Complementary Slackness

Lemma 2

Assume a linear program $P = \max\{c^Tx \mid Ax \leq b; x \geq 0\}$ has solution x^* and its dual $D = \min\{b^Ty \mid A^Ty \geq c; y \geq 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in P is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

17. Apr. 2018 103/109

Interpretation of Dual Variables

Brewer: find mix of ale and beer that maximizes profits

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a,b \ge 0$

► Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{j} (y^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^TA \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^TA - c^T)_j > 0$ (the j-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

5.4 Interpretation of Dual Variables

17. Apr. 2018 104/109

Interpretation of Dual Variables

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- ▶ We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{lll}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq c \\
& y & \geq 0
\end{array}$$

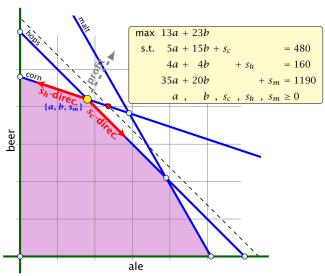
Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \varepsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- ▶ If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ▶ If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.


5.4 Interpretation of Dual Variables

17. Apr. 2018 107/109

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Example

The change in profit when increasing hops by one unit is $a^{T}A^{-1}a$

$$=\underbrace{c_B^T A_B^{-1}}_{\mathcal{Y}^*} e_h.$$