

We can split the total processing time into two intervals one

from 0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1− 1
m
)p` +

1
m

∑
j
pj ≤ (2− 1

m
)C∗max

13.1 Local Search 17. Apr. 2018

Harald Räcke 282/289

A Tight Example

p` ≈ S` +
S`

m− 1

ALG
OPT

= S` + p`
p`

≈ 2+ 1
m−1

1+ 1
m−1

= 2− 1
m

p`

p`

S`



A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill

the local optimally condition of our local search algorithm.

Hence, these also give 2-approximations.

13.2 Greedy 17. Apr. 2018

Harald Räcke 284/289

A Greedy Strategy

Lemma 2

If we order the list according to non-increasing processing times

the approximation guarantee of the list scheduling strategy

improves to 4/3.

13.2 Greedy 17. Apr. 2018

Harald Räcke 285/289

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle

at most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

13.2 Greedy 17. Apr. 2018

Harald Räcke 286/289

When in an optimal solution a machine can have at most 2 jobs

the optimal solution looks as follows.

p1 p2 p3 p4 p5 p6 p7

p8p9p10p11p12p13p14

13.2 Greedy 17. Apr. 2018

Harald Räcke 287/289



ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

13.2 Greedy 17. Apr. 2018

Harald Räcke 288/289

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m,2m− 1,2m− 2, . . . ,m+ 1 (2m− 2

jobs in total)

ñ 3 jobs of length m

13.2 Greedy 17. Apr. 2018

Harald Räcke 289/289


	Scheduling on Identical Machines
	Local Search
	Greedy


