In

04 - Treaps

The dictionary problem

Given: Universe ($U,<$) of keys with a total order

Goal: Maintain set $S \subseteq U$ under the following operations

- Search (x, S) : Is $x \in S$?
- Insert (x, S) : Insert x into S if not already in S.
- Delete (x, S) : Delete x from S.

Extended set of operations

- Minimum(S): Return smallest key.
- Maximum(S): Return largest key.
- List(S):
- $\operatorname{Union}\left(S_{1}, S_{2}\right): \quad$ Merge S_{1} and S_{2}.

Condition: $\forall x_{1} \in S_{1}, x_{2} \in S_{2}: \quad x_{1}<x_{2}$

- Split $\left(S, x, S_{1}, S_{2}\right)$: Split S into S_{1} and S_{2}.

$$
\forall x_{1} \in S_{1}, x_{2} \in S_{2}: x_{1} \leq x \text { and } x<x_{2}
$$

Known solutions

- Binary search trees

Drawback: Sequence of insertions may lead to a linear list a, b, c, d, e, f

- Height balanced trees: AVL trees, (a, b)-trees Drawback: Complex algorithms or high memory requirements.

Approach for randomized search trees

If n elements are inserted in random order into a binary search tree, the expected depth is $1.39 \log n$.

Idea: Each element x is assigned a priority chosen uniformly at random

$$
\operatorname{prio}(x) \in \mathbb{R}
$$

The goal is to establish the following property.
(*) The search tree has the structure that would result if elements * were inserted in the order of their priorities.

Treaps (Tree + Heap)

Definition: A treap is a binary tree.
Each node contains one element x with $\operatorname{key}(x) \in U$ and prio $(x) \in \mathbb{R}$. The following properties hold.

- Search tree property For each element x :
- elements y in the left subtree of x satisfy: $\operatorname{key}(y)<\operatorname{key}(x)$
- elements y in the right subtree of x satisfy : $\operatorname{key}(y)>\operatorname{key}(x)$
- Heap property

For all elements x, y :
If y is a child of x, then prio $(y)>\operatorname{prio}(x)$.
All priorities are pairwise distinct.

Example

key	a	b	c	d	e	f	g
priority	3	7	4	1	5	2	6

Treap uniqueness

Lemma: For elements x_{1}, \ldots, x_{n} with $\operatorname{key}\left(x_{\mathrm{i}}\right)$ and $\operatorname{prio}\left(x_{\mathrm{i}}\right)$, there exists a unique treap. It satisfies property (*).

Proof:

$n=1$: obvious
Suppose that lemma holds for element sets up to cardinality $n-1$.
$n-1 \Rightarrow n$: The element x_{i} with smallest priority among x_{1}, \ldots, x_{n} must be in the root.
Elements x_{j} with $\operatorname{key}\left(x_{j}\right)<\operatorname{key}\left(x_{i}\right)$ are in the left subtree of x_{i}.
Elements x_{j} with $\operatorname{key}\left(x_{j}\right)>\operatorname{key}\left(x_{\mathrm{i}}\right)$ are in the right subtree of x_{i}.
By induction hypothesis there exists a unique treap for the elements in the left/right subtrees of x_{i}.
Hence there exists a unique treap for x_{1}, \ldots, x_{n}.

Treap uniqueness

If the elements are inserted in order of increasing priority, then element x_{i} with smallest priority is inserted first and resides in the root.
Elements x_{j} with $\operatorname{key}\left(x_{j}\right)<\operatorname{key}\left(x_{i}\right)$ are in the left subtree of x_{i}.
Elements x_{j} with $\operatorname{key}\left(x_{j}\right)>\operatorname{key}\left(\mathrm{x}_{\mathrm{i}}\right)$ are in the right subtree of x_{i}.

By induction hypothesis the treaps in the left/right subtrees of x_{i} have the same structure as if the respective elements were inserted in order of increasing priorities.

Hence property (*) holds.

Search for an element

Search for element with key k

$1 \quad v:=$ root;
2 while $v \neq$ nil do
3 case $\operatorname{key}(v)=k$: stop; "element found" (successful search)
$4 \quad \operatorname{key}(v)<k: v:=\operatorname{RightChild}(v)$;
5 $\operatorname{key}(v)>k: v:=\operatorname{LeftChild}(v)$;
6 endcase;
7 endwhile;
8 "element not found" (unsuccessful search)

Running time: O(\# elements on the search path)

Analysis of the search path

Elements $x_{1}, \ldots, x_{n} \quad x_{\mathrm{i}}$ has i-th smallest key
Let M be a subset of the elements.
$\mathrm{P}_{\text {min }}(M)=$ element in M with lowest priority

Lemma:
a) Let $i<m$. $\quad x_{i}$ is ancestor of x_{m} iff $\mathrm{P}_{\min }\left(\left\{x_{i}, \ldots, x_{m}\right\}\right)=x_{i}$
b) Let $m<i . \quad x_{i}$ is ancestor of x_{m} iff $\mathrm{P}_{\min }\left(\left\{x_{m}, \ldots, x_{i}\right\}\right)=x_{i}$

Analysis of the search path

Proof: a) Use (*). Elements are inserted in order of increasing priorities.
$" \Leftarrow " P_{\text {min }}\left(\left\{x_{i}, \ldots, x_{m}\right\}\right)=x_{\mathrm{i}} \quad \Rightarrow \quad x_{\mathrm{i}}$ is inserted first among $\left\{x_{\mathrm{i}}, \ldots, x_{m}\right\}$. When x_{i} is inserted, the tree contains only keys k with $k<\operatorname{key}\left(x_{i}\right)$ or $k>\operatorname{key}\left(x_{m}\right)$
When x_{j}, with $i<j \leq m$, is inserted, it traverses the same search path as x_{i}. Hence x_{j} becomes a descendent of x_{i}.

Analysis of the search path

Proof: a) (Let $i<m$. x_{i} is ancestor of x_{m} iff $\left.\mathrm{P}_{\min }\left(\left\{x_{\mathrm{i}}, \ldots, x_{\mathrm{m}}\right\}\right)=x_{\mathrm{i}}\right)$
$" \Rightarrow$ " Let $x_{\mathrm{j}}=\mathrm{P}_{\min }\left(\left\{x_{\mathrm{i}}, \ldots, x_{\mathrm{m}}\right\}\right)$. Show: $x_{i}=x_{j}$
Suppose: $x_{\mathrm{i}} \neq x_{\mathrm{j}}$
When x_{j} is inserted, the tree contains only keys k with
$k<\operatorname{key}\left(x_{\mathrm{j}}\right)$ or $k>\operatorname{key}\left(x_{\mathrm{m}}\right)$
All elements of $\left\{x_{i}, \ldots, x_{m}\right\} \backslash\left\{x_{j}\right\}$ traverse the same search path as x_{j} :
Node with key $\mathrm{k}<\operatorname{key}\left(\mathrm{x}_{\mathrm{i}}\right)$: All elements from $\left\{x_{\mathrm{i}}, \ldots, x_{\mathrm{m}}\right\}$ turn left.
Node with key $\mathrm{k}>\operatorname{key}\left(\mathrm{x}_{\mathrm{m}}\right)$: All elements from $\left\{x_{i}, \ldots, x_{\mathrm{m}}\right\}$ turn right.

Hence all elements of $\left\{x_{\mathrm{i}}, \ldots, x_{\mathrm{m}}\right\} \backslash\left\{x_{j}\right\}$ become descendents of x_{j}.
Case 1: $x_{j}=x_{\mathrm{m}} \quad x_{\mathrm{i}}$ is descendent of $x_{\mathrm{m}} \quad$ Contradiction!
Case 2: $x_{\mathrm{j}} \neq x_{\mathrm{m}} \quad x_{\mathrm{i}}$ and x_{m} are in different subtrees of $\mathrm{x}_{\mathrm{j}} \quad$ Contradiction!

Part b) can be shown analogously.

Analysis of the 'Search' operation

Let T be a treap with elements $x_{1}, \ldots, x_{\mathrm{n}} \quad x_{\mathrm{i}}$ has i-th smallest key
n-th Harmonic number:

$$
H_{n}=\sum_{k=1}^{n} 1 / k
$$

Lemma:

1. Successful search: The expected number of nodes on the path to x_{m} is $H_{m}+H_{n-m+1}-1$.
2. Unsuccessful search : Let m be the number of keys that are smaller than the search key k. The expected number of nodes on the search path is $H_{m}+H_{n-m}$.

Analysis of the 'Search' operation

Proof: Part 1

$$
X_{m, i}= \begin{cases}1 & x_{i} \text { is ancestor of } x_{m} \\ 0 & \text { otherwise }\end{cases}
$$

$X_{\mathrm{m}}=\#$ nodes on the path from the root to x_{m} (incl. $\left.x_{m}\right)$

$$
X_{m}=1+\sum_{i<m} X_{m, i}+\sum_{i>m} X_{m, i}
$$

$$
E\left[X_{m}\right]=1+E\left[\sum_{i<m} X_{m, i}\right]+E\left[\sum_{i>m} X_{m, i}\right]
$$

Analysis of the 'Search' operation

```
\(i<m\) :
```

$E\left[X_{m, i}\right]=\operatorname{Prob}\left[x_{i}\right.$ is ancestor of $\left.x_{m}\right]=1 /(m-i+1)$
All elements in $\left\{x_{i}, \ldots, x_{m}\right\}$ have the same probability of being the one with the smallest priority.

$$
\operatorname{Prob}\left[P_{\min }\left(\left\{x_{i}, \ldots, x_{m}\right\}\right)=x_{i}\right]=1 /(m-i+1)
$$

$i>m$:

$$
E\left[X_{m, i}\right]=1 /(i-m+1)
$$

Analysis of the 'Search' operation

$$
\begin{aligned}
E\left[X_{m}\right] & =1+\sum_{i<m} \frac{1}{m-i+1}+\sum_{i>m} \frac{1}{i-m+1} \\
& =1+\frac{1}{m}+\ldots+\frac{1}{2}+\frac{1}{2}+\ldots+\frac{1}{n-m+1} \\
& =H_{m}+H_{n-m+1}-1
\end{aligned}
$$

Analysis of the 'Search' operation

Part 2

$m=0$: Search path is the same as that for x_{1}. By Part 1, the expected number of nodes on the search path is $H_{1}+H_{n}-1=H_{n}$.
$m=n$: Search path is the same as that for x_{n}. By Part 1, the expected number of nodes on the search path is $H_{n}+H_{1}-1=H_{n}$.
$0<m<n: \quad x_{m}$ is an ancestor of x_{m+1} or vice versa. When searching for k, at every
x_{i} with $i<m$, the search path turns right x_{i} with $i>m+1$, the search path turns left.

Hence the search path for k is the same as that for x_{m}, x_{m+1} until one of the two keys are hit.

Analysis of the 'Search' operation

If x_{m} is hit first, the remaining search path of k is identical to that of x_{m+1}.
If x_{m+1} is hit first, the remaining search path of k is identical to that of x_{m}.

Hence the length of the search path is upper bounded by that of x_{m} and

$$
x_{m+1} \text {, i.e. } \max \left\{H_{m}+H_{n-m+1}-1, H_{m+1}+H_{n-m}-1\right\} \leq H_{m}+H_{n-m} \text {. }
$$

Inserting a new element x

1. Choose prio(x).
2. Search for the position of x in the tree.

3. Insert x as a leaf.
4. Restore the heap property.
while prio(parent $(x))>\operatorname{prio}(x)$ do
if x is left child then RotateRight $(\operatorname{parent}(x))$ else RotateLeft(parent(x));
endif
endwhile;

Rotations

The rotations maintain the search tree property and restore the heap property.

Deleting an element x

1. Find x in the tree.
2. while x is not a leaf do
u := child with smaller priority; if u is left child then RotateRight (x)) else RotateLeft($(x$);
endif;
endwhile;
3. Delete x ;

Rotations

Analysis of 'Insert' and 'Delete' operations $\boldsymbol{\square}$

Lemma: The expected running time of insert and delete operations is $\mathrm{O}(\log n)$. The expected number of rotations is 2 .

Proof: Analysis of insert (delete is the inverse operation) \# rotations $=$ depth of x after being inserted as a leaf - depth of x after the rotations

Let $x=x_{m}$.
(2) Expected depth is $H_{m}+H_{n-m+1}-1$.
(1) Expected depth is $H_{m-1}+H_{n-m}+1$.

The tree contains $n-1$ elements, $m-1$ of them being smaller.
\# rotations $=H_{m-1}+H_{n-m}+1-\left(H_{m}+H_{n-m+1}-1\right)<2$

Extended set of operations

$n=$ number of elements in treap T.

- $\operatorname{Minimum}(T)$: Return the smallest key. $\mathrm{O}(\log n)$
- Maximum(T): Return the largest key. $\mathrm{O}(\log n)$
- List (T) : Output elements of S in increasing order. O(n)
- Union $\left(T_{1}, T_{2}\right)$: Merge T_{1} and T_{2}.

Condition: $\forall x_{1} \in T_{1}, x_{2} \in T_{2}: \operatorname{key}\left(x_{1}\right)<\operatorname{key}\left(x_{2}\right)$

- $\operatorname{Split}\left(T, k, T_{1}, T_{2}\right):$ Split T into T_{1} and T_{2}.

$$
\forall x_{1} \in T_{1}, x_{2} \in T_{2}: \operatorname{key}\left(x_{1}\right) \leq k \text { and } k<\operatorname{key}\left(x_{2}\right)
$$

The 'Split' operation

Split $\left(T, k, T_{1}, T_{2}\right): \quad$ Split T into T_{1} and T_{2}.

$$
\forall x_{1} \in T_{1}, x_{2} \in T_{2}: \operatorname{key}\left(x_{1}\right) \leq k \text { and } \operatorname{key}\left(x_{2}\right)>k
$$

W.l.o.g. key k is not in T.

Otherwise delete the element with key k and re-insert it into T_{1} after the split operation.

1. Generate a new element x with $\operatorname{key}(x)=k$ and prio $(x)=-\infty$.
2. Insert x into T.
3. Delete the new root. The left subtree is T_{1}, the right subtree is T_{2}.

The 'Union’ operation

$\operatorname{Union}\left(T_{1}, T_{2}\right):$ Merge T_{1} and T_{2}.
Condition: $\forall x_{1} \in T_{1}, x_{2} \in T_{2}: \operatorname{key}\left(x_{1}\right)<\operatorname{key}\left(x_{2}\right)$

1. Determine key k with $\operatorname{key}\left(x_{1}\right)<k<\operatorname{key}\left(x_{2}\right)$ for all $x_{1} \in T_{1}$ and $x_{2} \in T_{2}$.
2. Generate element x with $\operatorname{key}(x)=k$ and prio $(x)=-\infty$.
3. Generate treap T with root x, left subtree T_{1} and right subtree T_{2}.
4. Delete x from T.

Analysis

Lemma: The expected running time of the operations Union and Split is $\mathrm{O}(\log n)$.

Implementation

Priorities from $[0,1)$

Priorities are used only when two elements are compared to find out which of them has the higher priority.

In case of equality, extend both priorities by bits chosen uniformly at random until two corresponding bits differ.

$$
\begin{aligned}
& p_{1}=0.010111001 \\
& p_{2}=0.010111001
\end{aligned}
$$

$$
\begin{aligned}
& p_{1}=0.010111001011 \\
& p_{2}=0.010111001010
\end{aligned}
$$

