

05 – Minimum Cuts

1. Minimum cuts

Input: Undirected graph G = (V, E) n = |V| m = |E|**Output:** $V_1, V_2, \subseteq V$ such that $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$ and the number of edges between V_1 and V_2 is as small as possible.

 $c_{min}(G) = #$ edges of a minimum cut of G

A cut is often represented by the set of edges between V_1 , V_2 .

Weighted problem: Edge *e* has weight *w*(*e*). Find a cut of minimum weight.

Reduction to network flow: For all pairs $s, t \in V$, compute a maximum (s,t)- flow. Time $O(n^5)$

Multigraph: Multiple edges may exist between any two vertices. Basic operation: Edge contraction $e = \{x, y\}$.

Replace x, y by a meta-vertex z. For $v \notin \{x, y\}$ replace $\{v, x\}$ by $\{v, z\}$ replace $\{v, y\}$ by $\{v, z\}$. No self-loops! $\rightarrow G \setminus \{e\}$

The order of the contractions is irrelevant.

Each edge contraction can be implemented in time O(n) using (extended) adjacency lists or matrices.

For each meta-vertex

store the number of edges to other meta-vertices,

store the names of the original vertices it contains.

Algorithm Contraction;

- 1. *H* := *G*;
- 2. while *H* consists of more than two vertices do
- 3. Choose an edge *e* in *H* uniformly at random;
- 4. $H := H \setminus \{e\};$
- 5. endwhile;
- 6. Let V_1 , V_2 be the vertex sets represented by the last two vertices in *H*.

Running time: $O(n^2)$

Properties

ПП

- **Lemma 1:** Partition V_1 , V_2 is output by the *Contraction* if and only if no edge between V_1 and V_2 is ever contracted.
- **Proof:** If an edge $\{v_1, v_2\}$ with $v_1 \in V_1$ and $v_2 \in V_2$ is contracted, partition V_1, V_2 cannot be output by the algoritm. If no edge between V_1 and V_2 is ever contracted, then this partition indeed survives.
- **Lemma 2:** Let G be a multigraph. If $c_{\min}(G) = k$, then all vertices have degree $\geq k$ and G has $\geq nk/2$ edges.
- **Proof:** If there were a vertex *v* having degree < k, then $\{v\}$ and $V\{v\}$ would be a cut with less than *k* edges, and $c_{\min}(G) < k$.
- If all edges have degree $\geq k$, then the total edge degree, summed over all vertices, is at least *nk*. In this total edge degree, each edge is counted exactly twice.

WS 2018/19

Lemma 3: Let G be a multigraph. For each edge e in G there holds $c_{\min}(G) \leq c_{\min}(G \setminus \{e\})$.

Proof: Partition V_1 , V_2 of $G \setminus \{e\}$ with *k* edges is also a partition of *G* with *k* edges.

Theorem 1: Let *C* be a minimum cut in *G*. Contraction returns *C* with probability $\geq 2/n^2$.

Proof: Let $c_{\min}(G) = k$. Consider the *i*-th iteration of the while-loop. *H* has $n_i = n - i + 1$ vertices. Suppose that the first i - 1 iterations do not contract an edge of *C*. *C* is a cut of *H* and, by Lemma 3, $c_{\min}(H) = k$. Furthermore, by Lemma 2, *H* has at least $n_i k/2$ edges.

Prob[*i*-th iteration contracts an edge of C] $\leq 2/n_i$

Prob[*i*-th iterationen does not contract an edge of C] $\geq 1 - 2/n_i$

Prob[*C* is output]

$$\geq \prod_{i=1}^{n-2} \left(1 - \frac{2}{n_i} \right) = \prod_{i=1}^{n-2} \frac{n-i-1}{n-i+1} = \prod_{j=3}^n \frac{j-2}{j} = \frac{1 \cdots (n-2)}{3 \cdots n}$$
$$= \frac{2}{n(n-1)} \geq \frac{2}{n^2}$$

Repeat Contraction dn² In *n* times, for some constant *d*, and select the smallest cut.

Prob [C is not found]
$$\leq \left(1 - \frac{2}{n^2}\right)^{n^2 d \ln n} \leq e^{-2d \ln n} = n^{-2d}$$

Lemma 4: Let C be a minimum cut. Stop Contraction when exactly t vertices are left. There holds

Prob[no edge of *C* is contracted]
$$\geq \frac{t(t-1)}{n(n-1)}$$
.

Proof:

$$\prod_{i=1}^{n-t} \left(1 - \frac{2}{n_i} \right) = \prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} = \prod_{j=t+1}^n \frac{j-2}{j} = \frac{(t-1)\cdots(n-2)}{(t+1)\cdots n}$$

$$=\frac{(t-1)t}{n(n-1)}$$

ΠП

Algorithm Fast-Cut

Input: Multigraph G = (V, E). **Output:** Partition $V = V_1 \cup V_2$ or the respective edge set.

- 1. *n* := |*V*|;
- 2. if $n \le 6$ then
- 3. Compute a minimum cut by complete enumeration;
- 4. **else**
- 5. $t := \left[1 + n / \sqrt{2} \right]$ $/* \frac{t(t-1)}{n(n-1)} \ge \frac{1}{2}$
- 6. Execute *Contraction* twice so that each time exactly t vertices remain. Let H_1 and H_2 be the resulting graphs;
- 7. Apply *Fast-Cut* recursively to H_1 and H_2 ;
- 8. Output the smaller cut;
- 9. endif;

Theorem 2: Fast-Cut has a running time of $O(n^2 \log n)$.

Proof: Contraction has a running time of $O(n^2)$.

$$T(n) = 2T\left(\left\lceil 1 + n / \sqrt{2} \right\rceil\right) + O(n^2)$$

Theorem 3: Fast-Cut finds minimum cut with probability Ω (1/log *n*).

Proof: Let C be a minimum cut.

Fast-Cut returns a minimum cut if

- during the reduction to H_1 or H_2 no edge of C is contracted and
- *Fast-Cut* applied to such an *H*_i returns *C*.

P(*n*) = Prob[*Fast-Cut* finds a minimum cut in graphs with *n* vertices]

 $P(n) \ge 1 - \operatorname{Prob}[Fast - Cut \text{ does not find } C \text{ in any of the two trials}]$

$$= 1 - \prod_{i=1,2} \operatorname{Prob} \left[Fast - Cut \text{ does not find } C \text{ in the trial on } H_i \right]$$

$$= 1 - \prod_{i=1,2} \left(1 - \Pr \operatorname{ob} \left[Fast - Cut \text{ finds } C \text{ in the trial on } H_i \right] \right)$$

$$\geq 1 - \left(1 - \frac{1}{2}P(t)\right)^2$$

Success probability

p(I) = lower bound on *P* if there are *I* recursive levels

$$p(l+1) = 1 - \left(1 - \frac{1}{2}p(l)\right)^2 = p(l) - \frac{p(l)^2}{4}$$

p(0)=1

We prove that $p(l) \ge 1/d$ implies $p(l+1) \ge 1/(d+1)$.

Since $p(0) = 1 \ge 1/1$ it follows $p(l) \ge 1/(l+1) = \Omega(1/l)$. There are $O(\log n)$ recursive levels so that $P(n) = \Omega(1/\log n)$.

 $f(x) = x - x^2/4$ is monotonically increasing in [0,1]

Hence $p(l) \ge 1/d$, where $d \ge 1$, and $p(l) \in [0,1]$ imply

$$p(l+1) \ge \frac{1}{d} - \frac{1}{4d^2}$$

= $\frac{d+1}{d+1} \cdot \frac{4d-1}{4d^2}$
= $\frac{1}{d+1} \frac{4d^2 + 3d - 1}{4d^2}$
 $\ge \frac{1}{d+1}$.

Repeat *Fast-Cut d* ln² *n* times, for some constant *d*, and select the smallest cut.

$$\operatorname{Prob}[C \text{ not found}] \leq \left(1 - \frac{c}{\ln n}\right)^{d \ln^2 n} \leq e^{-cd \ln n} = n^{-cd}$$

Running time: $O(n^2 \log^3 n)$

Weighted problem: Undirected graph G = (V, E) n = |V| m = |E|Edge *e* in G = (V, E) has weight $w(e) \ge 0$. **Output:** $V_1, V_2, \subseteq V$ such that $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$ and $\sum_{e=(u,v)\in V_1\times V_2} w(e)$ is as small as possible.

Let $c_{\min}(G)$ denote the weight of such a minimum cut.

A minimum (*s*,*t*)-cut, where *s*, $t \in V$, is a cut V_s , $V_t \subseteq V$ with $V_s \cup V_t = V$, $V_s \cap V_t = \emptyset$ and $s \in V_s$, $t \in V_t$ of minimum weight. This weight is denoted by $c_{\min}(G, s, t)$.

ТΠ

 $G \setminus \{x, y\}$ = graph if x, y are contracted The weights of multiple edges add up.

Lemma 5: Let $s, t \in V$ be arbitrary. There holds $c_{\min}(G) = \min\{c_{\min}(G, s, t), c_{\min}(G \setminus \{s, t\})\}.$

Algorithm Some-(s,t)-Cut;

Input: Graph *G* Output: *s*, *t* (along with a minimum (*s*,*t*)-cut)

- 1. *A* := {arbitrary vertex of *V*};
- 2. while $A \neq V$ do
- 3. Add vertex $v \in V A$ to A for which w(v,A) is maximum;
- 4. endwhile;
- 5. Let *s* be the second to last and *t* be the last vertex added to *A*;

w(v,A) = total weight of edges between v and vertices in A

Algorithm *Minimum-Cut*,

- 1. $Min := \infty; n := |V|;$
- 2. while *n* ≥ 2 do
- 3. Execute Some-(s,t)-Cut, and obtain s, t and a cut C of weight W;
- 4. **if** *W* < *Min* **then** store *C*; *Min* := *W*; **endif**;
- 5. Contract *s* and *t*; n := n 1;
- 6. endwhile;
- 7. Return *Min* and the cut stored last;

Theorem 4: Sets $V_t = \{t\}$ and $V_s = V - \{t\}$ computed by Some-(s,t)-Cut are a minimum (s,t)-cut.

Proof:

Number the vertices from 1 to *n* so that vertex *i* is added to *A* in the *i*-th iteration.

s = n - 1 and t = n

Let *C* be an arbitrary (*s*,*t*)-cut. $C_i = edges in C$ having both endpoints in {1,...,*l*} $W(C_i) = total weight of edges in <math>C_i$

Vertex *i* is active (with respect to *C*) if *i* and i - 1 belong to different parts of *C*.

Claim: For each active vertex *i* there holds $w(i, \{1, ..., i-1\}) \le w(C_i)$.

n is active and hence $w(n, \{1, ..., n-1\}) \leq w(C)$.

Claim: For each active vertex *i* there holds $w(i,\{1,..,i-1\}) \le w(C_i)$.

Proof: The claim holds for the first active vertex *i*.

Suppose the claim holds for active vertex *i* and the next active vertex is *j*.

$$\begin{split} & w(j,\{1,\ldots,j-1\}) = w(j,\{1,\ldots,i-1\}) + w(j,\{i,\ldots,j-1\}) \\ & \leq w(i,\{1,\ldots,i-1\}) + w(j,\{i,\ldots,j-1\}) \\ & \leq w(C_i) + w(j,\{i,\ldots,j-1\}) \\ & \leq w(C_j) \end{split}$$

Theorem 5: *Minimum-Cut* computes a minimum cut in time $O(mn + n^2 \log n)$.

Proof: Correctness: Induction on the number of vertices. Algorithm works correctly for multigraphs with n = 2 vertices.

 $n-1 \rightarrow n$: Some-(s,t)-Cut computes s,t and c_{\min} (G,s,t) correctly. MinimumCut computes c_{\min} (G \ {s,t}) correctly.

Some-(s,t)-Cut has a running time of $O(m + n \log n)$. Maintain a priority queue for $v \in V - A$ with key(v) = w(v,A). $n \ DeleteMax$ and $m \ IncreaseKey$ operations (Fibonacci Heaps).