4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

11. May. 2018 53/76

Harald Räcke		

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

4 Simplex Algorithm

max	13a + 23b
s.t.	$5a + 15b + s_c = 480$
	$4a + 4b + s_h = 160$
	$35a + 20b + s_m = 1190$
	a , b , s_c , s_h , $s_m \ge 0$

max Z			basis = { s_c, s_h, s_m }
13a +	- 23 <i>b</i>	-Z = 0	a = b = 0
4a + 35a +			Z = 0 $s_c = 480$ $s_h = 160$ $s_m = 1190$
		$r_{1} \geq 0$	11. May. 2018
Harald Räcke			54/76

max Z		basis = { s_c, s_h, s_m }
13a + 23b $5a + 15b + s_c$	-Z = 0 = 480	a = b = 0 Z = 0 $s_c = 480$
$\begin{array}{cccc} 4a + 4b & + s_h \\ 35a + 20b & + s_m \\ a , b , s_c , s_h , s_m \end{array}$		$s_c = 160$ $s_h = 160$ $s_m = 1190$

- Choose variable with coefficient > 0 as entering variable.
- If we keep a = 0 and increase b from 0 to θ > 0 s.t. all constraints (Ax = b, x ≥ 0) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- Choosing \(\theta\) = min{480/15, 160/4, 1190/20}\) ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- The basic variable in the row that gives min{480/15, 160/4, 1190/20} becomes the leaving variable.

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

Harald Räcke

> any feasible solution satisfies all equations in the tableaux

4 Simplex Algorithm

- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- the current solution has value 800

max Z			
$\frac{16}{3}a$	$-\frac{23}{15}s_c$	-Z = -736	basis = $\{b, s_h, s_m\}$ $a = s_c = 0$
$\frac{1}{3}a +$	$b + \frac{1}{15}s_c$	= 32	Z = 736
$\frac{8}{3}a$	$-\frac{4}{15}s_c + s_h$	= 32	b = 32
$\frac{85}{3}a$	$-\frac{4}{3}s_c$ $+s_m$	= 550	$s_h = 32$ $s_m = 550$
a ,	b , s_c , s_h , s_m	≥ 0	

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

max Z			basis = $\{a, b, s_m\}$
	$- s_c - 2s_h -$	-Z = -800	$s_c = s_h = 0$
	$b + \frac{1}{10}s_c - \frac{1}{8}s_h$	= 28	Z = 800
а	$-\frac{1}{10}s_c + \frac{3}{8}s_h$	= 12	b = 28
	$\frac{3}{2}s_c - \frac{85}{8}s_h + s_m$	= 210	$a = 12$ $s_m = 210$
а,	b , s_c , s_h , s_m	≥ 0	

t our linear program be $c_B^T x_B + c_N^T x_N = Z$ $A_B x_B + A_N x_N = b$ $x_B , x_N \ge 0$ e simplex tableaux for basis <i>B</i> is
$egin{array}{rcl} A_B x_B &+& A_N x_N &=& b \ x_B &, & x_N &\geq& 0 \end{array}$
x_B , $x_N \ge 0$
$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$ $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$ $x_B + x_N \ge 0$
$ \begin{array}{rcl} Ix_B & + & & A_B^*A_Nx_N & = & A_B^*b \\ x_B & , & & x_N & \geq & 0 \end{array} $ e BFS is given by $x_N = 0, x_B = A_B^{-1}b. \end{array} $

Harald Räcke

11. May. 2018

59/76

Algebraic Definition of Pivoting

Definition 2 (*j***-th basis direction)**

Let *B* be a basis, and let $j \notin B$. The vector *d* with $d_j = 1$ and $d_{\ell} = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the *j*-th basis direction for *B*.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

 $\theta \cdot c^T d = \theta (c_j - c_B^T A_B^{-1} A_{*j})$

Algebraic Definition of Pivoting

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for d:

- $d_j = 1$ (normalization)
- ▶ $d_{\ell} = 0, \ell \notin B, \ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*j}$.

Harald Räcke

4 Simplex Algorithm

Algebraic Definition of Pivoting Definition 3 (Reduced Cost) For a basis *B* the value $\tilde{c}_j = c_j - c_B^T A_B^{-1} A_{*j}$ is called the reduced cost for variable x_j . Note that this is defined for every *j*. If $j \in B$ then the above term is 0.

11. May. 2018 62/76

Harald Räcke

4 Simplex Algorithm

11. May. 2018 63/76

Algebraic Definition of Pivoting

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , \quad x_N \ge 0$$

The simplex tableaux for basis B is

$$\begin{array}{rclcrcrc} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &, & & x_{N} &\geq& 0 \end{array}$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

Harald Räcke	4 Simplex Algorithm	11. May. 2018
UUU Harald Räcke		65/76

Min Ratio Test

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

4 Simplex Algorithm

Questions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ► Is there always a basis *B* such that

$(c_N^T - c_B^T A_B^{-1} A_N) \le 0$?

Then we can terminate because we know that the solution is optimal.

If yes how do we make sure that we reach such a basis?

Harald Räcke

4 Simplex Algorithm

11. May. 2018 66/76

Termination

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 4 (Degeneracy)

A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

	4 Simplex Algorithm	11. May. 2018
Harald Räcke		69/76

Non Degenerate Example

Summary: How to choose pivot-elements

- We can choose a column *e* as an entering variable if *c*_e > 0 (*c*_e is reduced cost for *x*_e).
- The standard choice is the column that maximizes \tilde{c}_e .
- If $A_{ie} \leq 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable l such that b_l/A_{le} is minimal among all variables i with A_{ie} > 0.
- If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of *l* it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is <u>unbounded</u>, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an <u>optimum solution</u>.

Harald Räcke

4 Simplex Algorithm

Two phase algorithm Suppose we want to maximize $c^T x$ s.t. $Ax = b, x \ge 0$. 1. Multiply all rows with $b_i < 0$ by -1. 2. maximize $-\sum_i v_i$ s.t. $Ax + Iv = b, x \ge 0, v \ge 0$ using Simplex. x = 0, v = b is initial feasible. 3. If $\sum_i v_i > 0$ then the original problem is infeasible. 4. Otw. you have $x \ge 0$ with Ax = b. 5. From this you can get basic feasible solution. 6. Now you can start the Simplex for the original problem.

How do we come up with an initial solution?

- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- The standard slack form for this problem is Ax + Is = b, x ≥ 0, s ≥ 0, where s denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

Harald Räcke

4 Simplex Algorithm

11. May. 2018 **75/76**

11. May. 2018

73/76