

03 – Randomization

- Types of randomized algorithms
- Randomized Quicksort
- Randomized primality test
- Cryptography
- Verifying matrix multiplication

1. Types of randomized algorithms

• Las Vegas algorithms

Always correct; expected running time

Example: randomized Quicksort

Monte Carlo algorithms (mostly correct)
 Probably correct; guaranteed running time

Example: randomized primality test

ТШП

Input: List *S* of *n* distinct elements over a totally ordered universe. **Output:** The elements of *S* in (ascending) sorted order.

Idea of Quicksort: Identify a splitter $v \in S$.

Determine set S_l of elements of S that are < v.

Determine set S_r of elements of S that are > v.

Sort S_{l} , S_{r} recursively.

Output sorted sequence of S_{l} , followed by v,

followed by sorted sequence S_r .

function Quick (S: sequence): sequence;

```
{returns the sorted sequence S}
```

begin

 $S_l < V$

if $\#S \le 1$ then Quick:=S; else { choose splitter element v in S; partition S into S_l with elements < v, and S_r with elements > v; Quick:= Quick(S_l) v Quick(S_r) }

 $S_{\mathsf{r}} > \textit{V}$

end;

Worst-case input

n elements

Running time: (n-1) + (n-2) + ... + 2 + 1 = n(n-1)/2

WS 2018/19

Suppose that a splitter *v* with $|S_1| \le n/2$ and $|S_r| \le n/2$ can be found in *cn* step.

Then $T(n) \le 2 T(n/2) + an$, for some $a \ge c$, and $T(n) \le an \log n$.

T(k) = worst-case number of steps to sort k elements

Problem: Find splitter *v* with above property. **But:** Running time of O(*n* log *n*) can be maintained if S_I, S_r have roughly equal size, i.e. $\frac{1}{4} |S| \le |S_{I}|, |S_{r}| \le \frac{3}{4} |S|$.

Thus randomly chosen splitter is "good" with probability $\geq \frac{1}{2}$.

function RandQuick (S: sequence): sequence;

```
{returns the sorted sequence S}
```

begin

 $S_l < V$

 $\begin{array}{l} \text{if } \#S \leq 1 \text{ then Quick} := S; \\ \text{else } \{ \text{ choose splitter element } v \text{ in } S \text{ uniformly at random}; \\ \text{ partition } S \text{ into } S_l \text{ with elements } < v, \\ \text{ and } S_r \text{ with elements } > v; \\ \text{ RandQuick} := \boxed{\text{RandQuick}(S_l) \ v \ \text{RandQuick}(S_r)} \ \} \end{array}$

 $S_r > V$

end;

Analysis 1

n elements; let s_i be the *i*-th smallest element

With probability 1/n, s_1 is the splitter element: subproblems of sizes 0 and n-1

•

With probability 1/n, s_k is the splitter element: subproblems of sizes k-1 and n-k

With probability 1/n, s_n is the splitter element: subproblems of sizes n-1 and 0

Expected running time:

$$T(n) = \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k)) + \Theta(n)$$

$$=\frac{2}{n}\sum_{k=1}^{n}T(k-1)+\Theta(n)$$

$$= O(n \log n)$$

Analysis 2: Representation of QS as a tree

Running time is linear in the number of element comparisons.

$$X_{ij} = \begin{cases} 1 & \text{if } s_i \text{ is compared to } s_j \\ 0 & \text{otherwise} \end{cases}$$

$$E\left[\sum_{i=1}^{n} \sum_{j>i} X_{ij}\right] = \sum_{i=1}^{n} \sum_{j>i} E[X_{ij}]$$

 p_{ij} = probability that s_i is compared to s_j

$$E[X_{ij}] = 1 \cdot p_{ij} + 0 \cdot (1 - p_{ij}) = p_{ij}$$

Computing *p*_{ij}

s_i is compared to s_j iff s_i or s_j are chosen as pivot element before any s_l, *i*<*l*<*j*.
 {s_i ... s_l ... s_i}

Any element s_i, ..., s_j is chosen as pivot element with the same probability. Hence p_{ij} = 2 / (j-i+1)

Analysis 2

Expected number of comparisons:

$$\sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k}$$
$$\leq 2\sum_{i=1}^{n} \sum_{k=1}^{n-i+1} \frac{2}{k}$$
$$\leq 2\sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}$$
$$= 2n\sum_{k=1}^{n} \frac{1}{k}$$
$$H_n = \sum_{k=1}^{n} \frac{1}{k} \approx \ln n$$

 $\overline{k=1}$

Definition:

A natural number $p \ge 2$ is prime iff $a \mid p$ implies that a = 1 or a = p.

We consider primality tests for numbers $n \ge 2$.

Algorithm: Deterministic primality test (naive approach)

Input: Natural number $n \ge 2$

Output: Answer to the question "Is n prime?"

if n = 2 then return true; if n even then return false; for i = 1 to $\lfloor \sqrt{n}/2 \rfloor$ do if 2i + 1 divides nthen return false; return true;

Running time: $\Theta(\sqrt{n})$

WS 2018/19

Goal:

Randomized algorithm

- Polynomial running time.
- If it returns "not prime", then *n* is not prime.
- If it returns "prime", then with probability at most p, p>0,
 n is composite.

After *k* iterations: If algorithm always returns "prime", then with probability at most p^k , *n* is composite.

Fact: For any odd prime number $p: 2^{p-1} \mod p = 1$.

Examples:
$$p = 17$$
, $2^{16} - 1 = 65535 = 17 * 3855$
 $p = 23$, $2^{22} - 1 = 4194303 = 23 * 182361$

Simple primality test:

- 1 Compute $z = 2^{n-1} \mod n$;
- **2** if z = 1
- 3 then *n* is possibly prime
- 4 else *n* is composite

Advantage: polynomial running time.

Definition:

A natural number $n \ge 2$ is a base-2 pseudoprime if n is composite and $2^{n-1} \mod n = 1$.

Example: *n* = 11 * 31 = 341

 $2^{340} \mod 341 = 1$

ТПП

Theorem: (Fermat's little theorem) If *p* is prime and 0 < a < p, then $a^{p-1} \mod p = 1$.

Example: n = 341, a = 3: $3^{340} \mod 341 = 56 \neq 1$

Algorithm: Randomized primality test

- 1 Choose *a* in the range [2, *n*-1] uniformly at random;
- **2** Compute $a^{n-1} \mod n$;
- **3** if $a^{n-1} \mod n = 1$
- 4 then *n* is probably prime
- 5 else *n* is composite

Prob(*n* is composite but $a^{n-1} \mod n = 1$) ?

ТΠ

Definition:

A natural number $n \ge 2$ is a base-*a* pseudoprime if *n* is composite and $a^{n-1} \mod n = 1$.

Definition: A number $n \ge 2$ is a Carmichael number if n is composite and for any a with GCD(a, n) = 1 we have $a^{n-1} \mod n = 1$.

Example:

Smallest Carmichael number: 561 = 3 * 11 * 17

Theorem: If *p* is prime and 0 < a < p, then the equation $a^2 \mod p = 1$ has exactly the two solutions a = 1 and a = p - 1.

Definition: A number *a* is a non-trivial square root mod *n* if $a^2 \mod n = 1$ and $a \neq 1, n-1$.

Example: n = 35 $6^2 \mod 35 = 1$

Idea: While computing a^{n-1} , where 0 < a < n is chosen uniformly at random, check if a non-trivial square root mod *n* exists.

Method for computing aⁿ:

Case 1: [*n* is even] $a^n = a^{n/2} * a^{n/2}$

Case 2: [*n* is odd] $a^n = a^{(n-1)/2} * a^{(n-1)/2} * a$

Running time: $O(\log^2 a^n \log n)$

Example:

 $a^{62} = (a^{31})^2$ $a^{31} = (a^{15})^2 * a$ $a^{15} = (a^7)^2 * a$ $a^7 = (a^3)^2 * a$ $a^3 = (a)^2 * a$

boolean isProbablyPrime;

```
function power(int a, int p, int n){
   /* computes a^p \mod n and checks if a number x with x^2 \mod n = 1
   and x \neq 1, n-1 occurs during the computation */
   if p = 0 then return 1;
   x := power(a, p div 2, n);
   result := x * x mod n;
   /* check if x^2 \mod n = 1 and x \neq 1, n-1 */
   if result = 1 and x \neq 1 and x \neq n-1 then is Probably Prime := false;
   if p \mod 2 = 1 then result := a^* result mod n;
   return result;
}
```

```
Running time: O(\log p \cdot \log n \cdot \log (\max\{a,n\}))
```


primeTest(int n) {

/* executes the randomized primality test for a chosen at random */

```
a := random(2, n-1);
```

```
isProbablyPrime: = true;
```

```
result := power(a, n-1, n);
```

```
if result ≠ 1 or !isProbablyPrime then
    return false;
else return true;
```

}

Theorem:

If *n* is composite, then there are at most

$\frac{n-9}{4}$

numbers 0 < *a* < *n* for which the algorithm primeTest fails.

ΠП

Public-Key Cryptosystems

Traditional encryption of messages

Disadvantages:

- 1. Prior to transmission of the message, the key *k* has to be exchanged between the parties A und B.
- For encryption of messages between *n* parties, *n(n-1)/2* keys are required.

Advantage:

Encryption and decryption are fast.

ТЛ

Diffie and Hellman (1976)

Idea: Each participant *A* holds two keys:

- 1. A public key P_A , accessible to all other participants.
- 2. A secret key S_A that is kept secret.

D = Set of all valid messages,e.g. set of all bitstrings of finite length

$$P_{A}(), S_{A}(): D \xrightarrow{1-1} D$$

Three constraints:

- 1. $P_A(), S_A()$ efficiently computable
- 2. $S_A(P_A(M)) = M \text{ and } P_A(S_A(M)) = M$
- **3**. $S_A()$ is not computable from $P_A()$ (with realistic effort)

Encryption in a public-key system

A sends a message *M* to *B*:

- 1. A receives B's public key P_B from a public directory or directly from B.
- 2. A computes the ciphertext $C = P_B(M)$ and sends it to B.
- 3. After receiving message *C*, *B* decrypts the message using his secret key $S_B: M = S_B(C)$

A sends a digitally signed message M' to B:

1. A computes the digital signature σ for M' using her secret key:

 $\sigma = S_A(M')$

- **2.** A sends the pair (M', σ) to B.
- 3. After receiving (M', σ) , *B* checks the digital signature: $P_A(\sigma) = M'$

Anybody is able to check σ using P_A (e.g. for bank checks).

R. Rivest, A. Shamir, L. Adleman

Generating the public and secret keys:

- 1. Select at random two large primes p and q of l+1 bits (l > 2000).
- 2. Compute n = pq.
- 3. Select a natural number e is that is relatively prime to (p-1)(q-1).
- 4. Compute $d = e^{-1}$

 $d^*e \equiv 1 \pmod{(p-1)(q-1)}$

- 5. Publish P = (e, n) as public key.
- 6. Keep S = (d, n) as secret key.

Split the (binary coded) message into blocks of length 2*I*. Interpret each block *M* as a binary number: $0 \le M < 2^{2I}$

 $P(M) = M^{e} \mod n$ $S(C) = C^{d} \mod n$

To show: $S_A(P_A(M)) = P_A(S_A(M)) = M^{ed} \mod n = M$, for any $0 \le M < 2^{2/2}$.

Theorem: (Fermat's little theorem) If *p* is prime, then for any integer *a* that is not divisible by *p*, $a^{p-1} \mod p = 1$.

Since $d \cdot e \equiv 1 \mod (p-1)(q-1)$ there holds ed = 1+k(p-1)(q-1), for some integer k.

Suppose that $M \mod p \neq 0$. Then by Fermat's little theorem,

 $M^{p-1} \mod p = 1$ and thus $M^{k(p-1)(q-1)} \mod p = 1$.

Hence $M^{ed} \mod p = M^{1+k(p-1)(q-1)} \mod p = M \mod p$, and $M^{ed} - M = I_1p$, for some integer I_1 .

If $M \mod p = 0$, then again $M^{ed} - M = I_2 p$, for some integer I_2 .

In any case, for any M, $M^{ed} - M = l \cdot p$, for some integer *l*. Similarly, for any *M*, $M^{ed} - M = l \cdot q$, for some integer *l*.

Since p and q are prime numbers, $M^{ed} - M = I^* pq$, for some integer I^* .

We conclude that, for any *M*, there holds $M^{ed} \mod n = M$.

Theorem: (GCD recursion theorem) For any numbers *a* and *b* with b>0: GCD(*a*,*b*) = GCD(*b*, *a* mod *b*).

Algorithm: Euclid Input: Two integers a and b with $b \ge 0$ Output: GCD(a,b) if b = 0then return aelse return Euclid(b, $a \mod b$)


```
Algorithm: extended-Euclid

Input: Two integers a and b with b \ge 0

Output: GCD(a,b) and two integers x and y with

xa + yb = GCD(a,b)

if b = 0 then return (a, 1, 0);

(d, x', y') := extended-Euclid(b, a \mod b);

x := y'; y := x' - \lfloor a/b \rfloor y';

return (d, x, y);
```

Application: *a* = (*p*-1)(*q*-1), *b* = *e*

The algorithm returns numbers *x* and *y* with

x(p-1)(q-1) + ye = GCD((p-1)(q-1),e) = 1

Т

Problem: Three $n \times n$ matrices *A*, *B* and *C*. Verify whether or not AB=C.

Simple solution: Multiply A, B and compare to C.

 $O(n^3)$ multiplications/operations, can be reduced to roughly $O(n^{2.37})$.

Goal: Design fast verification algorithm that may err with a certain probability.

Algorithm: Choose $\vec{r} = (r_1, ..., r_n) \in \{0,1\}^n$ uniformly at random. Compute $AB\vec{r}$ by first computing $B\vec{r}$ and then $A(B\vec{r})$. Then compute $C\vec{r}$.

If $A(B\vec{r}) \neq C\vec{r}$, then return $AB \neq C$. Otherwise return AB = C.

Running time: $O(n^2)$

Theorem: If $AB \neq C$ and if \vec{r} is chosen uniformly at random from $\{0,1\}^n$, then $\Pr[AB\vec{r} = C\vec{r}] \leq \frac{1}{2}$.

We next prove this theorem.

Law of Total Probability: Let Ω be a probability space and A_1, \dots, A_n be mutually disjoint events. Let *B* be an event with $B \subseteq \bigcup_{i=1}^n A_i$. Then

$$\Pr[B] = \sum_{i=1}^{n} \Pr[B \cap A_i] = \sum_{i=1}^{n} \Pr[B \mid A_i] \Pr[A_i].$$

By assumption $AB \neq C$. Hence $D \coloneqq AB - C \neq 0$ and the matrix *D* contains at least one non-zero entry $d_{ii} \neq 0$.

On the other hand, $AB\vec{r} = C\vec{r}$ translates to $D\vec{r} = 0$.

Let $P = D\vec{r} = (p_1, \dots, p_n)^T$.

There holds $p_i = \sum_{k=1}^n d_{ik} r_k = d_{ij}r_j + y$, for some constant y.

Hence $\Pr[P = 0]$ $\leq \Pr[\rho_i = 0] = \Pr[\rho_i = 0 | y = 0] \cdot \Pr[y = 0] + \Pr[\rho_i = 0 | y \neq 0] \cdot \Pr[y \neq 0].$

There holds:

$$\Pr[p_i=0 \mid y=0] = \Pr[r_i=0] = \frac{1}{2}$$

 $\Pr[p_i=0 \mid y \neq 0] = \Pr[r_i=1 \land d_{ij}=-y] \leq \Pr[r_i=1] = \frac{1}{2}$.

We conclude $Pr[P = 0] \le Pr[p_i = 0] \le \frac{1}{2} \cdot Pr[y = 0] + \frac{1}{2} \cdot Pr[y \neq 0]$ $= \frac{1}{2} \cdot Pr[y = 0] + \frac{1}{2} \cdot (1 - Pr[y = 0]) = \frac{1}{2}.$

Repeating the algorithm k times reduces the error probability to $1/2^k$, using a running time of $O(kn^2)$.

For *k*=100, the error probability is upper bounded by $1/2^k$, while the running time is still O(n^2).