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ñ Suppose we want to solve min{cTx | Ax ≥ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+d)
(
m+d
m

)
) ≈ (m+d)m. (slightly better bounds on

the running time exist, but will not be discussed here).

ñ If d is much smaller than m one can do a lot better.

ñ In the following we develop an algorithm with running time

O(d! ·m), i.e., linear in m.
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8 Seidels LP-algorithm

Setting:

ñ We assume an LP of the form

min cTx
s.t. Ax ≥ b

x ≥ 0

ñ We assume that the LP is bounded.
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Ensuring Conditions

Given a standard minimization LP

min cTx
s.t. Ax ≥ b

x ≥ 0

how can we obtain an LP of the required form?

ñ Compute a lower bound on cTx for any basic feasible

solution.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators

of entries in A,b.

Multiply entries in A,b by s to obtain integral entries. This does

not change the feasible region.

Add slack variables to A; denote the resulting matrix with Ā.

If B is an optimal basis then xB with ĀBxB = b̄, gives an optimal

assignment to the basis variables (non-basic variables are 0).
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Theorem 2 (Cramers Rule)

Let M be a matrix with det(M) ≠ 0. Then the solution to the

system Mx = b is given by

xi =
det(Mj)
det(M)

,

where Mi is the matrix obtained from M by replacing the i-th
column by the vector b.
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Proof:

ñ Define

Xi =

e1 · · · ei−1 x ei+1 · · · en




Note that expanding along the i-th column gives that

det(Xi) = xi.
ñ Further, we have

MXi =

Me1 · · · Mei−1 Mx Mei+1 · · · Men


 = Mi

ñ Hence,

xi = det(Xi) = det(Mi)
det(M)
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in Ā, b̄ or c. Let

C denote the matrix obtained from ĀB by replacing the j-th
column with vector b̄ (for some j).

Observe that

|det(C)| =
∣∣∣∣∣∣
∑

π∈Sm
sgn(π)

∏

1≤i≤m
Ciπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sm

∏

1≤i≤m
|Ciπ(i)|

≤m! · Zm . Here sgn(π) denotes the sign of the permu-
tation, which is 1 if the permutation can be
generated by an even number of transposi-
tions (exchanging two elements), and −1 if
the number of transpositions is odd.
The first identity is known as Leibniz formula.
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Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)| ≤
m∏

i=1

‖C∗i‖ ≤
m∏

i=1

(
√
mZ)

≤mm/2Zm .
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Hadamards Inequality

e1

e2

e3

a1

a2

a3

|det
(
a1 a2 a3

)|

Hadamards inequality says that the volume of the red

parallelepiped (Spat) is smaller than the volume in the black

cube (if ‖e1‖ = ‖a1‖, ‖e2‖ = ‖a2‖, ‖e3‖ = ‖a3‖).
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Ensuring Conditions

Given a standard minimization LP

min cTx
s.t. Ax ≥ b

x ≥ 0

how can we obtain an LP of the required form?

ñ Compute a lower bound on cTx for any basic feasible

solution. Add the constraint cTx ≥ −dZ(m! ·Zm)− 1. Note

that this constraint is superfluous unless the LP is

unbounded.



Ensuring Conditions

Compute an optimum basis for the new LP.

ñ If the cost is cTx = −(dZ)(m! · Zm)− 1 we know that the

original LP is unbounded.

ñ Otw. we have an optimum basis.
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In the following we use H to denote the set of all constraints

apart from the constraint cTx ≥ −dZ(m! · Zm)− 1.

We give a routine SeidelLP(H , d) that is given a set H of

explicit, non-degenerate constraints over d variables, and

minimizes cTx over all feasible points.

In addition it obeys the implicit constraint

cTx ≥ −(dZ)(m! · Zm)− 1.
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Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution



8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there

are at most d constraints whose removal will decrease the

objective function

Note that for the case d = 1, the asymp-
totic bound O(max{m,1}) is valid also
for the case m = 0.
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8 Seidels LP-algorithm

This gives the recurrence

T(m,d) =




O(max{1,m}) if d = 1
O(d) if d > 1 and m = 0
O(d)+ T(m− 1, d)+
d
m (O(dm)+ T(m− 1, d− 1)) otw.

Note that T(m,d) denotes the expected running time.
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8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

T(m,d) =




Cmax{1,m} if d = 1
Cd if d > 1 and m = 0
Cd+ T(m− 1, d)+
d
m (Cdm+ T(m− 1, d− 1)) otw.

Note that T(m,d) denotes the expected running time.
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8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d) ≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d) = O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)



8 Seidels LP-algorithm

d > 1;m > 1 :

(by induction hypothesis statm. true for d′ < d,m′ ≥ 0;

and for d′ = d, m′ <m)

T(m,d) = O(d)+ T(m− 1, d)+ d
m

(
O(dm)+ T(m− 1, d− 1)

)

≤ Cd+ Cf(d)(m− 1)+ Cd2 + d
m
Cf(d− 1)(m− 1)

≤ 2Cd2 + Cf(d)(m− 1)+ dCf(d− 1)

≤ Cf(d)m

if f(d) ≥ df(d− 1)+ 2d2.
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8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d) = 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant. ∑

i≥1

i2

i!
=
∑

i≥0

i+ 1
i!

= e+
∑

i≥1

i
i!
= 2e
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