IT

05 - Minimum Cuts

1. Minimum cuts

Minimum cuts

Input: Undirected graph $G=(V, E) \quad n=|V| \quad m=|E|$
Output: $V_{1}, V_{2}, \subseteq V$ such that $V_{1} \cup V_{2}=V, \quad V_{1} \cap V_{2}=\varnothing$ and the number of edges between V_{1} and V_{2} is as small as possible.
$c_{\text {min }}(G)=$ \# edges of a minimum cut of G
A cut is often represented by the set of edges between V_{1}, V_{2}.
Weighted problem: Edge e has weight $w(e)$.
Find a cut of minimum weight.
Reduction to network flow: For all pairs $s, t \in V$, compute a maximum (s, t) - flow. Time $O\left(n^{5}\right)$

2. Randomized algorithm

Multigraph: Multiple edges may exist between any two vertices. Basic operation: Edge contraction $e=\{x, y\}$.

Replace x, y by a meta-vertex z.
For $v \notin\{x, y\}$ replace $\{v, x\}$ by $\{v, z\}$
replace $\{v, y\}$ by $\{v, z\}$. No self-loops!
$\rightarrow G \backslash\{e\}$

Contractions

The order of the contractions is irrelevant.

Each edge contraction can be implemented in time $O(n)$ using (extended) adjacency lists or matrices.
For each meta-vertex
store the number of edges to other meta-vertices, store the names of the original vertices it contains.

Algorithm Contraction

Algorithm Contraction;

1. $H:=G$;
2. while H consists of more than two vertices do
3. Choose an edge e in H uniformly at random;
4. $H:=H \backslash\{e\}$;
5. endwhile;
6. Let V_{1}, V_{2} be the vertex sets represented by the last two vertices in H.

Running time: $O\left(n^{2}\right)$

Properties

Lemma 1: Partition V_{1}, V_{2} is output by the Contraction if and only if no edge between V_{1} and V_{2} is ever contracted.

Proof: If an edge $\left\{v_{1}, v_{2}\right\}$ with $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ is contracted, partition V_{1}, V_{2} cannot be output by the algoritm.
If no edge between V_{1} and V_{2} is ever contracted, then this partition indeed survives.

Lemma 2: Let G be a multigraph. If $c_{\text {min }}(G)=k$, then all vertices have degree $\geq k$ and G has $\geq n k / 2$ edges.

Proof: If there were a vertex v having degree $<k$, then $\{v\}$ and $K\{v\}$ would be a cut with less than k edges, and $c_{\text {min }}(G)<k$.
If all edges have degree $\geq k$, then the total edge degree, summed over all vertices, is at least $n k$. In this total edge degree, each edge is counted exactly twice.

Lemma 3: Let G be a multigraph. For each edge e in G there holds $c_{\text {min }}(G) \leq c_{\text {min }}(G \backslash\{e\})$.

Proof: Partition V_{1}, V_{2} of $G \backslash\{e\}$ with k edges is also a partition of G with k edges.

Probability of success

Theorem 1: Let C be a minimum cut in G.
Contraction returns C with probability $\geq 2 / n^{2}$.
Proof: Let $c_{\text {min }}(G)=k$.
Consider the i-th iteration of the while-loop.
H has $n_{i}=n-i+1$ vertices.
Suppose that the first $i-1$ iterations do not contract an edge of C.
C is a cut of H and, by Lemma $3, c_{\text {min }}(H)=k$.
Furthermore, by Lemma 2, H has at least $n_{i} k / 2$ edges.
$\operatorname{Prob}[i$-th iteration contracts an edge of $C] \leq 2 / n_{i}$
$\operatorname{Prob}[i-$ th iterationen does not contract an edge of $C] \geq 1-2 / n_{i}$

Probability of success

$\operatorname{Prob}[C$ is output]

$$
\begin{aligned}
& \geq \prod_{i=1}^{n-2}\left(1-\frac{2}{n_{i}}\right)=\prod_{i=1}^{n-2} \frac{n-i-1}{n-i+1}=\prod_{j=3}^{n} \frac{j-2}{j}=\frac{1 \cdots(n-2)}{3 \cdots n} \\
& =\frac{2}{n(n-1)} \geq \frac{2}{n^{2}}
\end{aligned}
$$

Increasing the success probability

Repeat Contraction $d n^{2}$ In n times, for some constant d, and select the smallest cut.

$$
\text { Prob }[C \text { is not found }] \leq\left(1-\frac{2}{n^{2}}\right)^{n^{2} d \ln n} \leq e^{-2 d \ln n}=n^{-2 d}
$$

3. Improved running time

Lemma 4: Let C be a minimum cut. Stop Contraction when exactly t vertices are left. There holds

$$
\operatorname{Prob}[\text { no edge of } C \text { is contracted }] \geq \frac{t(t-1)}{n(n-1)}
$$

Proof:

$$
\begin{aligned}
\prod_{i=1}^{n-t}\left(1-\frac{2}{n_{i}}\right)=\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} & =\prod_{j=t+1}^{n} \frac{j-2}{j}=\frac{(t-1) \cdots(n-2)}{(t+1) \cdots n} \\
& =\frac{(t-1) t}{n(n-1)}
\end{aligned}
$$

Algorithm Fast-Cut

Input: Multigraph $G=(V, E)$.
Output: Partition $V=V_{1} \cup V_{2}$ or the respective edge set.

1. $n:=|V|$;
2. if $n \leq 6$ then
3. Compute a minimum cut by complete enumeration;
4. else
5. $t:=\lceil 1+n / \sqrt{2}\rceil \quad n_{n}^{n(t-1)}{ }_{n}^{(n-1)}=\frac{1}{2}$
6. Execute Contraction twice so that each time exactly
t vertices remain. Let H_{1} and H_{2} be the resulting graphs;
7. Apply Fast-Cut recursively to H_{1} and H_{2};
8. Output the smaller cut;
9. endif;

Algorithm Fast-Cut

Theorem 2: Fast-Cut has a running time of $O\left(n^{2} \log n\right)$.

Proof: Contraction has a running time of $O\left(n^{2}\right)$.

$$
T(n)=2 T(\lceil 1+n / \sqrt{2}\rceil)+O\left(n^{2}\right)
$$

Success probability

Theorem 3: Fast-Cut finds minimum cut with probability Ω (1/log n).

Proof: Let C be a minimum cut.
Fast-Cut returns a minimum cut if

- during the reduction to H_{1} or H_{2} no edge of C is contracted and
- Fast-Cut applied to such an H_{i} returns C.
$P(n)=\operatorname{Prob}[$ Fast-Cut finds a minimum cut in graphs with n vertices]

Success probability

$P(n) \geq 1-\operatorname{Prob}[F a s t-C u t$ does not find C in any of the two trials]
$=1-\prod_{i=1,2} \operatorname{Prob}\left[\right.$ Fast - Cut does not find C in the trial on $\left.H_{i}\right]$
$=1-\prod_{i=1,2}\left(1-\operatorname{Prob}\left[\right.\right.$ Fast - Cut finds C in the trial on $\left.\left.H_{i}\right]\right)$

$$
\geq 1-\left(1-\frac{1}{2} P(t)\right)^{2}
$$

Success probability

$p(\Lambda)=$ lower bound on P if there are $/$ recursive levels

$$
\begin{aligned}
p(l+1) & =1-\left(1-\frac{1}{2} p(l)\right)^{2}=p(l)-\frac{p(l)^{2}}{4} \\
p(0) & =1
\end{aligned}
$$

We prove that $p(\Lambda \geq 1 / d$ implies $p(/+1) \geq 1 /(d+1)$.

Since $p(0)=1 \geq 1 / 1$ it follows $p(I) \geq 1 /(I+1)=\Omega(1 /)$. There are $O(\log n)$ recursive levels so that $P(n)=\Omega(1 / \log n)$.

Success probability

$f(x)=x-x^{2} / 4$ is monotonically increasing in $[0,1]$

Hence $p(\Lambda) \geq 1 / d$, where $d \geq 1$, and $p(\Lambda) \in[0,1]$ imply

$$
\begin{aligned}
p(l+1) & \geq \frac{1}{d}-\frac{1}{4 d^{2}} \\
& =\frac{d+1}{d+1} \cdot \frac{4 d-1}{4 d^{2}} \\
& =\frac{1}{d+1} \frac{4 d^{2}+3 d-1}{4 d^{2}} \\
& \geq \frac{1}{d+1} .
\end{aligned}
$$

Increasing the success probability

Repeat Fast-Cut $d \ln ^{2} n$ times, for some constant d, and select the smallest cut.

$$
\operatorname{Prob}[C \text { not found }] \leq\left(1-\frac{c}{\ln n}\right)^{d \ln ^{2} n} \leq e^{-c d \ln n}=n^{-c d}
$$

Running time: $\mathrm{O}\left(n^{2} \log ^{3} n\right)$

4. Minimum weighted cuts

Weighted problem: Undirected graph $G=(V, E) \quad n=|V| \quad m=|E|$
Edge e in $G=(V, E)$ has weight $w(e) \geq 0$.
Output: $\quad V_{1}, V_{2}, \subseteq V$ such that $V_{1} \cup V_{2}=V, \quad V_{1} \cap V_{2}=\varnothing$ and $\sum_{e=(u, v) \in V_{1} \times V_{2}} w(e)$ is as small as possible.

Let $c_{\text {min }}(G)$ denote the weight of such a minimum cut.

A minimum (s, t)-cut, where $s, t \in V$, is a cut $V_{s}, V_{t} \subseteq V$ with $V_{s} \cup V_{t}=V, \quad V_{\mathrm{s}} \cap V_{\mathrm{t}}=\varnothing$ and $s \in V_{\mathrm{s}}, t \in V_{\mathrm{t}}$ of minimum weight. This weight is denoted by $c_{\text {min }}(G, s, t)$.

Minimum weighted cuts

$G \backslash\{x, y\}=$ graph if x, y are contracted The weights of multiple edges add up.

Lemma 5: Let $s, t \in V$ be arbitrary. There holds

$$
c_{\min }(G)=\min \left\{c_{\min }(G, s, t), c_{\min }(G \backslash\{s, t)\} .\right.
$$

Deterministic algorithm

Algorithm Some-(s,t)-Cut;
Input: Graph G
Output: s, t (along with a minimum ($s, t)$-cut)

1. $A:=\{$ arbitrary vertex of $V\}$;
2. while $A \neq V$ do
3. Add vertex $v \in V-A$ to A for which $w(v, A)$ is maximum;
4. endwhile;
5. Let s be the second to last and t be the last vertex added to A;
$w(v, A)=$ total weight of edges between v and vertices in A

Deterministic algorithm

Algorithm Minimum-Cut;

1. Min $:=\infty ; n:=|V|$;
2. while $n \geq 2$ do
3. Execute Some-(s,t)-Cut, and obtain s, t and a cut C of weight W;
4. if W < Min then store C; Min := W; endif;
5. Contract s and $t ; \quad n:=n-1$;
6. endwhile;
7. Return Min and the cut stored last;

Theorem 4: Sets $V_{t}=\{t\}$ and $V_{s}=V-\{t\}$ computed by Some-(s,t)-Cut are a minimum (s, t)-cut.

Proof:

Number the vertices from 1 to n so that vertex i is added to A in the i-th iteration.
$s=n-1$ and $t=n$

Let C be an arbitrary (s, t)-cut.
$C_{i}=$ edges in C having both endpoints in $\{1, \ldots$,
$w\left(C_{\mathrm{i}}\right)=$ total weight of edges in C_{i}

Analysis

Vertex i is active (with respect to C) if i and $i-1$ belong to different parts of C.

Claim: For each active vertex i there holds $w(i,\{1, \ldots, i-1\}) \leq w\left(C_{i}\right)$.
n is active and hence $w(n,\{1, \ldots, n-1\}) \leq w(C)$.

Claim: For each active vertex i there holds $w(i,\{1, . ., i-1\}) \leq w\left(C_{i}\right)$.

Proof: The claim holds for the first active vertex i.

Analysis

Suppose the claim holds for active vertex i and the next active vertex is j.

$$
\begin{aligned}
w(j,\{1, \ldots, j-1\}) & =w(j,\{1, \ldots, i-1\})+w(j,\{i, \ldots, j-1\}) \\
& \leq w(i,\{1, \ldots, i-1\})+w(j,\{i, \ldots, j-1\}) \\
& \leq w\left(C_{i}\right)+w(j,\{i, \ldots, j-1\}) \\
& \leq w\left(C_{j}\right)
\end{aligned}
$$

Analysis

Theorem 5: Minimum-Cut computes a minimum cut in time $O\left(m n+n^{2} \log n\right)$.

Proof: Correctness: Induction on the number of vertices.
Algorithm works correctly for multigraphs with $n=2$ vertices.
$n-1 \rightarrow n$: Some-(s,t)-Cut computes s, t and $c_{\text {min }}$ (G,s,t) correctly. MinimumCut computes $c_{\text {min }}(G \backslash\{s, t\})$ correctly.

Some-(s,t)-Cut has a running time of $O(m+n \log n)$.
Maintain a priority queue for $v \in V-A$ with $\operatorname{key}(v)=w(v, A)$.
n DeleteMax and m IncreaseKey operations (Fibonacci Heaps).

