4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947]

Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

410 Harald Räcke

Pivoting Step

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 b$ | $-Z$ | $=0$ |
| $5 a+15 b+s_{c}$ | | $=480$ |
| $4 a+4 b+s_{h}$ | | $=160$ |
| $35 a+20 b$ | | $=1190$ |
| $a, b, s_{m}, s_{h}, s_{m}$ | | ≥ 0 |

basis $=\left\{s_{c}, s_{h}, s_{m}\right\}$
$a=b=0$
$Z=0$
$s_{c}=480$
$s_{h}=160$
$s_{m}=1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

4 Simplex Algorithm

$$
\begin{array}{rlrl}
\max 13 a+23 b & & \\
\text { s.t. } 5 a+15 b+s_{c} & =480 \\
4 a+4 b+s_{h} \quad & =160 \\
35 a+20 b \\
a, b, s_{m}, s_{h}, s_{m} & =1190 \\
& \geq 0
\end{array}
$$

$\max Z$		
$13 a+23 b$	$-Z$	$=0$
$5 a+15 b+s_{c}$		$=480$
$4 a+4 b+s_{h}$		$=160$
$35 a+20 b$		$=1190$
$a, b, s_{c}, s_{h}, s_{m}$		≥ 0

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

$$
\text { Harald Räcke } 4 \text { simplex Algorithm }
$$

$\max Z$	basis $=\left\{s_{c}, s_{h}, s_{m}\right\}$
$13 \boldsymbol{a}+23 \boldsymbol{b}-\quad-Z=0$	$a=b=0$
$5 a+15 b+s_{c} \quad=480$	$Z=0$
$4 \boldsymbol{a}+4 \boldsymbol{b}+s_{h} \quad=160$	$s_{c}=480$
$35 a+20 b+s_{m}=1190$	$s_{h}=160$
$\boldsymbol{a}, \quad \boldsymbol{b}, s_{c}, s_{h}, s_{m} \geq 0$	$s_{m}=1190$

- Choose variable with coefficient > 0 as entering variable.
- If we keep $a=0$ and increase b from 0 to $\theta>0$ s.t. all constraints ($A x=b, x \geq 0$) are still fulfilled the objective value Z will strictly increase.
- For maintaining $A x=b$ we need e.g. to set $s_{C}=480-15 \theta$.
- Choosing $\theta=\min \{480 / 15,160 / 4,1190 / 20\}$ ensures that in the new solution one current basic variable becomes 0 , and no variable goes negative.
- The basic variable in the row that gives $\min \{480 / 15,160 / 4,1190 / 20\}$ becomes the leaving variable.

| $\max Z$ | | |
| ---: | :--- | ---: | :--- |
| $13 a+23 \boldsymbol{b}$ | $-Z$ | $=0$ |
| $5 a+15 \boldsymbol{b}+s_{c}$ | | $=480$ |
| $4 a+4 \boldsymbol{b}+s_{h}$ | | $=160$ |
| $35 a+20 \boldsymbol{b}$ | | $=1190$ |
| $a, \quad b, s_{c}, s_{h}, s_{m}$ | | ≥ 0 |

$$
\begin{aligned}
& \text { basis }=\left\{s_{c}, s_{h}, s_{m}\right\} \\
& a=b=0 \\
& Z=0 \\
& s_{c}=480 \\
& s_{h}=160 \\
& s_{m}=1190
\end{aligned}
$$

Substitute $b=\frac{1}{15}\left(480-5 a-s_{c}\right)$

$\max Z$			
$\frac{16}{3} a$	$-\frac{23}{15} s_{c}$	$=-736$	
$\frac{1}{3} a+b+\frac{1}{15} s_{C}$		$=32$	
$\frac{8}{3} a$	$-\frac{4}{15} s_{c}+s_{h}$		$=550$
$\frac{85}{3} a \quad-\frac{4}{3} s_{c}+s_{m}$		≥ 0	
$a, b, s_{c}, s_{h}, s_{m}$			

$$
\begin{aligned}
& \text { basis }=\left\{b, s_{h}, s_{m}\right\} \\
& a=s_{c}=0 \\
& Z=736 \\
& b=32 \\
& s_{h}=32 \\
& s_{m}=550
\end{aligned}
$$

$\begin{array}{rlrl} \max Z & & \\ \qquad \begin{aligned} & \frac{16}{3} \boldsymbol{a}-\frac{23}{15} s_{c}=-736 \\ & \frac{1}{3} \boldsymbol{a}+b+\frac{1}{15} s_{c} \\ & \frac{8}{3} \boldsymbol{a}-\frac{4}{15} s_{c}+s_{h} \\ &=32 \\ & \frac{85}{3} \boldsymbol{a}-\frac{4}{3} s_{c}+s_{m}=550 \end{aligned} \end{array}$	$\begin{aligned} & \text { basis }=\left\{b, s_{h}, s_{m}\right\} \\ & a=s_{c}=0 \\ & Z=736 \\ & b=32 \\ & s_{h}=32 \\ & s_{m}=550 \end{aligned}$
$\boldsymbol{a}, \boldsymbol{b}, s_{c}, s_{h}, s_{m} \geq 0$	

Choose variable a to bring into basis.
Computing $\min \{3 \cdot 32,3 \cdot 32 / 8,3 \cdot 550 / 85\}$ means pivot on line 2.
Substitute $a=\frac{3}{8}\left(32+\frac{4}{15} s_{C}-s_{h}\right)$.

Matrix View

Let our linear program be

$$
\begin{array}{rlrl}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B} & , & x_{N} & \geq 0
\end{array}
$$

The simplex tableaux for basis B is

$$
\begin{array}{rlrl}
& & \left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N} & =Z-c_{B}^{T} A_{B}^{-1} b \\
I x_{B}+ & A_{B}^{-1} A_{N} x_{N} & =A_{B}^{-1} b \\
x_{B}, & x_{N} & \geq 0
\end{array}
$$

The BFS is given by $x_{N}=0, x_{B}=A_{B}^{-1} b$.
If $\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) \leq 0$ we know that we have an optimum solution.

$\boxed{T H}$ Harald Räcke	4 Simplex Algorithm	11. May. 2018
$60 / 76$		

Geometric View of Pivoting

Algebraic Definition of Pivoting

Definition 2 (j-th basis direction)
Let B be a basis, and let $j \notin B$. The vector d with $d_{j}=1$ and
$d_{\ell}=0, \ell \notin B, \ell \neq j$ and $d_{B}=-A_{B}^{-1} A_{* j}$ is called the j-th basis direction for B.

Going from x^{*} to $x^{*}+\theta \cdot d$ the objective function changes by

$$
\theta \cdot c^{T} d=\theta\left(c_{j}-c_{B}^{T} A_{B}^{-1} A_{* j}\right)
$$

Algebraic Definition of Pivoting

- Given basis B with BFS x^{*}.
- Choose index $j \notin B$ in order to increase x_{j}^{*} from 0 to $\theta>0$.
- Other non-basis variables should stay at 0 .
- Basis variables change to maintain feasibility.
- Go from x^{*} to $x^{*}+\theta \cdot d$.

Requirements for d :

- $d_{j}=1$ (normalization)
- $d_{\ell}=0, \ell \notin B, \ell \neq j$
- $A\left(x^{*}+\theta d\right)=b$ must hold. Hence $A d=0$.
- Altogether: $A_{B} d_{B}+A_{* j}=A d=0$, which gives $d_{B}=-A_{B}^{-1} A_{* j}$.

Algebraic Definition of Pivoting

Definition 3 (Reduced Cost)
For a basis B the value

$$
\tilde{c}_{j}=c_{j}-c_{B}^{T} A_{B}^{-1} A_{* j}
$$

is called the reduced cost for variable x_{j}.

Note that this is defined for every j. If $j \in B$ then the above term is 0 .

Algebraic Definition of Pivoting

Let our linear program be

$$
\left.\begin{array}{rl}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B}, & x_{N}
\end{array}\right)=0
$$

The simplex tableaux for basis B is

$$
\begin{array}{rlrl}
I x_{B}+ & \left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N} & =Z-c_{B}^{T} A_{B}^{-1} b \\
x_{B}, & A_{B}^{-1} A_{N} x_{N} & =A_{B}^{-1} b \\
x_{N} & \geq 0
\end{array}
$$

The BFS is given by $x_{N}=0, x_{B}=A_{B}^{-1} b$.
If $\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) \leq 0$ we know that we have an optimum solution.

4 Simplex Algorithm

Min Ratio Test

The min ratio test computes a value $\theta \geq 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes $b_{i} / A_{i e}$ for all constraints i and calculates the minimum positive value.

What does it mean that the ratio $b_{i} / A_{i e}$ (and hence $A_{i e}$) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if all $b_{i} / A_{i e}$ are negative? Then we do not have a leaving variable. Then the LP is unbounded!

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- Is there always a basis B such that

$$
\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) \leq 0 ?
$$

Then we can terminate because we know that the solution is optimal.

- If yes how do we make sure that we reach such a basis?

Harald Räcke	4 simplex Algorithm

Termination

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

Termination

The objective function may not increase!
Because a variable x_{ℓ} with $\ell \in B$ is already 0 .

The set of inequalities is degenerate (also the basis is degenerate).

Definition 4 (Degeneracy)

A BFS x^{*} is called degenerate if the set $J=\left\{j \mid x_{j}^{*}>0\right\}$ fulfills $|J|<m$.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

Degenerate Example

Non Degenerate Example

Summary: How to choose pivot-elements

- We can choose a column e as an entering variable if $\tilde{c}_{e}>0$ (\tilde{c}_{e} is reduced cost for x_{e}).
- The standard choice is the column that maximizes \tilde{c}_{e}.
- If $A_{i e} \leq 0$ for all $i \in\{1, \ldots, m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell} / A_{\ell e}$ is minimal among all variables i with $A_{i e}>0$.
- If several variables have minimum $b_{\ell} / A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

Termination

What do we have so far?
Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

How do we come up with an initial solution?

- $A x \leq b, x \geq 0$, and $\boldsymbol{b} \geq \mathbf{0}$.
- The standard slack form for this problem is $A x+I s=b, x \geq 0, s \geq 0$, where s denotes the vector of slack variables.
- Then $s=b, x=0$ is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Two phase algorithm

Suppose we want to maximize $c^{T} x$ s.t. $A x=b, x \geq 0$.

1. Multiply all rows with $b_{i}<0$ by -1 .
2. maximize $-\sum_{i} v_{i}$ s.t. $A x+I v=b, x \geq 0, v \geq 0$ using Simplex. $x=0, v=b$ is initial feasible.
3. If $\sum_{i} v_{i}>0$ then the original problem is infeasible.
4. Otw. you have $x \geq 0$ with $A x=b$.
5. From this you can get basic feasible solution.
6. Now you can start the Simplex for the original problem.

Optimality

Lemma 5
Let B be a basis and x^{*} a BFS corresponding to basis B. $\tilde{c} \leq 0$ implies that x^{*} is an optimum solution to the LP.

