
04 – Treaps

2WS 2018/19

The dictionary problem

Given: Universe (U,<) of keys with a total order

Goal: Maintain set S  U under the following operations

• Search(x,S): Is x  S?

• Insert(x,S): Insert x into S if not already in S.

• Delete(x,S): Delete x from S.

© S. Albers

3WS 2018/19

Extended set of operations

• Minimum(S): Return smallest key.

• Maximum(S): Return largest key.

• List(S): Output elements of S in increasing order of key.

• Union(S1,S2): Merge S1 and S2 .

Condition:  x1  S1 , x2  S2: x1 < x2

• Split(S,x,S1,S2): Split S into S1 and S2.

 x1  S1 , x2  S2: x1  x and x < x2

© S. Albers

4WS 2018/19

Known solutions

• Binary search trees

Drawback: Sequence of insertions may lead to

a linear list a, b, c, d, e, f

• Height balanced trees: AVL trees, (a,b)-trees

Drawback: Complex algorithms or high memory requirements.

b g

d

ca h

© S. Albers

5WS 2018/19

Approach for randomized search trees

If n elements are inserted in random order into a binary search tree,

the expected depth is 1.39 log n.

Idea: Each element x is assigned a priority chosen uniformly at random

prio(x)  ℝ

The goal is to establish the following property.

(*) The search tree has the structure that would result if elements

were inserted in the order of their priorities.

© S. Albers

6WS 2018/19

Treaps (Tree + Heap)

Definition: A treap is a binary tree.

Each node contains one element x with key(x)  U and prio(x)  ℝ.

The following properties hold.

 Search tree property

For each element x:

- elements y in the left subtree of x satisfy: key(y) < key(x)

- elements y in the right subtree of x satisfy : key(y) > key(x)

 Heap property

For all elements x,y:

If y is a child of x, then prio(y) > prio(x).

All priorities are pairwise distinct.

© S. Albers

7WS 2018/19

Example

key

priority

a b c d e f g

3 7 4 1 5 2 6

d

1

a

3

f

2

c

4

e

5

g

6

b

7
© S. Albers

8WS 2018/19

Treap uniqueness

Lemma: For elements x1, ... , xn with key(xi) and prio(xi), there exists

a unique treap. It satisfies property (*).

Proof:

n=1: obvious

Suppose that lemma holds for element sets up to cardinality n-1.

n-1  n: The element xi with smallest priority among x1, ... , xn must be

in the root.

Elements xj with key(xj) < key(xi) are in the left subtree of xi.

Elements xj with key(xj) > key(xi) are in the right subtree of xi.

By induction hypothesis there exists a unique treap for the elements

in the left/right subtrees of xi.

Hence there exists a unique treap for x1, ... , xn.

© S. Albers

9WS 2018/19

Treap uniqueness

If the elements are inserted in order of increasing priority, then element

xi with smallest priority is inserted first and resides in the root.

Elements xj with key(xj) < key(xi) are in the left subtree of xi.

Elements xj with key(xj) > key(xi) are in the right subtree of xi.

By induction hypothesis the treaps in the left/right subtrees of xi

have the same structure as if the respective elements were inserted

in order of increasing priorities.

Hence property (*) holds.

© S. Albers

10WS 2018/19

Search for an element

d

1

a

3

f

2

c

4

e

5

g

6

b

7

© S. Albers

11WS 2018/19

Search for element with key k

1 v := root;

2 while v  nil do

3 case key(v) = k : stop; “element found” (successful search)

4 key(v) < k : v:= RightChild(v);

5 key(v) > k : v:= LeftChild(v);

6 endcase;

7 endwhile;

8 “element not found” (unsuccessful search)

Running time: O(# elements on the search path)

© S. Albers

12WS 2018/19

Analysis of the search path

Elements x1, … , xn xi has i-th smallest key

Let M be a subset of the elements.

Pmin(M) = element in M with lowest priority

Lemma:

a) Let i<m. xi is ancestor of xm iff Pmin({xi,…,xm}) = xi

b) Let m<i. xi is ancestor of xm iff Pmin({xm,…,xi}) = xi

© S. Albers

13WS 2018/19

Analysis of the search path

Proof: a) Use (*). Elements are inserted in order of increasing

priorities.

“” Pmin({xi,…,xm}) = xi  xi is inserted first among {xi,…,xm}.

When xi is inserted, the tree contains only keys k with

k < key(xi) or k > key(xm)

When xj, with i < j ≤ m, is inserted, it traverses the same search

path as xi. Hence xj becomes a descendent of xi.

key(xi) > kk key(xi) < kk

xi goes right

xj goes right
xi goes left

xj goes left

© S. Albers

14WS 2018/19

Analysis of the search path

Proof: a) (Let i<m. xi is ancestor of xm iff Pmin({xi,…,xm}) = xi)

“” Let xj = Pmin({xi,…,xm}). Show: xi = xj

Suppose: xi  xj

When xj is inserted, the tree contains only keys k with

k < key(xj) or k > key(xm)

All elements of {xi,…,xm}\{xj} traverse the same search path as xj:

Node with key k < key(xi): All elements from {xi,…,xm} turn left.

Node with key k > key(xm): All elements from {xi,…,xm} turn right.

Hence all elements of {xi,…,xm}\{xj} become descendents of xj.

Case 1: xj = xm xi is descendent of xm Contradiction!

Case 2: xj  xm xi and xm are in different subtrees of xj Contradiction!

Part b) can be shown analogously.

© S. Albers

15WS 2018/19

Analysis of the ‘Search’ operation

Let T be a treap with elements x1, …, xn xi has i-th smallest key

n-th Harmonic number:

Lemma:

1. Successful search: The expected number of nodes on the path

to xm is Hm + Hn-m+1 – 1.

2. Unsuccessful search : Let m be the number of keys that are smaller

than the search key k. The expected number of nodes on the

search path is Hm + Hn-m.

 


n

kn kH
1

/1

© S. Albers

16WS 2018/19

Analysis of the ‘Search’ operation

Proof: Part 1






otherwise0

 ofancestor is 1
,

mi

im

xx
X

Xm = # nodes on the path from the root to xm (incl. xm)





mi

im

mi

imm XXX ,,1


















 

 mi

im

mi

imm XEXEXE ,,1][

© S. Albers

17WS 2018/19

Analysis of the ‘Search’ operation

i < m :

)1(1/] ofancestor is Prob[][,  imxxXE miim

All elements in {xi, …, xm} have the same probability of being the one

with the smallest priority.

i > m :

Prob[Pmin({xi,…,xm}) = xi] = 1/(m-i+1)

)1(1/][,  miXE im

© S. Albers

18WS 2018/19

Analysis of the ‘Search’ operation

1

1

1
 ...

2

1

2

1
 ...

1
 1

1

1

1

1
1][

1 
















mnm

mimi

m

HH

mnm

miim
XE

© S. Albers

19WS 2018/19

Analysis of the ‘Search’ operation

Part 2

m = 0: Search path is the same as that for x1. By Part 1, the expected
number of nodes on the search path is H1 + Hn -1 = Hn.

m = n: Search path is the same as that for xn. By Part 1, the expected
number of nodes on the search path is Hn + H1 -1 = Hn.

0<m<n: xm is an ancestor of xm+1 or vice versa. When searching for k,
at every

xi with i<m, the search path turns right

xi with i>m+1, the search path turns left.

Hence the search path for k is the same as that for xm, xm+1 until one of
the two keys are hit.

© S. Albers

20WS 2018/19

Analysis of the ‘Search’ operation

If xm is hit first, the remaining search path of k is identical to that of xm+1.

If xm+1 is hit first, the remaining search path of k is identical to that of xm.

Hence the length of the search path is upper bounded by that of xm and
xm+1, i.e. max {Hm+Hn-m+1 -1, Hm+1 + Hn-m -1 } ≤ Hm + Hn-m.

xm

xm+1

xm+1

xm

© S. Albers

21WS 2018/19

Inserting a new element x

1. Choose prio(x).

2. Search for the position of x in the tree.

3. Insert x as a leaf.

4. Restore the heap property.

while prio(parent(x)) > prio(x) do

if x is left child then RotateRight(parent(x))

else RotateLeft(parent(x));

endif

endwhile;

© S. Albers

22WS 2018/19

Rotations

The rotations maintain the search tree property and

restore the heap property.

RotateLeft

RotateRight

B

y

C

yx

A

A

B C

x

© S. Albers

23WS 2018/19

Deleting an element x

1. Find x in the tree.

2. while x is not a leaf do

u := child with smaller priority;

if u is left child then RotateRight(x))

else RotateLeft(x);

endif;

endwhile;

3. Delete x;

© S. Albers

24WS 2018/19

Rotations

RotateLeft

RotateRight

B

x

C

xu

A

A

B C

u

© S. Albers

25WS 2018/19

Analysis of ‘Insert’ and ‘Delete’ operations

Lemma: The expected running time of insert and delete operations

is O(log n). The expected number of rotations is 2.

Proof: Analysis of insert (delete is the inverse operation)

rotations = depth of x after being inserted as a leaf (1)

- depth of x after the rotations (2)

Let x = xm .

(2) Expected depth is Hm + Hn-m+1 – 1.

(1) Expected depth is Hm-1 + Hn-m + 1.

The tree contains n-1 elements, m-1 of them being smaller.

rotations = Hm-1 + Hn-m + 1 – (Hm + Hn-m+1 – 1) < 2

© S. Albers

26WS 2018/19

Extended set of operations

n = number of elements in treap T.

• Minimum(T): Return the smallest key. O(log n)

• Maximum(T): Return the largest key. O(log n)

• List(T): Output elements of S in increasing order. O(n)

• Union(T1,T2): Merge T1 and T2.

Condition:  x1  T1 , x2  T2: key(x1) < key(x2)

• Split(T,k,T1,T2): Split T into T1 and T2.

 x1  T1 , x2  T2: key(x1)  k and k < key(x2)

© S. Albers

27WS 2018/19

The ‘Split’ operation

Split(T,k,T1,T2): Split T into T1 and T2.

 x1  T1 , x2  T2: key(x1)  k and key(x2) > k

W.l.o.g. key k is not in T.

Otherwise delete the element with key k and re-insert it into T1 after the

split operation.

1. Generate a new element x with key(x)=k and prio(x) = -.

2. Insert x into T.

3. Delete the new root. The left subtree is T1, the right subtree is T2.

© S. Albers

28WS 2018/19

The ‘Union’ operation

Union(T1,T2): Merge T1 and T2.

Condition:  x1  T1 , x2  T2: key(x1) < key(x2)

1. Determine key k with key(x1) < k < key(x2)

for all x1  T1 and x2  T2.

2. Generate element x with key(x)=k and prio(x) = -.

3. Generate treap T with root x, left subtree T1 and

right subtree T2.

4. Delete x from T.

© S. Albers

29WS 2018/19

Analysis

Lemma: The expected running time of the operations Union

and Split is O(log n).

© S. Albers

30WS 2018/19

Implementation

Priorities from [0,1)

Priorities are used only when two elements are compared to find out

which of them has the higher priority.

In case of equality, extend both priorities by bits chosen uniformly at

random until two corresponding bits differ.

p1 = 0.010111001 p1 = 0.010111001011

p2 = 0.010111001 p2 = 0.010111001010

© S. Albers

