4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find
the optimum is slow.
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4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find
the optimum is slow.

Simplex Algorithm [George Dantzig 1947]
Move from BFS to adjacent BFS, without decreasing objective
function.

Two BFSs are called adjacent if the bases just differ in one
variable.
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4 Simplex Algorithm

max 13a + 23b

s.t. 5a+ 15b + s, = 480
4a + 4b + Sn =160
35a + 20b + S, = 1190

a , b,sc,shn,sm=0

‘m 4 Simplex Algorithm
Harald Racke 54/76



4 Simplex Algorithm

max 13a + 23b

s.t. 5a+ 15b + s, = 480
4a + 4b + sp =160
35a + 20b + S, = 1190
a, b,sc,sn,sm=0
max Z basis = {s¢, Sp, Sm}
13a + 23b -7Z=0 a=b=0
5a + 15b + s¢ — 480 ‘0
4a + 4b + Sp = 160 Se =480
sp =160
35a + 20b +sm =1190| |¢ _ 1190
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Pivoting Step

max Z
13a + 23b
5a + 15b + s
4a + 4b + sp
35a + 20b + Sm
a, b,sc,sn, Sm

~Z=0
= 480
— 160

= 1190

>0

basis = {s¢, Sn, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective

function

> apply min-ratio test to find out by how much the variable

can be increased

> pivot on row found by min-ratio test

> the existing basis variable in this row leaves the basis
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» Choosing 0 = min{480/15,160/4,1190/20} ensures that in the
new solution one current basic variable becomes 0, and no
variable goes negative.



max Z basis = {s¢, Sh, Sm}

13a + 23b - 7Z=0 a=b=0
Z =0

5a + 15b + s¢ =480

4a + 4b  + s, =160 Se = 480
sp =160

35a + 20b + Sm =1190 Sm= 1190

a , b y SC 5 Sh y Sm > O

» Choose variable with coefficient > 0 as entering variable.

> If we keep a = 0 and increase b from 0 to 6 > 0 s.t. all
constraints (Ax = b, x = 0) are still fulfilled the objective
value Z will strictly increase.

» For maintaining Ax = b we need e.g. to set s, = 480 — 156.

» Choosing 0 = min{480/15,160/4,1190/20} ensures that in the
new solution one current basic variable becomes 0, and no
variable goes negative.

» The basic variable in the row that gives
min{480/15,160/4 1190/20} becomes the leaving variable.



max Z
13a + 23b
5a + 15b + s¢
4a + 4b + Sn
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max Z basis = {s¢, Sh, Sm}

13a + 23b - 7Z=0 a=b=0
Z =0

5a + 15b + s = 480

4a + 4b + sp =160 Se = 480
sp =160

35a + 20b + Sm =1190 Sm= 1190

a ’ b ’ SC ’ Sh ) 5m = O

Substitute b = 1—15(480 —5a—s¢).



max Z
13a + 23b

5a + 15b
4a + 4b
35a + 20b

a , b

+ Sc
+ Sh
+ Sm
y Sc 5 Shoy Sm

~Z=0
— 480
~ 160
- 1190
>0

basis = {s¢, Sh, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

Substitute b =

(480 - 5a - s¢).

max Z

23
155¢

1

155¢

4

2sc + Sm

SCJSh’Sm

- Z=-736
=32
=32
=550
=0

basis = {b, Sp, Sm }

a =5.=0
Z =736
b =32
Sh =32
Sm= 550
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3 15°¢

8

§a — TSSC + Sh
%a 35¢ + Sm

-736
32
=32
=550
>0

basis = {b, sy, Sm}

a =5.=0
Z =736
b =32
Sh =32
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mai;ei _a, L z=-736 | e g
3a+Db+ s =32 £
8a - isc+sy =32 . z;;
%a _ %SC + Sm =550 s:1= 550
a,b, S,Sn,Sm >0

Choose variable a to bring into basis.



B, - %
3a+Db+ s

%a —%SC+Sh

%a — %sc + Sm
a,b, sc,Sh,Sm

= —736
=32
=32
=550
>0

basis = {b, sy, Sm }

a =5.=0
Z =736
=32
Sh =32
Sm= 550

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.



B - %
3a+Db+ s

%a —%SC+Sh

%a — %SC + Sm
a,b, Ssc,Sn, Sm

= —736
=32
=32
=550
>0

basis = {b, sy, Sm}

a =5.=0
Z =736
b =32
Sh =32
Sm= 550

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.

Substitute a = %(32 + %Sc - Sn).



B, - B
%a+b+%sc

%a —%SC+Sh

%a %SC + Sm
a,b, Ssc,Sn, Sm

— 7=

>

-736
32

32
550
0

basis = {b, sy, Sm}

a =5.=0
Z =736
=32
Sh =32
Sm= 550

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.
Substitute a = %(32 + %Sc - Sn).

max Z
—  Sc— 2sp
b + f—osc - %sh
a == 11*05c arF %Sh
%sc gsh + Sm
a,b, s, Sn,Sm

-Z

-800
28
=12
=210
>0

basis = {a, b, s}

Se=85n=0
Z =800
b =28
a =12
Sm= 210
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4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:
> any feasible solution satisfies all equations in the tableaux
» in particular: Z = 800 — sc — 25, S¢ = 0,5, =0

> hence optimum solution value is at most 800
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4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:

v

any feasible solution satisfies all equations in the tableaux
in particular: Z = 800 — s, — 25y, S¢ =2 0,5, =0

hence optimum solution value is at most 800

vV vV

the current solution has value 800
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Matrix View
Let our linear program be

C};—XB

Apxp
XB

+ CNXN
+ AnNXN
) XN

%

Ny
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Matrix View
Let our linear program be

b\]
Il
N

CIJ;XB +  CNXN

Apxp + ANXN = D
XB xy = 0
The simplex tableaux for basis B is
(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB s XN = 0
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chg + c{,xN = 7
Apxp + ANXN = D
XB y xy = 0

The simplex tableaux for basis B is

(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB ’ XN > O

The BFS is given by xy = 0,xp = Az'b.
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Matrix View
Let our linear program be

chg + c{,xN = 7
Apxp + ANXN = D
XB y xy = 0

The simplex tableaux for basis B is

(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB ’ XN > O

The BFS is given by xy = 0,xp = Az'b.

If (cf; — cfAgtAN) < 0 we know that we have an optimum
solution.
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Geometric View of Pivoting

394 max 13a + 23b
6°¢ s.t. 5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + Sm = 1190
%\A a, b,Se,sh,Sm=0
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Geometric View of Pivoting

max 13a + 23b

s.t. 5a + 15b + s¢ =480
4a + 4b + Sp =160
35a + 20b + s, = 1190

a, b,sc,Sn,Ssm=0

~—

beer
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» Choose index j ¢ B in order to increase x}k from 0 to 6 > 0.

> Other non-basis variables should stay at 0.
> Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

Requirements for d:
» dj =1 (normalization)
» dp=0,{¢B, 0 +j
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Algebraic Definition of Pivoting

> Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x}k from 0 to 6 > 0.

> Other non-basis variables should stay at 0.
> Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

Requirements for d:
» dj =1 (normalization)
» dp=0,{¢B, 0 +j
> A(x* + 0d) = b must hold. Hence Ad = 0.
> Altogether: Agdp + Ayj = Ad = 0, which gives
dp = —Ap'Ay;.
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Algebraic Definition of Pivoting

Definition 2 (j-th basis direction)

Let B be a basis, and let j ¢ B. The vector d with d; = 1 and
dp=0,0¢ B, L+ janddg=—-Az'A,; is called the j-th basis
direction for B.
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Algebraic Definition of Pivoting

Definition 2 (j-th basis direction)

Let B be a basis, and let j ¢ B. The vector d with d; = 1 and
dp=0,0¢ B, L+ janddg=—-Az'A,; is called the j-th basis
direction for B.

Going from x* to x* + 0 - d the objective function changes by

0-cld=0(c; - cfAg'Asj)
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Algebraic Definition of Pivoting

Definition 3 (Reduced Cost)
For a basis B the value

o Ta-l, .

is called the reduced cost for variable x;.

Note that this is defined for every j. If j € B then the above term
is O.
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Algebraic Definition of Pivoting

Let our linear program be
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Algebraic Definition of Pivoting
Let our linear program be

chg + c{,xN = 7
Apxp + ANXN = D
XB y xy = O

The simplex tableaux for basis B is

(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB ’ XN > O
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Algebraic Definition of Pivoting
Let our linear program be

T T

CgXp + CyXNn = Z
Apxp + ANXN = D
XB y xy = 0
The simplex tableaux for basis B is
(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB ’ XN > O

The BFS is given by xy = 0,xp = Az'b.

If (cf; — cfAgtAN) < 0 we know that we have an optimum
solution.
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Questions:

» What happens if the min ratio test fails to give us a value 0
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?
> |s there always a basis B such that

(ch—clAz'AN) <0 ?

Then we can terminate because we know that the solution is
optimal.
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4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 0
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?
> |s there always a basis B such that

(ch—clAz'AN) <0 ?

Then we can terminate because we know that the solution is
optimal.

> If yes how do we make sure that we reach such a basis?

m 4 Simplex Algorithm
Harald Racke

66/76



Min Ratio Test

The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.
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Min Ratio Test

The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.

For this, one computes b;/A;, for all constraints i and calculates
the minimum positive value.

What does it mean that the ratio b;/A;. (and hence A;,) is
negative for a constraint?

This means that the corresponding basic variable will increase if
we increase b. Hence, there is no danger of this basic variable
becoming negative

What happens if all b;/A;, are negative? Then we do not have a
leaving variable. Then the LP is unbounded!
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Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.
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Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.

Does it always increase?
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Termination
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Because a variable x, with £ € B is already 0.
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Termination
The objective function may not increase!

Because a variable x, with £ € B is already 0.

The set of inequalities is degenerate (also the basis is
degenerate).

Definition 4 (Degeneracy)
A BFS x* is called degenerate if the set J = {j | x;‘ > 0} fulfills
lJI <m.
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Termination

The objective function may not increase!
Because a variable x, with £ € B is already 0.

The set of inequalities is degenerate (also the basis is
degenerate).

Definition 4 (Degeneracy)
A BFS x* is called degenerate if the set J = {j | xjf > 0} fulfills
lJI <m.

It is possible that the algorithm cycles, i.e., it cycles through a
sequence of different bases without ever terminating. Happens,
very rarely in practise.
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Summary: How to choose pivot-elements

» We can choose a column ¢ as an entering variable if ¢, > 0
(€, is reduced cost for x,).
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Summary: How to choose pivot-elements

» We can choose a column ¢ as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes é,.

> If A;, <Oforallie {1,...,m} then the maximum is not
bounded.

> Otw. choose a leaving variable ¢ such that by/Ay, is
minimal among all variables i with A;, > 0.

> If several variables have minimum b,/Ap, you reach a
degenerate basis.

» Depending on the choice of £ it may happen that the
algorithm runs into a cycle where it does not escape from a
degenerate vertex.
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Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the
LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails
and we can conclude that the LP is unbounded, or we terminate
because the vector of reduced cost is non-positive. In the latter
case we have an optimum solution.
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How do we come up with an initial solution?

» Ax <b,x>0,and b > 0.
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How do we come up with an initial solution?

» Ax <b,x>0,and b > 0.

» The standard slack form for this problem is
Ax +1Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution (how?).
> We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary
problem?
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Two phase algorithm
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Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.
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1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >}; v; > 0 then the original problem is infeasible.
4. Otw. you have x > 0 with Ax = b.
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Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

If >; v; > 0 then the original problem is infeasible.
Otw. you have x > 0 with Ax = b.

From this you can get basic feasible solution.

o v MW

Now you can start the Simplex for the original problem.
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Optimality

Lemma 5
Let B be a basis and x* a BFS corresponding to basis B. ¢ <0
implies that x* is an optimum solution to the LP.
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