ITा

03 - Randomization

Randomization

- Types of randomized algorithms
- Randomized Quicksort
- Randomized primality test
- Cryptography
- Verifying matrix multiplication

1. Types of randomized algorithms

- Las Vegas algorithms

Always correct; expected running time

Example: randomized Quicksort

- Monte Carlo algorithms (mostly correct)

Probably correct; guaranteed running time

Example: randomized primality test

2. Quicksort

Input: List S of n distinct elements over a totally ordered universe.
Output: The elements of S in (ascending) sorted order.

Idea of Quicksort: Identify a splitter $v \in S$.
Determine set S, of elements of S that are $<v$. Determine set S_{r} of elements of S that are $>v$. Sort S_{l}, S_{r} recursively.
Output sorted sequence of $S_{\text {, }}$, followed by v, followed by sorted sequence S_{r}.

Quicksort

function Quick (S: sequence): sequence;
\{returns the sorted sequence S \}
begin
if \#S ≤ 1 then Quick:=S; else \{ choose splitter element vin S; partition S into S, with elements $<v$, and S_{r} with elements > v; Quick:= Quick $\left.\left(S_{1}\right) \mid v \operatorname{Quick}\left(S_{r}\right)\right\}$
end;

Worst-case input

тинル

n elements
Running time: $(n-1)+(n-2)+\ldots+2+1=n(n-1) / 2$

Choice of the splitter element

Suppose that a splitter v with $\left|S_{\|}\right| \leq n / 2$ and $\left|S_{r}\right| \leq n / 2$ can be found in cn step.

Then $T(n) \leq 2 T(n / 2)+a n$, for some $a \geq c$, and $T(n) \leq a n \log n$.
$T(k)=$ worst-case number of steps to sort k elements

Problem: Find splitter v with above property.
But: Running time of $O(n \log n)$ can be maintained if S_{1}, S_{r} have roughly equal size, i.e. $1 / 4|S| \leq\left|S_{\mid}\right|,\left|S_{r}\right| \leq 3 / 4|S|$.

Thus randomly chosen splitter is "good" with probability $\geq 1 / 2$.

Randomized Quicksort

function RandQuick (S : sequence): sequence;
\{returns the sorted sequence S \}
begin
if $\# S \leq 1$ then Quick:=S;

else $\{$ choose splitter element v in S uniformly at random; partition S into S, with elements $<v$, and S_{r} with elements $>v$; RandQuick:= | $\operatorname{RandQuick}\left(S_{1}\right)$ | v | $\left.\operatorname{RandQuick}\left(S_{r}\right)\right\}$ |
| :--- | :--- | :--- | end;

Analysis 1

n elements; let s_{i} be the i-th smallest element
With probability $1 / n, s_{1}$ is the splitter element: subproblems of sizes 0 and $n-1$

With probability $1 / n, s_{k}$ is the splitter element: subproblems of sizes $k-1$ and $n-k$

With probability $1 / n, s_{n}$ is the splitter element: subproblems of sizes $n-1$ and 0

Expected running time:

$$
\begin{aligned}
T(n) & =\frac{1}{n} \sum_{k=1}^{n}(T(k-1)+T(n-k))+\Theta(n) \\
& =\frac{2}{n} \sum_{k=1}^{n} T(k-1)+\Theta(n) \\
& =O(n \log n)
\end{aligned}
$$

Analysis 2: Representation of QS as a tre』.

Analysis 2: expected \#comparisons

Running time is linear in the number of element comparisons.
$X_{i j}= \begin{cases}1 & \text { if } s_{i} \text { is compared to } s_{j} \\ 0 & \text { otherwise }\end{cases}$
$E\left[\sum_{i=1}^{n} \sum_{j>i} X_{i j}\right]=\sum_{i=1}^{n} \sum_{j>i} E\left[X_{i j}\right]$
$p_{i j}=$ probability that s_{i} is compared to s_{j}

$$
E\left[X_{i j}\right]=1 \cdot p_{i j}+0 \cdot\left(1-p_{i j}\right)=p_{i j}
$$

Computing $p_{i j}$

- s_{i} is compared to s_{j} iff s_{i} or s_{j} are chosen as pivot element before any $s_{1}, i<k j$.
$\left\{\begin{array}{lllll}s_{i} & \ldots & s_{\|} & \ldots & s_{j}\end{array}\right\}$
- Any element $s_{\mathrm{i}}, \ldots, s_{\mathrm{j}}$ is chosen as pivot element with the same probability. Hence $p_{i j}=2 /(j-i+1)$

Analysis 2

Expected number of comparisons:

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j i=i} p_{i j} & =\sum_{i=1}^{n} \sum_{i=1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n}=\sum_{k=2}^{n-i+2} \frac{2}{k} \\
& \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k} \\
& =2 n \sum_{k=1}^{n} \frac{1}{k}
\end{aligned}
$$

3. Primality test

Definition:

A natural number $p \geq 2$ is prime iff $a \mid p$ implies that $a=1$ or $a=p$.
We consider primality tests for numbers $n \geq 2$.
Algorithm: Deterministic primality test (naive approach)
Input: Natural number $n \geq 2$
Output: Answer to the question „Is n prime?"
if $n=2$ then return true;
if n even then return false;
for $i=1$ to $[\sqrt{n} / 2]$ do
if $2 i+1$ divides n
then return false;
return true;
Running time: $\Theta(\sqrt{n})$

Primality test

Goal:

Randomized algorithm

- Polynomial running time.
- If it returns "not prime", then n is not prime.
- If it returns "prime", then with probability at most $p, p>0$, n is composite.

After k iterations: If algorithm always returns "prime", then with probability at most p^{k}, n is composite.

Simple primality test

Fact: For any odd prime number $p: \quad 2^{p-1} \bmod p=1$.

Examples: $p=17,2^{16}-1=65535=17$ * 3855

$$
p=23, \quad 2^{22}-1=4194303=23 * 182361
$$

Simple primality test:
1 Compute $z=2^{n-1} \bmod n$;
2 if $z=1$
3 then n is possibly prime
4 else n is composite

Advantage: polynomial running time.

Simple primality test

Definition:

A natural number $n \geq 2$ is a base- 2 pseudoprime if n is composite and

$$
2^{n-1} \bmod n=1 .
$$

Example: $n=11 * 31=341$

$$
2^{340} \bmod 341=1
$$

Randomized primality test

Theorem: (Fermat's little theorem)
If p is prime and $0<a<p$, then

$$
a^{p-1} \bmod p=1 .
$$

Example: $n=341, a=3: \quad 3^{340} \bmod 341=56 \neq 1$

Algorithm: Randomized primality test
1 Choose a in the range [$2, n-1$] uniformly at random;
2 Compute $a^{n-1} \bmod n$;
3 if $a^{n-1} \bmod n=1$
4 then n is probably prime
5 else n is composite
$\operatorname{Prob}\left(n\right.$ is composite but $\left.a^{n-1} \bmod n=1\right) ?$

Problem: Carmichael numbers

Definition:

A natural number $n \geq 2$ is a base-a pseudoprime if n is composite and

$$
a^{n-1} \bmod n=1 .
$$

Definition: A number $n \geq 2$ is a Carmichael number if n is composite and for any a with $\operatorname{GCD}(a, n)=1$ we have

$$
a^{n-1} \bmod n=1 .
$$

Example:
Smallest Carmichael number: $561=3$ * 11 * 17

Randomized primality test

Theorem: If p is prime and $0<a<p$, then the equation

$$
a^{2} \bmod p=1
$$

has exactly the two solutions $a=1$ and $a=p-1$.

Definition: A number a is a non-trivial square root $\bmod n$ if

$$
a^{2} \bmod n=1 \text { and } a \neq 1, n-1 .
$$

Example: $n=35 \quad 6^{2} \bmod 35=1$

Idea: While computing a^{n-1}, where $0<a<n$ is chosen uniformly at random, check if a non-trivial square root $\bmod n$ exists.

Fast exponentiation

Method for computing a^{n} :

Case 1: [n is even]

$$
a^{n}=a^{n / 2 *} a^{n / 2}
$$

Case 2: [n is odd]

$$
a^{n}=a^{(n-1) / 2 *} a^{(n-1) / 2} * a
$$

Running time: $O\left(\log ^{2} a^{n} \log n\right)$

Fast exponentiation

$$
\begin{aligned}
& \text { Example: } \\
& \begin{aligned}
a^{62} & =\left(a^{31}\right)^{2} \\
a^{31} & =\left(a^{15}\right)^{2} * a \\
a^{15} & =\left(a^{7}\right)^{2} * a \\
a^{7} & =\left(a^{3}\right)^{2} * a \\
a^{3} & =(a)^{2} * a
\end{aligned}
\end{aligned}
$$

Fast exponentiation

boolean isProbablyPrime;
function power(int a, int p, int n) \{
$/^{*}$ computes $a^{p} \bmod n$ and checks if a number x with $x^{2} \bmod n=1$ and $x \neq 1, n-1$ occurs during the computation */
if $p=0$ then return 1 ;
$x:=\operatorname{power}(a, p \operatorname{div} 2, n)$;
result := $x^{*} x \bmod n$;
$/^{*}$ check if $x^{2} \bmod n=1$ and $x \neq 1, n-1 * /$
if result = 1 and $x \neq 1$ and $x \neq n-1$ then isProbablyPrime := false;
if $p \bmod 2=1$ then result $:=a^{*}$ result mod n;
return result;
\}
Running time: $\mathrm{O}(\log p \cdot \log n \cdot \log (\max \{a, n\}))$

Miller Rabin primality test

primeTest(int n) \{

/* executes the randomized primality test for a chosen at random */
$a:=$ random(2, $n-1)$;
isProbablyPrime: = true;
result := power(a, $n-1, n)$;
if result $\neq 1$ or !isProbablyPrime then return false;
else return true;

Miller Rabin primality test

Theorem:

If n is composite, then there are at most

$$
\frac{n-9}{4}
$$

numbers $0<a<n$ for which the algorithm primeTest fails.

4. Application

Public-Key Cryptosystems

Secret key cryptosystems

Traditional encryption of messages

Disadvantages:

1. Prior to transmission of the message, the key k has to be exchanged between the parties A und B.
2. For encryption of messages between n parties, $n(n-1) / 2$ keys are required.

Secret key encryption systems

Advantage:

Encryption and decryption are fast.

Public-key cryptosystems

Diffie and Hellman (1976)

Idea: Each participant A holds two keys:

1. A public key P_{A}, accessible to all other participants.
2. A secret key S_{A} that is kept secret.

Public-key cryptosystems

$D=$ Set of all valid messages, e.g. set of all bitstrings of finite length

$$
P_{A}(), S_{A}(): D \xrightarrow{1-1} D
$$

Three constraints:

1. $P_{A}(), S_{A}()$ efficiently computable
2. $\quad S_{A}\left(P_{A}(\mathrm{M})\right)=M$ and $P_{A}\left(S_{A}(M)\right)=M$
3. $S_{A}()$ is not computable from $P_{A}()$ (with realistic effort)

Encryption in a public-key system

A sends a message M to B :

Encryption in a public key system

1. A receives B `s public key P_{B} from a public directory or directly from B.
2. A computes the ciphertext $C=P_{B}(M)$ and sends it to B.
3. After receiving message C, B decrypts the message using his secret key $S_{B}: M=S_{B}(C)$

Generating a digital signature

A sends a digitally signed message M^{\prime} to B :

1. A computes the digital signature σ for M^{\prime} using her secret key:

$$
\sigma=S_{A}\left(M^{\prime}\right)
$$

2. A sends the pair $\left(M^{\prime}, \sigma\right)$ to B.
3. After receiving $\left(M^{\prime}, \sigma\right), B$ checks the digital signature:
$P_{A}(\sigma)=M^{\prime}$

Anybody is able to check σ using P_{A} (e.g. for bank checks).

RSA cryptosystem

R. Rivest, A. Shamir, L. Adleman

Generating the public and secret keys:

1. Select at random two large primes p and q of $l+1$ bits ($l>2000$).
2. Compute $n=p q$.
3. Select a natural number e is that is relatively prime to $(p-1)(q-1)$.
4. Compute $d=e^{-1}$

$$
d^{*} e \equiv 1(\bmod (p-1)(q-1))
$$

RSA cryptosystem

5. Publish $P=(e, n)$ as public key.
6. Keep $S=(d, n)$ as secret key.

Split the (binary coded) message into blocks of length $2 /$. Interpret each block M as a binary number: $0 \leq M<2^{2 \prime}$

$$
P(M)=M^{e} \bmod n \quad S(C)=C^{d} \bmod n
$$

Recovering a message

To show: $S_{A}\left(P_{A}(M)\right)=P_{A}\left(S_{A}(M)\right)=M^{e d} \bmod n=M$, for any $0 \leq M<2^{2 \prime}$.

Theorem: (Fermat's little theorem)
If p is prime, then for any integer a that is not divisible by p,

$$
a^{p-1} \bmod p=1 .
$$

Since $d \cdot e \equiv 1 \bmod (p-1)(q-1)$ there holds $e d=1+k(p-1)(q-1)$, for some integer k.
Suppose that $M \bmod p \neq 0$. Then by Fermat's little theorem, $M^{p-1} \bmod p=1$ and thus $M^{k(p-1)(q-1)} \bmod p=1$.
Hence $M^{e d} \bmod p=M^{1+k(p-1)(q-1)} \bmod p=M \bmod p$, and $M^{e d}-M=I_{1} p$, for some integer I_{1}.
If $M \bmod p=0$, then again $M^{e d}-M=I_{2} p$, for some integer I_{2}.

Recovering a message

In any case, for any $M, M^{\text {ed }}-M=I \cdot p$, for some integer I.
Similarly, for any $M, M^{e d}-M=\rho \cdot q$, for some integer ρ.

Since p and q are prime numbers, $M^{e d}-M=I^{*} p q$, for some integer μ^{*}.

We conclude that, for any M, there holds $M^{e d} \bmod n=M$.

Multiplicative inverse

Theorem: (GCD recursion theorem)
For any numbers a and b with $b>0$:

$$
\operatorname{GCD}(a, b)=\operatorname{GCD}(b, a \bmod b) .
$$

Algorithm: Euclid
Input: Two integers a and b with $b \geq 0$
Output: GCD (a, b)
if $b=0$
then return a
else return Euclid($b, a \bmod b$)

Multiplicative inverse

Algorithm: extended-Euclid
Input: Two integers a and b with $b \geq 0$
Output: $\operatorname{GCD}(a, b)$ and two integers x and y with

$$
x a+y b=\operatorname{GCD}(a, b)
$$

if $b=0$ then return $(a, 1,0)$;
$\left(d, x^{\prime}, y^{\prime}\right):=$ extended-Euclid $(b, a \bmod b)$;
$x:=y^{\prime} ; y:=x^{\prime}-\lfloor a / b\rfloor y^{\prime} ;$
return (d, x, y);

Application: $a=(p-1)(q-1), b=e$
The algorithm returns numbers x and y with

$$
x(p-1)(q-1)+y e=\operatorname{GCD}((p-1)(q-1), e)=1
$$

5. Verifying matrix multiplication

Problem: Three $n \times n$ matrices A, B and C. Verify whether or not $A B=C$.

Simple solution: Multiply A, B and compare to C.
$\mathrm{O}\left(n^{3}\right)$ multiplications/operations, can be reduced to roughly $\mathrm{O}\left(n^{2.37}\right)$.

Goal: Design fast verification algorithm that may err with a certain probability.

Verifying matrix multiplication

Algorithm: Choose $\vec{r}=\left(r_{1}, \ldots, r_{n}\right) \in\{0,1\}^{n}$ uniformly at random.
Compute $A B \vec{r}$ by first computing $B \vec{r}$ and then $A(B \vec{r})$.
Then compute $C \vec{r}$.
If $A(B \vec{r}) \neq C \vec{r}$, then return $A B \neq C$. Otherwise return $A B=C$.

Running time: $\mathrm{O}\left(n^{2}\right)$

Theorem: If $A B \neq C$ and if \vec{r} is chosen uniformly at random from $\{0,1\}^{n}$, then $\operatorname{Pr}[A B \vec{r}=C \vec{r}] \leq 1 / 2$.

We next prove this theorem.

Law of Total Probability: Let Ω be a probability space and A_{1}, \ldots, A_{n} be mutually disjoint events. Let B be an event with $B \subseteq \bigcup_{i=1}^{n} A_{i}$. Then

$$
\operatorname{Pr}[B]=\sum_{i=1}^{n} \operatorname{Pr}\left[B \cap A_{i}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[B \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right] .
$$

By assumption $A B \neq C$. Hence $D:=A B-C \neq 0$ and the matrix D contains at least one non-zero entry $d_{i j} \neq 0$.

On the other hand, $A B \vec{r}=C \vec{r}$ translates to $D \vec{r}=0$.

$$
\text { Let } P=D \vec{r}=\left(p_{1}, \ldots, p_{n}\right)^{T} \text {. }
$$

There holds $p_{i}=\sum_{k=1}^{n} d_{i k} r_{k}=d_{i j} r_{j}+y$, for some constant y.

Analysis

Hence

```
\(\operatorname{Pr}[P=0]\)
    \(\leq \operatorname{Pr}\left[p_{i}=0\right]=\operatorname{Pr}\left[p_{i}=0 \mid y=0\right] \cdot \operatorname{Pr}[y=0]+\operatorname{Pr}\left[p_{i}=0 \mid y \neq 0\right] \cdot \operatorname{Pr}[y \neq 0]\).
```

There holds:

```
\(\operatorname{Pr}\left[p_{i}=0 \mid y=0\right]=\operatorname{Pr}\left[r_{i}=0\right]=1 / 2\)
\(\operatorname{Pr}\left[p_{i}=0 \mid y \neq 0\right]=\operatorname{Pr}\left[r_{i}=1 \wedge d_{i j}=-y\right] \leq \operatorname{Pr}\left[r_{i}=1\right]=1 / 2\).
```

We conclude

$$
\begin{aligned}
\operatorname{Pr}[P=0] \leq \operatorname{Pr}\left[p_{i}=0\right] & \leq 1 / 2 \cdot \operatorname{Pr}[y=0]+1 / 2 \cdot \operatorname{Pr}[y \neq 0] \\
& =1 / 2 \cdot \operatorname{Pr}[y=0]+1 / 2 \cdot(1-\operatorname{Pr}[y=0])=1 / 2 .
\end{aligned}
$$

Analysis

Repeating the algorithm k times reduces the error probability to $1 / 2^{k}$, using a running time of $\mathrm{O}\left(\mathrm{k} \mathrm{n}^{2}\right)$.

For $k=100$, the error probability is upper bounded by $1 / 2^{k}$, while the running time is still $\mathrm{O}\left(n^{2}\right)$.

